Theory Rank_Nullity_Theorem.Fundamental_Subspaces
section‹Fundamental Subspaces›
theory Fundamental_Subspaces
imports
Miscellaneous
begin
subsection‹The fundamental subspaces of a matrix›
subsubsection‹Definitions›
definition left_null_space :: "'a::{semiring_1}^'n^'m => ('a^'m) set"
where "left_null_space A = {x. x v* A = 0}"
definition null_space :: "'a::{semiring_1}^'n^'m => ('a^'n) set"
where "null_space A = {x. A *v x = 0}"
definition row_space :: "'a::{field}^'n^'m=>('a^'n) set"
where "row_space A = vec.span (rows A)"
definition col_space :: "'a::{field}^'n^'m=>('a^'m) set"
where "col_space A = vec.span (columns A)"
subsubsection‹Relationships among them›
lemma left_null_space_eq_null_space_transpose:
"left_null_space (A::'a::{comm_semiring_1}^'n^'m) = null_space (transpose A)"
unfolding null_space_def left_null_space_def transpose_vector ..
lemma null_space_eq_left_null_space_transpose:
"null_space (A::'a::{comm_semiring_1}^'n^'m) = left_null_space (transpose A)"
using left_null_space_eq_null_space_transpose[of "transpose A"]
unfolding transpose_transpose ..
lemma row_space_eq_col_space_transpose:
fixes A::"'a::{field}^'columns^'rows"
shows "row_space A = col_space (transpose A)"
unfolding col_space_def row_space_def columns_transpose[of A] ..
lemma col_space_eq_row_space_transpose:
fixes A::"'a::{field}^'n^'m"
shows "col_space A = row_space (transpose A)"
unfolding col_space_def row_space_def unfolding rows_transpose[of A] ..
subsection‹Proving that they are subspaces›
lemma subspace_null_space:
fixes A::"'a::{field}^'n^'m"
shows "vec.subspace (null_space A)"
by (auto simp: vec.subspace_def null_space_def vec.scale vec.add)
lemma subspace_left_null_space:
fixes A::"'a::{field}^'n^'m"
shows "vec.subspace (left_null_space A)"
unfolding left_null_space_eq_null_space_transpose using subspace_null_space .
lemma subspace_row_space:
shows "vec.subspace (row_space A)" by (metis row_space_def vec.subspace_span)
lemma subspace_col_space:
shows "vec.subspace (col_space A)" by (metis col_space_def vec.subspace_span)
subsection‹More useful properties and equivalences›
lemma col_space_eq:
fixes A::"'a::{field}^'m::{finite, wellorder}^'n"
shows "col_space A = {y. ∃x. A *v x = y}"
proof (unfold col_space_def vec.span_finite[OF finite_columns], auto)
fix x
show "A *v x ∈ range (λu. ∑v∈columns A. u v *s v)" using matrix_vmult_column_sum[of A x] by auto
next
fix u::"('a, 'n) vec ⇒ 'a"
let ?g="λy. {i. y=column i A}"
let ?x="(χ i. if i=(LEAST a. a ∈ ?g (column i A)) then u (column i A) else 0)"
show "∃x. A *v x = (∑v∈columns A. u v *s v)"
proof (unfold matrix_mult_sum, rule exI[of _ "?x"], auto)
have inj: "inj_on ?g (columns A)" unfolding inj_on_def unfolding columns_def by auto
have union_univ: "⋃(?g`(columns A)) = UNIV" unfolding columns_def by auto
have "sum (λi.(if i = (LEAST a. column i A = column a A) then u (column i A) else 0) *s column i A) UNIV
= sum (λi. (if i = (LEAST a. column i A = column a A) then u (column i A) else 0) *s column i A) (⋃(?g`(columns A)))"
unfolding union_univ ..
also have "... = sum (sum (λi.(if i = (LEAST a. column i A = column a A) then u (column i A) else 0) *s column i A)) (?g`(columns A))"
by (rule sum.Union_disjoint[unfolded o_def], auto)
also have "... = sum ((sum (λi.(if i = (LEAST a. column i A = column a A) then u (column i A) else 0) *s column i A)) ∘ ?g)
(columns A)" by (rule sum.reindex, simp add: inj)
also have "... = sum (λy. u y *s y) (columns A)"
proof (rule sum.cong, auto)
fix x
assume x_in_cols: "x ∈ columns A"
obtain b where b: "x=column b A" using x_in_cols unfolding columns_def by blast
let ?f="(λi. (if i = (LEAST a. column i A = column a A) then u (column i A) else 0) *s column i A)"
have sum_rw: "sum ?f ({i. x = column i A} - {LEAST a. x = column a A}) = 0"
by (rule sum.neutral, auto)
have "sum ?f {i. x = column i A} = ?f (LEAST a. x = column a A) + sum ?f ({i. x = column i A} - {LEAST a. x = column a A})"
apply (rule sum.remove, auto, rule LeastI_ex)
using x_in_cols unfolding columns_def by auto
also have "... = ?f (LEAST a. x = column a A)" unfolding sum_rw by simp
also have "... = u x *s x"
proof (auto, rule LeastI2)
show "x = column b A" using b .
fix xa
assume x: "x = column xa A"
show "u (column xa A) *s column xa A = u x *s x" unfolding x ..
next
assume "(LEAST a. x = column a A) ≠ (LEAST a. column (LEAST c. x = column c A) A = column a A)"
moreover have "(LEAST a. x = column a A) = (LEAST a. column (LEAST c. x = column c A) A = column a A)"
by (rule Least_equality[symmetric], rule LeastI2, simp_all add: b, rule Least_le, metis (lifting, full_types) LeastI)
ultimately show "u x = 0" by contradiction
qed
finally show " (∑i | x = column i A. (if i = (LEAST a. column i A = column a A) then u (column i A) else 0) *s column i A) = u x *s x" .
qed
finally show "(∑i∈UNIV. (if i = (LEAST a. column i A = column a A) then u (column i A) else 0) *s column i A) = (∑y∈columns A. u y *s y)" .
qed
qed
corollary col_space_eq':
fixes A::"'a::{field}^'m::{finite, wellorder}^'n"
shows "col_space A = range (λx. A *v x)"
unfolding col_space_eq by auto
lemma row_space_eq:
fixes A::"'a::{field}^'m^'n::{finite, wellorder}"
shows "row_space A = {w. ∃y. (transpose A) *v y = w}"
unfolding row_space_eq_col_space_transpose col_space_eq ..
lemma null_space_eq_ker:
fixes f::"('a::field^'n) => ('a^'m)"
assumes lf: "Vector_Spaces.linear (*s) (*s) f"
shows "null_space (matrix f) = {x. f x = 0}"
unfolding null_space_def using matrix_works [OF lf] by auto
lemma col_space_eq_range:
fixes f::"('a::field^'n::{finite, wellorder}) ⇒ ('a^'m)"
assumes lf: "Vector_Spaces.linear (*s) (*s) f"
shows "col_space (matrix f) = range f"
unfolding col_space_eq unfolding matrix_works[OF lf] by blast
lemma null_space_is_preserved:
fixes A::"'a::{field}^'cols^'rows"
assumes P: "invertible P"
shows "null_space (P**A) = null_space A"
unfolding null_space_def
using P matrix_inv_left matrix_left_invertible_ker matrix_vector_mul_assoc matrix_vector_mult_0_right
by metis
lemma row_space_is_preserved:
fixes A::"'a::{field}^'cols^'rows::{finite, wellorder}"
and P::"'a::{field}^'rows::{finite, wellorder}^'rows::{finite, wellorder}"
assumes P: "invertible P"
shows "row_space (P**A) = row_space A"
proof (auto)
fix w
assume w: "w ∈ row_space (P**A)"
from this obtain y where w_By: "w=(transpose (P**A)) *v y"
unfolding row_space_eq[of "P ** A" ] by fast
have "w = (transpose (P**A)) *v y" using w_By .
also have "... = ((transpose A) ** (transpose P)) *v y" unfolding matrix_transpose_mul ..
also have "... = (transpose A) *v ((transpose P) *v y)" unfolding matrix_vector_mul_assoc ..
finally show "w ∈ row_space A" unfolding row_space_eq by blast
next
fix w
assume w: "w ∈ row_space A"
from this obtain y where w_Ay: "w=(transpose A) *v y" unfolding row_space_eq by fast
have "w = (transpose A) *v y" using w_Ay .
also have "... = (transpose ((matrix_inv P) ** (P**A))) *v y"
by (metis P matrix_inv_left matrix_mul_assoc matrix_mul_lid)
also have "... = (transpose (P**A) ** (transpose (matrix_inv P))) *v y"
unfolding matrix_transpose_mul ..
also have "... = transpose (P**A) *v (transpose (matrix_inv P) *v y)"
unfolding matrix_vector_mul_assoc ..
finally show "w ∈ row_space (P**A)" unfolding row_space_eq by blast
qed
end