Theory Weak_Psi_Congruence
theory Weak_Psi_Congruence
imports Weak_Cong_Simulation Weak_Bisimulation
begin
context env begin
definition weakPsiCongruence :: "'b ⇒ ('a, 'b, 'c) psi ⇒ ('a, 'b, 'c) psi ⇒ bool" (‹_ ⊳ _ ≐ _› [70, 70, 70] 65)
where
"Ψ ⊳ P ≐ Q ≡ Ψ ⊳ P ≈ Q ∧ Ψ ⊳ P ↝«weakBisim» Q ∧ Ψ ⊳ Q ↝«weakBisim» P"
abbreviation
weakPsiCongNilJudge (‹_ ≐ _› [70, 70] 65) where "P ≐ Q ≡ 𝟭 ⊳ P ≐ Q"
lemma weakPsiCongSym:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
assumes "Ψ ⊳ P ≐ Q"
shows "Ψ ⊳ Q ≐ P"
using assms
by(auto simp add: weakPsiCongruence_def weakBisimE)
lemma weakPsiCongE:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and Ψ' :: 'b
assumes "Ψ ⊳ P ≐ Q"
shows "Ψ ⊳ P ≈ Q"
and "Ψ ⊳ P ↝«weakBisim» Q"
and "Ψ ⊳ Q ↝«weakBisim» P"
using assms
by(auto simp add: weakPsiCongruence_def)
lemma weakPsiCongI[case_names cWeakBisim cSimLeft cSimRight]:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and Ψ' :: 'b
assumes "Ψ ⊳ P ≈ Q"
and "Ψ ⊳ P ↝«weakBisim» Q"
and "Ψ ⊳ Q ↝«weakBisim» P"
shows "Ψ ⊳ P ≐ Q"
using assms
by(auto simp add: weakPsiCongruence_def)
lemma weakPsiCongSymI[consumes 1, case_names cSym cWeakBisim cSim]:
fixes Ψ :: 'b
and P :: "'d::fs_name"
and Q :: 'd
and Ψ' :: 'b
assumes "Prop P Q"
and "⋀P Q. Prop P Q ⟹ Prop Q P"
and "⋀P Q. Prop P Q ⟹ Ψ ⊳ (C P) ≈ (C Q)"
and "⋀P Q. Prop P Q ⟹ Ψ ⊳ (C P) ↝«weakBisim» (C Q)"
shows "Ψ ⊳ (C P) ≐ (C Q)"
using assms
by(rule_tac weakPsiCongI) auto
lemma weakPsiCongSym2[consumes 1, case_names cWeakBisim cSim]:
fixes Ψ :: 'b
and Ψ' :: 'b
assumes "Ψ ⊳ P ≐ Q"
and "⋀P Q. Ψ ⊳ P ≐ Q ⟹ Ψ ⊳ (C P) ≈ (C Q)"
and "⋀P Q. Ψ ⊳ P ≐ Q ⟹ Ψ ⊳ (C P) ↝«weakBisim» (C Q)"
shows "Ψ ⊳ (C P) ≐ (C Q)"
using assms
apply(rule_tac weakPsiCongSymI[where C=C])
apply assumption
by(auto simp add: weakPsiCongruence_def dest: weakBisimE)
lemma statEqWeakCong:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and Ψ' :: 'b
assumes "Ψ ⊳ P ≐ Q"
and "Ψ ≃ Ψ'"
shows "Ψ' ⊳ P ≐ Q"
proof -
let ?Prop = "λP Q. Ψ ⊳ P ≐ Q ∧ Ψ ≃ Ψ'"
from assms have "?Prop P Q" by auto
thus ?thesis
proof(induct rule: weakPsiCongSymI)
case(cSym P Q)
thus ?case by(blast dest: weakPsiCongSym)
next
case(cSim P Q)
from ‹Ψ ⊳ P ≐ Q ∧ Ψ ≃ Ψ'› have "Ψ ⊳ P ≐ Q" and "Ψ ≃ Ψ'" by simp+
from ‹Ψ ⊳ P ≐ Q› have "Ψ ⊳ P ↝«weakBisim» Q" by(rule weakPsiCongE)
with ‹Ψ ≃ Ψ'› show ?case using statEqWeakBisim
by(rule_tac weakCongSimStatEq) auto
next
case(cWeakBisim P Q)
from ‹Ψ ⊳ P ≐ Q ∧ Ψ ≃ Ψ'›
have "Ψ ⊳ P ≈ Q" and "Ψ ≃ Ψ'" by(auto dest: weakPsiCongE)
thus ?case by(rule statEqWeakBisim)
qed
qed
lemma weakPsiCongReflexive:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
shows "Ψ ⊳ P ≐ P"
by(fastforce intro: weakPsiCongI weakCongSimReflexive weakBisimReflexive)
lemma weakPsiCongClosed:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and p :: "name prm"
assumes "Ψ ⊳ P ≐ Q"
shows "(p ∙ Ψ) ⊳ (p ∙ P) ≐ (p ∙ Q)"
using assms
proof(induct rule: weakPsiCongSymI)
case(cSym P Q)
thus ?case by(rule weakPsiCongSym)
next
case(cSim P Q)
from ‹Ψ ⊳ P ≐ Q› have "Ψ ⊳ P ↝«weakBisim» Q" by(rule weakPsiCongE)
thus ?case by(drule_tac p=p in weakCongSimClosed(1)[OF weakBisimEqvt]) (simp add: eqvts)
next
case(cWeakBisim P Q)
from ‹Ψ ⊳ P ≐ Q› have "Ψ ⊳ P ≈ Q" by(rule weakPsiCongE)
thus ?case by(rule weakBisimClosed)
qed
lemma weakPsiCongTransitive:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and R :: "('a, 'b, 'c) psi"
assumes "Ψ ⊳ P ≐ Q"
and "Ψ ⊳ Q ≐ R"
shows "Ψ ⊳ P ≐ R"
proof -
from assms have "Ψ ⊳ P ≐ Q ∧ Ψ ⊳ Q ≐ R" by auto
thus ?thesis
proof(induct rule: weakPsiCongSymI)
case(cSym P R)
thus ?case by(auto dest: weakPsiCongSym)
next
case(cSim P R)
hence "Ψ ⊳ P ≐ Q" and "Ψ ⊳ Q ≐ R" by auto
moreover from ‹Ψ ⊳ P ≐ Q› have "Ψ ⊳ P ≈ Q" by(metis weakBisimE weakPsiCongE)
moreover from ‹Ψ ⊳ P ≐ Q› have "Ψ ⊳ P ↝«weakBisim» Q" by(rule weakPsiCongE)
moreover from ‹Ψ ⊳ Q ≐ R› have "Ψ ⊳ Q ↝«weakBisim» R" by(rule weakPsiCongE)
moreover have "{(Ψ, P, R) | Ψ P R. ∃Q. Ψ ⊳ P ≈ Q ∧ Ψ ⊳ Q ≈ R} ⊆ weakBisim"
by(auto dest: weakBisimTransitive)
ultimately show ?case using weakBisimE(2) by(rule_tac weakCongSimTransitive)
next
case(cWeakBisim P R)
thus ?case by(auto dest: weakBisimTransitive weakPsiCongE)
qed
qed
lemma strongBisimWeakPsiCong:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
assumes "Ψ ⊳ P ∼ Q"
shows "Ψ ⊳ P ≐ Q"
using assms
proof(induct rule: weakPsiCongSymI)
case(cSym P Q)
from ‹Ψ ⊳ P ∼ Q› show ?case by(rule bisimE)
next
case(cSim P Q)
from ‹Ψ ⊳ P ∼ Q› have "Ψ ⊳ P ↝[bisim] Q" by(rule bisimE)
thus "Ψ ⊳ P ↝«weakBisim» Q" using strongBisimWeakBisim
by(rule_tac strongSimWeakCongSim) auto
next
case(cWeakBisim P Q)
thus ?case by(rule strongBisimWeakBisim)
qed
lemma structCongWeakPsiCong:
fixes P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
assumes "P ≡⇩s Q"
shows "P ≐ Q"
using assms
by(metis structCongBisim strongBisimWeakPsiCong)
end
end