Theory HOL-Library.Infinite_Typeclass
section ‹Infinite Type Class›
text ‹The type class of infinite sets (orginally from the Incredible Proof Machine)›
theory Infinite_Typeclass
imports Complex_Main
begin
class infinite =
assumes infinite_UNIV: "infinite (UNIV::'a set)"
begin
lemma arb_element: "finite Y ⟹ ∃x :: 'a. x ∉ Y"
using ex_new_if_finite infinite_UNIV
by blast
lemma arb_finite_subset: "finite Y ⟹ ∃X :: 'a set. Y ∩ X = {} ∧ finite X ∧ n ≤ card X"
proof -
assume fin: "finite Y"
then obtain X where "X ⊆ UNIV - Y" "finite X" "n ≤ card X"
using infinite_UNIV
by (metis Compl_eq_Diff_UNIV finite_compl infinite_arbitrarily_large order_refl)
then show ?thesis
by auto
qed
lemma arb_countable_map: "finite Y ⟹ ∃f :: (nat ⇒ 'a). inj f ∧ range f ⊆ UNIV - Y"
using infinite_UNIV
by (auto simp: infinite_countable_subset)
end
instance nat :: infinite
by (intro_classes) simp
instance int :: infinite
by (intro_classes) simp
instance rat :: infinite
proof
show "infinite (UNIV::rat set)"
by (simp add: infinite_UNIV_char_0)
qed
instance real :: infinite
proof
show "infinite (UNIV::real set)"
by (simp add: infinite_UNIV_char_0)
qed
instance complex :: infinite
proof
show "infinite (UNIV::complex set)"
by (simp add: infinite_UNIV_char_0)
qed
instance option :: (infinite) infinite
by intro_classes (simp add: infinite_UNIV)
instance prod :: (infinite, type) infinite
by intro_classes (simp add: finite_prod infinite_UNIV)
instance list :: (type) infinite
by intro_classes (simp add: infinite_UNIV_listI)
end