Theory QuasiBorel

(*  Title:   QuasiBorel.thy
    Author:  Yasuhiko Minamide, Michikazu Hirata, Tokyo Institute of Technology
*)

section ‹Quasi-Borel Spaces›
theory QuasiBorel
imports "StandardBorel"
begin

subsection ‹ Definitions ›

text ‹ We formalize quasi-Borel spaces introduced by Heunen et al.~cite"Heunen_2017".›

subsubsection ‹ Quasi-Borel Spaces›
definition qbs_closed1 :: "(real  'a) set  bool"
  where "qbs_closed1 Mx  (a  Mx. f  real_borel M real_borel. a  f  Mx)"

definition qbs_closed2 :: "['a set, (real  'a) set]  bool"
 where "qbs_closed2 X Mx  (x  X. (λr. x)  Mx)"

definition qbs_closed3 :: "(real  'a) set  bool"
 where "qbs_closed3 Mx  (P::real  nat. Fi::nat  real  'a.
                          (i. P -` {i}  sets real_borel)
                            (i. Fi i  Mx)
                            (λr. Fi (P r) r)  Mx)"

lemma separate_measurable:
  fixes P :: "real  nat"
  assumes "i. P -` {i}  sets real_borel"
  shows "P  real_borel M nat_borel"
proof -
  have "P  real_borel M count_space UNIV"
    by (auto simp add: assms measurable_count_space_eq_countable)
  thus ?thesis
    using measurable_cong_sets sets_borel_eq_count_space by blast
qed

lemma measurable_separate:
  fixes P :: "real  nat"
  assumes "P  real_borel M nat_borel"
  shows "P -` {i}  sets real_borel"
  by(rule measurable_sets_borel[OF assms borel_singleton[OF sets.empty_sets,of i]])

definition "is_quasi_borel X Mx  Mx  UNIV  X  qbs_closed1 Mx  qbs_closed2 X Mx  qbs_closed3 Mx"

lemma is_quasi_borel_intro[simp]:
  assumes "Mx  UNIV  X"
      and "qbs_closed1 Mx" "qbs_closed2 X Mx" "qbs_closed3 Mx"
    shows "is_quasi_borel X Mx"
  using assms by(simp add: is_quasi_borel_def)

typedef 'a quasi_borel = "{(X::'a set, Mx). is_quasi_borel X Mx}"
proof
  show "(UNIV, UNIV)  {(X::'a set, Mx). is_quasi_borel X Mx}"
    by (simp add: is_quasi_borel_def qbs_closed1_def qbs_closed2_def qbs_closed3_def)
qed

definition qbs_space :: "'a quasi_borel  'a set" where
  "qbs_space X  fst (Rep_quasi_borel X)"

definition qbs_Mx :: "'a quasi_borel  (real  'a) set" where
  "qbs_Mx X  snd (Rep_quasi_borel X)"

lemma qbs_decomp : 
"(qbs_space X,qbs_Mx X)  {(X::'a set, Mx). is_quasi_borel X Mx}"
  by (simp add: qbs_space_def qbs_Mx_def Rep_quasi_borel[simplified])

lemma qbs_Mx_to_X[dest]:
  assumes "α  qbs_Mx X"
  shows "α  UNIV  qbs_space X"
        "α r  qbs_space X"
  using qbs_decomp assms by(auto simp: is_quasi_borel_def)


lemma qbs_closed1I:
  assumes "α f. α  Mx  f  real_borel M real_borel  α  f  Mx"
  shows "qbs_closed1 Mx"
  using assms by(simp add: qbs_closed1_def)

lemma qbs_closed1_dest[simp]:
  assumes "α  qbs_Mx X"
      and "f  real_borel M real_borel"
    shows "α  f  qbs_Mx X"
  using assms qbs_decomp by (auto simp add: is_quasi_borel_def qbs_closed1_def)

lemma qbs_closed2I:
  assumes "x. x  X  (λr. x)  Mx"
  shows "qbs_closed2 X Mx"
  using assms by(simp add: qbs_closed2_def)

lemma qbs_closed2_dest[simp]:
  assumes "x  qbs_space X"
  shows "(λr. x)  qbs_Mx X"
  using assms qbs_decomp[of X] by (auto simp add: is_quasi_borel_def qbs_closed2_def)

lemma qbs_closed3I:
  assumes "(P :: real  nat) Fi. (i. P -` {i}  sets real_borel)  (i. Fi i  Mx)
                   (λr. Fi (P r) r)  Mx"
  shows "qbs_closed3 Mx"
  using assms by(auto simp: qbs_closed3_def)

lemma qbs_closed3I':
  assumes "(P :: real  nat) Fi. P  real_borel M nat_borel  (i. Fi i  Mx)
                   (λr. Fi (P r) r)  Mx"
  shows "qbs_closed3 Mx"
  using assms by(auto intro!: qbs_closed3I simp: separate_measurable)

lemma qbs_closed3_dest[simp]:
  fixes P::"real  nat" and Fi :: "nat  real  _"
  assumes "i. P -` {i}  sets real_borel"
      and "i. Fi i  qbs_Mx X"
    shows "(λr. Fi (P r) r)  qbs_Mx X"
  using assms qbs_decomp[of X] by (auto simp add: is_quasi_borel_def qbs_closed3_def)

lemma qbs_closed3_dest':
  fixes P::"real  nat" and Fi :: "nat  real  _"
  assumes "P  real_borel M nat_borel"
      and "i. Fi i  qbs_Mx X"
    shows "(λr. Fi (P r) r)  qbs_Mx X"
  using qbs_closed3_dest[OF measurable_separate[OF assms(1)] assms(2)] .

lemma qbs_closed3_dest2:
  assumes "countable I"
 and [measurable]: "P  real_borel M count_space I"
      and "i. i  I  Fi i  qbs_Mx X"
    shows "(λr. Fi (P r) r)  qbs_Mx X"
proof -
  have 0:"I  {}"
    using measurable_empty_iff[of "count_space I" P real_borel] assms(2)
    by fastforce
  define P' where "P'  to_nat_on I  P"
  define Fi' where "Fi'  Fi  (from_nat_into I)"
  have 1:"P'  real_borel M nat_borel"
    by(simp add: P'_def)
  have 2:"i. Fi' i  qbs_Mx X"
    using assms(3) from_nat_into[OF 0] by(simp add: Fi'_def)
  have "(λr. Fi' (P' r) r)  qbs_Mx X"
    using 1 2 measurable_separate by auto
  thus ?thesis
    using from_nat_into_to_nat_on[OF assms(1)] measurable_space[OF assms(2)]
    by(auto simp: Fi'_def P'_def)
qed

lemma qbs_closed3_dest2':
  assumes "countable I"
 and [measurable]: "P  real_borel M count_space I"
      and "i. i  range P  Fi i  qbs_Mx X"
    shows "(λr. Fi (P r) r)  qbs_Mx X"
proof -
  have 0:"range P  I = range P"
    using measurable_space[OF assms(2)] by auto
  have 1:"P  real_borel M count_space (range P)"
    using restrict_count_space[of I "range P"] measurable_restrict_space2[OF _ assms(2),of "range P"]
    by(simp add: 0)
  have 2:"countable (range P)"
    using countable_Int2[OF assms(1),of "range P"]
    by(simp add: 0)
  show ?thesis
    by(auto intro!: qbs_closed3_dest2[OF 2 1 assms(3)])
qed

lemma qbs_space_Mx:
 "qbs_space X = {α x |x α. α  qbs_Mx X}"
proof auto
  fix x
  assume 1:"x  qbs_space X"
  show "xa α. x = α xa  α  qbs_Mx X"
    by(auto intro!: exI[where x=0] exI[where x="(λr. x)"] simp: 1)
qed

lemma qbs_space_eq_Mx:
  assumes "qbs_Mx X = qbs_Mx Y"
  shows "qbs_space X = qbs_space Y"
  by(simp add: qbs_space_Mx assms)

lemma qbs_eqI:
  assumes "qbs_Mx X = qbs_Mx Y"
  shows "X = Y"
  by (metis Rep_quasi_borel_inverse prod.exhaust_sel qbs_Mx_def qbs_space_def assms qbs_space_eq_Mx[OF assms])


subsubsection ‹ Morphism of Quasi-Borel Spaces ›
definition qbs_morphism :: "['a quasi_borel, 'b quasi_borel]  ('a  'b) set" (infixr Q 60) where 
  "X Q Y  {f  qbs_space X  qbs_space Y. α  qbs_Mx X. f  α  qbs_Mx Y}"

lemma qbs_morphismI:
  assumes "α. α  qbs_Mx X  f  α  qbs_Mx Y"
  shows "f  X Q Y"
proof -
  have "f  qbs_space X  qbs_space Y"
  proof
    fix x
    assume "x  qbs_space X "
    then have "(λr. x)  qbs_Mx X"
      by simp
    hence "f  (λr. x)  qbs_Mx Y"
      using assms by blast
    thus "f x  qbs_space Y"
      by auto
  qed
  thus ?thesis
    using assms by(simp add: qbs_morphism_def)
qed

lemma qbs_morphismE[dest]:
  assumes "f  X Q Y"
  shows "f  qbs_space X  qbs_space Y"
        "x. x  qbs_space X  f x  qbs_space Y"
        "α. α  qbs_Mx X  f  α  qbs_Mx Y"
  using assms by(auto simp add: qbs_morphism_def)

lemma qbs_morphism_ident[simp]:
   "id  X Q X"
  by(auto intro: qbs_morphismI)

lemma qbs_morphism_ident'[simp]:
   "(λx. x)  X Q X"
  using qbs_morphism_ident by(simp add: id_def)


lemma qbs_morphism_comp:
  assumes "f  X Q Y" "g  Y Q Z"
  shows "g  f  X Q Z"
  using assms by (simp add: comp_assoc Pi_def qbs_morphism_def)

lemma qbs_morphism_cong:
  assumes "x. x  qbs_space X  f x = g x"
      and "f  X Q Y"
    shows "g  X Q Y"
proof(rule qbs_morphismI)
  fix α
  assume 1:"α  qbs_Mx X"
  have "g  α = f  α"
  proof
    fix x
    have "α x  qbs_space X"
      using 1 qbs_decomp[of X] by auto
    thus "(g  α) x = (f  α) x"
      using assms(1) by simp
  qed
  thus "g  α  qbs_Mx Y"
    using 1 assms(2) by(simp add: qbs_morphism_def)
qed

lemma qbs_morphism_const:
  assumes "y  qbs_space Y"
  shows "(λ_. y)  X Q Y"
  using assms by (auto intro: qbs_morphismI)


subsubsection ‹ Empty Space ›
definition empty_quasi_borel  :: "'a quasi_borel" where
"empty_quasi_borel  Abs_quasi_borel ({},{})"

lemma eqb_correct: "Rep_quasi_borel empty_quasi_borel = ({}, {})"
  using Abs_quasi_borel_inverse
  by(auto simp add: Abs_quasi_borel_inverse empty_quasi_borel_def qbs_closed1_def qbs_closed2_def qbs_closed3_def is_quasi_borel_def)

lemma eqb_space[simp]: "qbs_space empty_quasi_borel = {}"
  by(simp add: qbs_space_def eqb_correct)

lemma eqb_Mx[simp]: "qbs_Mx empty_quasi_borel = {}"
  by(simp add: qbs_Mx_def eqb_correct)

lemma qbs_empty_equiv :"qbs_space X = {}  qbs_Mx X = {}"
proof(auto)
  fix x
  assume "qbs_Mx X = {}"
     and h:"x  qbs_space X"
  have "(λr. x)  qbs_Mx X"
    using h by simp
  thus "False" using qbs_Mx X = {} by simp
qed

lemma empty_quasi_borel_iff:
  "qbs_space X = {}  X = empty_quasi_borel"
  by(auto intro!: qbs_eqI)

subsubsection ‹ Unit Space ›
definition unit_quasi_borel :: "unit quasi_borel" (1Q) where
"unit_quasi_borel  Abs_quasi_borel (UNIV,UNIV)"

lemma uqb_correct: "Rep_quasi_borel unit_quasi_borel = (UNIV,UNIV)"
  using Abs_quasi_borel_inverse
  by(auto simp add: unit_quasi_borel_def qbs_closed1_def qbs_closed2_def qbs_closed3_def is_quasi_borel_def)

lemma uqb_space[simp]: "qbs_space unit_quasi_borel = {()}"
  by(simp add: qbs_space_def UNIV_unit uqb_correct)

lemma uqb_Mx[simp]: "qbs_Mx unit_quasi_borel = {λr. ()}"
  by(auto simp add: qbs_Mx_def uqb_correct)

lemma unit_quasi_borel_terminal:
 "∃! f. f  X Q unit_quasi_borel"
  by(fastforce simp: qbs_morphism_def)

definition to_unit_quasi_borel :: "'a  unit" (!Q) where
"to_unit_quasi_borel  (λ_.())"

lemma to_unit_quasi_borel_morphism :
 "!Q  X Q unit_quasi_borel"
  by(auto simp add: to_unit_quasi_borel_def qbs_morphism_def)

subsubsection ‹ Subspaces ›
definition sub_qbs :: "['a quasi_borel, 'a set]  'a quasi_borel" where
"sub_qbs X U  Abs_quasi_borel (qbs_space X  U,{f  UNIV  qbs_space X  U. f  qbs_Mx X})"

lemma sub_qbs_closed:
  "qbs_closed1 {f  UNIV  qbs_space X  U. f  qbs_Mx X}"
  "qbs_closed2 (qbs_space X  U) {f  UNIV  qbs_space X  U. f  qbs_Mx X}"
  "qbs_closed3 {f  UNIV  qbs_space X  U. f  qbs_Mx X}"
  unfolding qbs_closed1_def qbs_closed2_def qbs_closed3_def by auto

lemma sub_qbs_correct[simp]: "Rep_quasi_borel (sub_qbs X U) = (qbs_space X  U,{f  UNIV  qbs_space X  U. f  qbs_Mx X})"
  by(simp add: Abs_quasi_borel_inverse sub_qbs_def sub_qbs_closed)

lemma sub_qbs_space[simp]: "qbs_space (sub_qbs X U) = qbs_space X  U"
  by(simp add: qbs_space_def)

lemma sub_qbs_Mx[simp]: "qbs_Mx (sub_qbs X U) = {f  UNIV  qbs_space X  U. f  qbs_Mx X}"
  by(simp add: qbs_Mx_def)

lemma sub_qbs:
  assumes "U  qbs_space X"
  shows "(qbs_space (sub_qbs X U), qbs_Mx (sub_qbs X U)) = (U, {f  UNIV  U. f  qbs_Mx X})"
  using assms by auto


subsubsection ‹ Image Spaces ›
definition map_qbs :: "['a  'b]  'a quasi_borel  'b quasi_borel" where
"map_qbs f X = Abs_quasi_borel (f ` (qbs_space X),{β. α qbs_Mx X. β = f  α})"

lemma map_qbs_f:
 "{β. α qbs_Mx X. β = f  α}  UNIV  f ` (qbs_space X)"
  by fastforce

lemma map_qbs_closed1:
 "qbs_closed1 {β. α qbs_Mx X. β = f  α}"
  unfolding qbs_closed1_def
  using qbs_closed1_dest by(fastforce simp: comp_def)

lemma map_qbs_closed2:
 "qbs_closed2 (f ` (qbs_space X)) {β. α qbs_Mx X. β = f  α}"
  unfolding qbs_closed2_def by fastforce

lemma map_qbs_closed3:
 "qbs_closed3 {β. α qbs_Mx X. β = f  α}"
proof(auto simp add: qbs_closed3_def)
  fix P Fi
  assume h:"i::nat. P -` {i}  sets real_borel"
           "i::nat. αqbs_Mx X. Fi i = f  α"
  then obtain αi
    where ha: "i::nat. αi i  qbs_Mx X   Fi i = f  (αi i)"
    by metis
  hence 1:"(λr. αi (P r) r)  qbs_Mx X"
    using h(1) by fastforce
  show "αqbs_Mx X. (λr. Fi (P r) r) = f  α"
    by(auto intro!: bexI[where x="(λr. αi (P r) r)"] simp add: 1 ha comp_def)
qed

lemma map_qbs_correct[simp]:
 "Rep_quasi_borel (map_qbs f X) = (f ` (qbs_space X),{β. α qbs_Mx X. β = f  α})"
  unfolding map_qbs_def
  by(simp add: Abs_quasi_borel_inverse map_qbs_f map_qbs_closed1 map_qbs_closed2 map_qbs_closed3)

lemma map_qbs_space[simp]:
 "qbs_space (map_qbs f X) = f ` (qbs_space X)"
  by(simp add: qbs_space_def)

lemma map_qbs_Mx[simp]:
 "qbs_Mx (map_qbs f X) = {β. α qbs_Mx X. β = f  α}"
  by(simp add: qbs_Mx_def)


inductive_set generating_Mx :: "'a set  (real  'a) set  (real  'a) set"
  for X :: "'a set" and Mx :: "(real  'a) set"
  where
    Basic: "α  Mx  α  generating_Mx X Mx"
  | Const: "x  X  (λr. x)  generating_Mx X Mx"
  | Comp : "f  real_borel M real_borel  α  generating_Mx X Mx  α  f  generating_Mx X Mx"
  | Part : "(i. Fi i  generating_Mx X Mx)  P  real_borel M nat_borel  (λr. Fi (P r) r)  generating_Mx X Mx"

lemma generating_Mx_to_space:
  assumes "Mx  UNIV  X"
  shows "generating_Mx X Mx  UNIV  X"
proof
  fix α
  assume "α  generating_Mx X Mx"
  then show "α  UNIV  X"
   by(induct rule: generating_Mx.induct) (use assms in auto)
qed

lemma generating_Mx_closed1:
 "qbs_closed1 (generating_Mx X Mx)"
  by (simp add: generating_Mx.Comp qbs_closed1I)

lemma generating_Mx_closed2:
 "qbs_closed2 X (generating_Mx X Mx)"
  by (simp add: generating_Mx.Const qbs_closed2I)

lemma generating_Mx_closed3:
 "qbs_closed3 (generating_Mx X Mx)"
  by(simp add: qbs_closed3I' generating_Mx.Part)

lemma generating_Mx_Mx:
 "generating_Mx (qbs_space X) (qbs_Mx X) = qbs_Mx X"
proof auto
  fix α
  assume "α  generating_Mx (qbs_space X) (qbs_Mx X)"
  then show "α  qbs_Mx X"
    by(rule generating_Mx.induct) (auto intro!: qbs_closed1_dest[simplified comp_def] simp: qbs_closed3_dest')
next
  fix α
  assume "α  qbs_Mx X"
  then show "α  generating_Mx (qbs_space X) (qbs_Mx X)" ..
qed


subsubsection ‹ Ordering of Quasi-Borel Spaces ›

instantiation quasi_borel :: (type) order_bot
begin

inductive less_eq_quasi_borel :: "'a quasi_borel  'a quasi_borel  bool" where
  "qbs_space X  qbs_space Y  less_eq_quasi_borel X Y"
| "qbs_space X = qbs_space Y  qbs_Mx Y  qbs_Mx X  less_eq_quasi_borel X Y"

lemma le_quasi_borel_iff:
 "X  Y  (if qbs_space X = qbs_space Y then qbs_Mx Y  qbs_Mx X else qbs_space X  qbs_space Y)"
  by(auto elim: less_eq_quasi_borel.cases intro: less_eq_quasi_borel.intros)

definition less_quasi_borel :: "'a quasi_borel  'a quasi_borel  bool" where
 "less_quasi_borel X Y  (X  Y  ¬ Y  X)"

definition bot_quasi_borel :: "'a quasi_borel" where
 "bot_quasi_borel = empty_quasi_borel"

instance
proof
  show "bot  a" for a :: "'a quasi_borel"
    using qbs_empty_equiv
    by(auto simp add: le_quasi_borel_iff bot_quasi_borel_def)
qed (auto simp: le_quasi_borel_iff less_quasi_borel_def split: if_split_asm intro: qbs_eqI)
end

definition inf_quasi_borel :: "['a quasi_borel, 'a quasi_borel]  'a quasi_borel" where
"inf_quasi_borel X X' = Abs_quasi_borel (qbs_space X  qbs_space X', qbs_Mx X  qbs_Mx X')"

lemma inf_quasi_borel_correct: "Rep_quasi_borel (inf_quasi_borel X X') = (qbs_space X  qbs_space X', qbs_Mx X  qbs_Mx X')"
  by(fastforce intro!: Abs_quasi_borel_inverse
     simp: inf_quasi_borel_def is_quasi_borel_def qbs_closed1_def qbs_closed2_def qbs_closed3_def)

lemma inf_qbs_space[simp]: "qbs_space (inf_quasi_borel X X') = qbs_space X  qbs_space X'"
  by (simp add: qbs_space_def inf_quasi_borel_correct)

lemma inf_qbs_Mx[simp]: "qbs_Mx (inf_quasi_borel X X') = qbs_Mx X  qbs_Mx X'"
  by(simp add: qbs_Mx_def inf_quasi_borel_correct)

definition max_quasi_borel :: "'a set  'a quasi_borel" where
"max_quasi_borel X = Abs_quasi_borel (X, UNIV  X)"

lemma max_quasi_borel_correct: "Rep_quasi_borel (max_quasi_borel X) = (X, UNIV  X)"
  by(fastforce intro!: Abs_quasi_borel_inverse
   simp: max_quasi_borel_def qbs_closed1_def qbs_closed2_def qbs_closed3_def is_quasi_borel_def)

lemma max_qbs_space[simp]: "qbs_space (max_quasi_borel X) = X"
  by(simp add: qbs_space_def max_quasi_borel_correct)

lemma max_qbs_Mx[simp]: "qbs_Mx (max_quasi_borel X) = UNIV  X"
  by(simp add: qbs_Mx_def max_quasi_borel_correct)

instantiation quasi_borel :: (type) semilattice_sup
begin

definition sup_quasi_borel :: "'a quasi_borel  'a quasi_borel  'a quasi_borel" where
"sup_quasi_borel X Y  (if qbs_space X = qbs_space Y      then inf_quasi_borel X Y
                        else if qbs_space X  qbs_space Y then Y
                        else if qbs_space Y  qbs_space X then X
                        else max_quasi_borel (qbs_space X  qbs_space Y))"


instance
proof
  fix X Y :: "'a quasi_borel"
  let ?X = "qbs_space X"
  let ?Y = "qbs_space Y"
  consider "?X = ?Y" | "?X  ?Y" | "?Y  ?X" | "?X  ?X  ?Y  ?Y  ?X  ?Y"
    by auto
  then show "X  X  Y"
  proof(cases)
    case 1
    show ?thesis
      unfolding sup_quasi_borel_def
      by(rule less_eq_quasi_borel.intros(2),simp_all add: 1)
  next
    case 2
    then show ?thesis
      unfolding sup_quasi_borel_def
      by (simp add: less_eq_quasi_borel.intros(1))
  next
    case 3
    then show ?thesis
      unfolding sup_quasi_borel_def
      by auto
  next
    case 4
    then show ?thesis
      unfolding sup_quasi_borel_def
      by(auto simp: less_eq_quasi_borel.intros(1))
  qed
next
  fix X Y :: "'a quasi_borel"
  let ?X = "qbs_space X"
  let ?Y = "qbs_space Y"
  consider "?X = ?Y" | "?X  ?Y" | "?Y  ?X" | "?X  ?X  ?Y  ?Y  ?X  ?Y"
    by auto
  then show "Y  X  Y"
  proof(cases)
    case 1
    show ?thesis
      unfolding sup_quasi_borel_def
      by(rule less_eq_quasi_borel.intros(2)) (simp_all add: 1)
  next
    case 2
    then show ?thesis
      unfolding sup_quasi_borel_def
      by auto
  next
    case 3
    then show ?thesis
      unfolding sup_quasi_borel_def
      by (auto simp add: less_eq_quasi_borel.intros(1))
  next
    case 4
    then show ?thesis
      unfolding sup_quasi_borel_def
      by(auto simp: less_eq_quasi_borel.intros(1))
  qed
next
  fix X Y Z :: "'a quasi_borel"
  assume h:"X  Z" "Y  Z"
  let ?X = "qbs_space X"
  let ?Y = "qbs_space Y"
  let ?Z = "qbs_space Z"
  consider "?X = ?Y" | "?X  ?Y" | "?Y  ?X" | "?X  ?X  ?Y  ?Y  ?X  ?Y"
    by auto
  then show "sup X Y  Z"
  proof cases
    case 1
    show ?thesis
      unfolding sup_quasi_borel_def
      apply(simp add: 1,rule less_eq_quasi_borel.cases[OF h(1)])
       apply(rule less_eq_quasi_borel.intros(1))
       apply auto[1]
      apply auto
      apply(rule less_eq_quasi_borel.intros(2))
       apply(simp add: 1)
      by(rule less_eq_quasi_borel.cases[OF h(2)]) (auto simp: 1)
  next
    case 2
    then show ?thesis
      unfolding sup_quasi_borel_def
      using h(2) by auto
  next
    case 3
    then show ?thesis
      unfolding sup_quasi_borel_def
      using h(1) by auto
  next
    case 4
    then have [simp]:"?X  ?Y" "~ (?X  ?Y)" "~ (?Y  ?X)"
      by auto
    have [simp]:"?X  ?Z" "?Y  ?Z"
      by (metis h(1) dual_order.order_iff_strict less_eq_quasi_borel.cases)
         (metis h(2) dual_order.order_iff_strict less_eq_quasi_borel.cases)
    then consider "?X  ?Y = ?Z" | "?X  ?Y  ?Z"
      by blast
    then show ?thesis
      unfolding sup_quasi_borel_def
      apply cases
       apply simp
       apply(rule less_eq_quasi_borel.intros(2))
        apply simp
       apply auto[1]
      by(simp add: less_eq_quasi_borel.intros(1))
  qed
qed
end

end