Theory Weak_Bisimulation
theory Weak_Bisimulation
imports Weak_Simulation Weak_Stat_Imp Bisim_Struct_Cong
begin
context env begin
lemma monoCoinduct: "⋀x y xa xb xc P Q Ψ.
x ≤ y ⟹
(Ψ ⊳ Q ↝<{(xc, xb, xa). x xc xb xa}> P) ⟶
(Ψ ⊳ Q ↝<{(xb, xa, xc). y xb xa xc}> P)"
apply auto
apply(rule weakSimMonotonic)
by(auto dest: le_funE)
lemma monoCoinduct2: "⋀x y xa xb xc P Q Ψ.
x ≤ y ⟹
(Ψ ⊳ Q ⪅<{(xc, xb, xa). x xc xb xa}> P) ⟶
(Ψ ⊳ Q ⪅<{(xb, xa, xc). y xb xa xc}> P)"
apply auto
apply(rule weakStatImpMonotonic)
by(auto dest: le_funE)
coinductive_set weakBisim :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"
where
step: "⟦Ψ ⊳ P ⪅<weakBisim> Q; Ψ ⊳ P ↝<weakBisim> Q;
∀Ψ'. (Ψ ⊗ Ψ', P, Q) ∈ weakBisim; (Ψ, Q, P) ∈ weakBisim⟧ ⟹ (Ψ, P, Q) ∈ weakBisim"
monos monoCoinduct monoCoinduct2
abbreviation
weakBisimJudge (‹_ ⊳ _ ≈ _› [70, 70, 70] 65) where "Ψ ⊳ P ≈ Q ≡ (Ψ, P, Q) ∈ weakBisim"
abbreviation
weakBisimNilJudge (‹_ ≈ _› [70, 70] 65) where "P ≈ Q ≡ 𝟭 ⊳ P ≈ Q"
lemma weakBisimCoinductAux[consumes 1]:
fixes F :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and X :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"
assumes "(Ψ, P, Q) ∈ X"
and "⋀Ψ P Q. (Ψ, P, Q) ∈ X ⟹ (Ψ ⊳ P ⪅<(X ∪ weakBisim)> Q) ∧
(Ψ ⊳ P ↝<(X ∪ weakBisim)> Q) ∧
(∀Ψ'. (Ψ ⊗ Ψ', P, Q) ∈ X ∨ (Ψ ⊗ Ψ', P, Q) ∈ weakBisim) ∧
((Ψ, Q, P) ∈ X ∨ (Ψ, Q, P) ∈ weakBisim)"
shows "(Ψ, P, Q) ∈ weakBisim"
proof -
have "X ∪ weakBisim = {(Ψ, P, Q). (Ψ, P, Q) ∈ X ∨ (Ψ, P, Q) ∈ weakBisim}" by auto
with assms show ?thesis
by coinduct (simp add: rtrancl_def)
qed
lemma weakBisimCoinduct[consumes 1, case_names cStatImp cSim cExt cSym]:
fixes F :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and X :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"
assumes "(Ψ, P, Q) ∈ X"
and "⋀Ψ' R S. (Ψ', R, S) ∈ X ⟹ Ψ' ⊳ R ⪅<(X ∪ weakBisim)> S"
and "⋀Ψ' R S. (Ψ', R, S) ∈ X ⟹ Ψ' ⊳ R ↝<(X ∪ weakBisim)> S"
and "⋀Ψ' R S Ψ''. (Ψ', R, S) ∈ X ⟹ (Ψ' ⊗ Ψ'', R, S) ∈ X ∨ Ψ' ⊗ Ψ'' ⊳ R ≈ S"
and "⋀Ψ' R S. (Ψ', R, S) ∈ X ⟹ (Ψ', S, R) ∈ X ∨ Ψ' ⊳ S ≈ R"
shows "Ψ ⊳ P ≈ Q"
proof -
have "X ∪ weakBisim = {(Ψ, P, Q). (Ψ, P, Q) ∈ X ∨ (Ψ, P, Q) ∈ weakBisim}" by auto
with assms show ?thesis
by coinduct (simp add: rtrancl_def)
qed
lemma weakBisimWeakCoinductAux[consumes 1]:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and X :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"
assumes "(Ψ, P, Q) ∈ X"
and "⋀Ψ P Q. (Ψ, P, Q) ∈ X ⟹ Ψ ⊳ P ⪅<X> Q ∧ Ψ ⊳ P ↝<X> Q ∧
(∀Ψ'. (Ψ ⊗ Ψ', P, Q) ∈ X) ∧ (Ψ, Q, P) ∈ X"
shows "Ψ ⊳ P ≈ Q"
using assms
by(coinduct rule: weakBisimCoinductAux) (blast intro: weakSimMonotonic weakStatImpMonotonic)
lemma weakBisimWeakCoinduct[consumes 1, case_names cStatImp cSim cExt cSym]:
fixes F :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and X :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"
assumes "(Ψ, P, Q) ∈ X"
and "⋀Ψ P Q. (Ψ, P, Q) ∈ X ⟹ Ψ ⊳ P ⪅<X> Q"
and "⋀Ψ P Q. (Ψ, P, Q) ∈ X ⟹ Ψ ⊳ P ↝<X> Q"
and "⋀Ψ P Q Ψ'. (Ψ, P, Q) ∈ X ⟹ (Ψ ⊗ Ψ', P, Q) ∈ X"
and "⋀Ψ P Q. (Ψ, P, Q) ∈ X ⟹ (Ψ, Q, P) ∈ X"
shows "(Ψ, P, Q) ∈ weakBisim"
proof -
have "X ∪ weakBisim = {(Ψ, P, Q). (Ψ, P, Q) ∈ X ∨ (Ψ, P, Q) ∈ weakBisim}" by auto
with assms show ?thesis
by(coinduct rule: weakBisimWeakCoinductAux) blast
qed
lemma weakBisimE:
fixes P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and Ψ :: 'b
and Ψ' :: 'b
assumes "Ψ ⊳ P ≈ Q"
shows "Ψ ⊳ P ⪅<weakBisim> Q"
and "Ψ ⊳ P ↝<weakBisim> Q"
and "Ψ ⊗ Ψ' ⊳ P ≈ Q"
and "Ψ ⊳ Q ≈ P"
using assms
by(auto intro: weakBisim.cases simp add: rtrancl_def)
lemma weakBisimI:
fixes P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and Ψ :: 'b
assumes "Ψ ⊳ P ⪅<weakBisim> Q"
and "Ψ ⊳ P ↝<weakBisim> Q"
and "∀Ψ'. Ψ ⊗ Ψ' ⊳ P ≈ Q"
and "Ψ ⊳ Q ≈ P"
shows "Ψ ⊳ P ≈ Q"
using assms
by(rule_tac weakBisim.step) (auto simp add: rtrancl_def)
lemma weakBisimReflexive:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
shows "Ψ ⊳ P ≈ P"
proof -
let ?X = "{(Ψ, P, P) | Ψ P. True}"
have "(Ψ, P, P) ∈ ?X" by simp
thus ?thesis
by(coinduct rule: weakBisimWeakCoinduct, auto intro: weakSimReflexive weakStatImpReflexive)
qed
lemma weakBisimClosed:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and p :: "name prm"
assumes "Ψ ⊳ P ≈ Q"
shows "(p ∙ Ψ) ⊳ (p ∙ P) ≈ (p ∙ Q)"
proof -
let ?X = "{(p ∙ Ψ, p ∙ P, p ∙ Q) | (p::name prm) Ψ P Q. Ψ ⊳ P ≈ Q}"
have "eqvt ?X"
apply(auto simp add: eqvt_def)
apply(rule_tac x="pa@p" in exI)
by(auto simp add: pt2[OF pt_name_inst])
from ‹Ψ ⊳ P ≈ Q› have "(p ∙ Ψ, p ∙ P, p ∙ Q) ∈ ?X" by blast
thus ?thesis
proof(coinduct rule: weakBisimWeakCoinduct)
case(cStatImp Ψ P Q)
{
fix Ψ P Q p
assume "Ψ ⊳ P ≈ (Q::('a, 'b, 'c) psi)"
hence "Ψ ⊳ P ⪅<weakBisim> Q" by(rule weakBisimE)
hence "Ψ ⊳ P ⪅<?X> Q"
apply(rule_tac A=weakBisim in weakStatImpMonotonic, auto)
by(rule_tac x="[]::name prm" in exI) auto
with ‹eqvt ?X› have "((p::name prm) ∙ Ψ) ⊳ (p ∙ P) ⪅<?X> (p ∙ Q)"
by(rule weakStatImpClosed)
}
with ‹(Ψ, P, Q) ∈ ?X› show ?case by blast
next
case(cSim Ψ P Q)
{
fix p :: "name prm"
fix Ψ P Q
assume "Ψ ⊳ P ↝<weakBisim> Q"
hence "Ψ ⊳ P ↝<?X> Q"
apply(rule_tac A=weakBisim in weakSimMonotonic, auto)
by(rule_tac x="[]::name prm" in exI) auto
with ‹eqvt ?X› have "((p::name prm) ∙ Ψ) ⊳ (p ∙ P) ↝<?X> (p ∙ Q)"
by(rule_tac weakSimClosed)
}
with ‹(Ψ, P, Q) ∈ ?X› show ?case
by(blast dest: weakBisimE)
next
case(cExt Ψ P Q Ψ')
{
fix p :: "name prm"
fix Ψ P Q Ψ'
assume "∀Ψ'. (Ψ ⊗ Ψ', P, Q) ∈ weakBisim"
hence "((p ∙ Ψ) ⊗ Ψ', p ∙ P, p ∙ Q) ∈ ?X"
apply(auto, rule_tac x=p in exI)
apply(rule_tac x="Ψ ⊗ (rev p ∙ Ψ')" in exI)
by(auto simp add: eqvts)
}
with ‹(Ψ, P, Q) ∈ ?X› show ?case
by(blast dest: weakBisimE)
next
case(cSym Ψ P Q)
thus ?case
by(blast dest: weakBisimE)
qed
qed
lemma weakBisimEqvt[simp]:
shows "eqvt weakBisim"
by(auto simp add: eqvt_def weakBisimClosed)
lemma statEqWeakBisim:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and Ψ' :: 'b
assumes "Ψ ⊳ P ≈ Q"
and "Ψ ≃ Ψ'"
shows "Ψ' ⊳ P ≈ Q"
proof -
let ?X = "{(Ψ', P, Q) | Ψ P Q Ψ'. Ψ ⊳ P ≈ Q ∧ Ψ ≃ Ψ'}"
from ‹Ψ ⊳ P ≈ Q› ‹Ψ ≃ Ψ'› have "(Ψ', P, Q) ∈ ?X" by auto
thus ?thesis
proof(coinduct rule: weakBisimCoinduct)
case(cStatImp Ψ' P Q)
from ‹(Ψ', P, Q) ∈ ?X› obtain Ψ where "Ψ ⊳ P ≈ Q" and "Ψ ≃ Ψ'"
by auto
from ‹Ψ ⊳ P ≈ Q› have "Ψ ⊳ P ⪅<weakBisim> Q" by(rule weakBisimE)
moreover note ‹Ψ ≃ Ψ'›
moreover have "⋀Ψ P Q Ψ'. ⟦Ψ ⊳ P ≈ Q; Ψ ≃ Ψ'⟧ ⟹ (Ψ', P, Q) ∈ ?X ∪ weakBisim"
by auto
ultimately show ?case by(rule weakStatImpStatEq)
next
case(cSim Ψ' P Q)
from ‹(Ψ', P, Q) ∈ ?X› obtain Ψ where "Ψ ⊳ P ≈ Q" and "Ψ ≃ Ψ'"
by auto
from ‹Ψ ⊳ P ≈ Q› have "Ψ ⊳ P ↝<weakBisim> Q" by(blast dest: weakBisimE)
moreover have "eqvt ?X"
by(auto simp add: eqvt_def) (metis weakBisimClosed AssertionStatEqClosed)
hence "eqvt(?X ∪ weakBisim)" by auto
moreover note ‹Ψ ≃ Ψ'›
moreover have "⋀Ψ P Q Ψ'. ⟦Ψ ⊳ P ≈ Q; Ψ ≃ Ψ'⟧ ⟹ (Ψ', P, Q) ∈ ?X ∪ weakBisim"
by auto
ultimately show ?case by(rule weakSimStatEq)
next
case(cExt Ψ' P Q Ψ'')
from ‹(Ψ', P, Q) ∈ ?X› obtain Ψ where "Ψ ⊳ P ≈ Q" and "Ψ ≃ Ψ'"
by auto
from ‹Ψ ⊳ P ≈ Q› have "Ψ ⊗ Ψ'' ⊳ P ≈ Q" by(rule weakBisimE)
moreover from ‹Ψ ≃ Ψ'› have "Ψ ⊗ Ψ'' ≃ Ψ' ⊗ Ψ''" by(rule Composition)
ultimately show ?case by blast
next
case(cSym Ψ' P Q)
from ‹(Ψ', P, Q) ∈ ?X› obtain Ψ where "Ψ ⊳ P ≈ Q" and "Ψ ≃ Ψ'"
by auto
from ‹Ψ ⊳ P ≈ Q› have "Ψ ⊳ Q ≈ P" by(rule weakBisimE)
thus ?case using ‹Ψ ≃ Ψ'› by auto
qed
qed
lemma weakBisimTransitive:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and R :: "('a, 'b, 'c) psi"
assumes PQ: "Ψ ⊳ P ≈ Q"
and QR: "Ψ ⊳ Q ≈ R"
shows "Ψ ⊳ P ≈ R"
proof -
let ?X = "{(Ψ, P, R) | Ψ P R. ∃Q. Ψ ⊳ P ≈ Q ∧ Ψ ⊳ Q ≈ R}"
from PQ QR have "(Ψ, P, R) ∈ ?X" by auto
thus ?thesis
proof(coinduct rule: weakBisimCoinduct)
case(cStatImp Ψ P R)
from ‹(Ψ, P, R) ∈ ?X› obtain Q where "Ψ ⊳ P ≈ Q" and "Ψ ⊳ Q ≈ R" by blast
from ‹Ψ ⊳ P ≈ Q› have "Ψ ⊳ P ⪅<weakBisim> Q" by(rule weakBisimE)
moreover note ‹Ψ ⊳ Q ≈ R›
moreover have "?X ⊆ ?X ∪ weakBisim" by auto
moreover note weakBisimE(1)
moreover from weakBisimE(2) have "⋀Ψ P Q P'. ⟦Ψ ⊳ P ≈ Q; Ψ ⊳ P ⟹⇧^⇩τ P'⟧ ⟹ ∃Q'. Ψ ⊳ Q ⟹⇧^⇩τ Q' ∧ Ψ ⊳ P' ≈ Q'"
by(metis weakBisimE(4) weakSimTauChain)
ultimately show ?case by(rule weakStatImpTransitive)
next
case(cSim Ψ P R)
{
fix Ψ P Q R
assume "Ψ ⊳ P ≈ Q" and "Ψ ⊳ Q ↝<weakBisim> R"
moreover have "eqvt ?X"
by(force simp add: eqvt_def dest: weakBisimClosed)
with weakBisimEqvt have "eqvt (?X ∪ weakBisim)" by blast
moreover have "?X ⊆ ?X ∪ weakBisim" by auto
moreover note weakBisimE(2)
ultimately have "Ψ ⊳ P ↝<(?X ∪ weakBisim)> R"
by(rule_tac weakSimTransitive) auto
}
with ‹(Ψ, P, R) ∈ ?X› show ?case
by(blast dest: weakBisimE)
next
case(cExt Ψ P R Ψ')
thus ?case by(blast dest: weakBisimE)
next
case(cSym Ψ P R)
thus ?case by(blast dest: weakBisimE)
qed
qed
lemma strongBisimWeakBisim:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
assumes "Ψ ⊳ P ∼ Q"
shows "Ψ ⊳ P ≈ Q"
proof -
from ‹Ψ ⊳ P ∼ Q›
show ?thesis
proof(coinduct rule: weakBisimWeakCoinduct)
case(cStatImp Ψ P Q)
from ‹Ψ ⊳ P ∼ Q› have "insertAssertion(extractFrame P) Ψ ↪⇩F insertAssertion(extractFrame Q) Ψ"
by(metis bisimE FrameStatEq_def)
moreover from ‹Ψ ⊳ P ∼ Q› have "⋀Ψ'. Ψ ⊗ Ψ' ⊳ P ∼ Q" by(rule bisimE)
ultimately show ?case by(rule statImpWeakStatImp)
next
case(cSim Ψ P Q)
note ‹Ψ ⊳ P ∼ Q›
moreover have "⋀Ψ P Q. Ψ ⊳ P ∼ Q ⟹ insertAssertion(extractFrame Q) Ψ ↪⇩F insertAssertion(extractFrame P) Ψ"
by(drule_tac bisimE) (simp add: FrameStatEq_def)
ultimately show ?case using bisimE(2) bisimE(3)
by(rule strongSimWeakSim)
next
case(cExt Ψ P Q Ψ')
from ‹Ψ ⊳ P ∼ Q› show ?case
by(rule bisimE)
next
case(cSym Ψ P Q)
from ‹Ψ ⊳ P ∼ Q› show ?case
by(rule bisimE)
qed
qed
lemma structCongWeakBisim:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
assumes "P ≡⇩s Q"
shows "P ≈ Q"
using assms
by(metis structCongBisim strongBisimWeakBisim)
lemma simTauChain:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and Q' :: "('a, 'b, 'c) psi"
assumes "(Ψ, P, Q) ∈ Rel"
and "Ψ ⊳ Q ⟹⇧^⇩τ Q'"
and Sim: "⋀Ψ P Q. (Ψ, P, Q) ∈ Rel ⟹ Ψ ⊳ P ↝[Rel] Q"
obtains P' where "Ψ ⊳ P ⟹⇧^⇩τ P'" and "(Ψ, P', Q') ∈ Rel"
proof -
assume A: "⋀P'. ⟦Ψ ⊳ P ⟹⇧^⇩τ P'; (Ψ, P', Q') ∈ Rel⟧ ⟹ thesis"
from ‹Ψ ⊳ Q ⟹⇧^⇩τ Q'› ‹(Ψ, P, Q) ∈ Rel› A show ?thesis
proof(induct arbitrary: P thesis rule: tauChainInduct)
case(TauBase Q P)
moreover have "Ψ ⊳ P ⟹⇧^⇩τ P" by simp
ultimately show ?case by blast
next
case(TauStep Q Q' Q'' P)
from ‹(Ψ, P, Q) ∈ Rel› obtain P' where PChain: "Ψ ⊳ P ⟹⇧^⇩τ P'" and "(Ψ, P', Q') ∈ Rel"
by(rule TauStep)
from ‹(Ψ, P', Q') ∈ Rel› have "Ψ ⊳ P' ↝[Rel] Q'" by(rule Sim)
then obtain P'' where P'Chain: "Ψ ⊳ P' ⟼τ ≺ P''" and "(Ψ, P'', Q'') ∈ Rel"
using ‹Ψ ⊳ Q' ⟼τ ≺ Q''› by(drule_tac simE) auto
from PChain P'Chain have "Ψ ⊳ P ⟹⇧^⇩τ P''" by(auto dest: tauActTauChain)
thus ?case using ‹(Ψ, P'', Q'') ∈ Rel› by(rule TauStep)
qed
qed
lemma quietBisimNil:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
assumes "quiet P"
shows "Ψ ⊳ P ≈ 𝟬"
proof -
let ?X = "{(Ψ, 𝟬, P) | Ψ P. quiet P} ∪ {(Ψ, P, 𝟬) | Ψ P. quiet P}"
from ‹quiet P› have "(Ψ, P, 𝟬) ∈ ?X" by auto
thus ?thesis
proof(coinduct rule: weakBisimWeakCoinduct)
case(cStatImp Ψ P Q)
thus ?case
apply(simp add: weakStatImp_def)
apply(rule allI)
apply(rule_tac x=Q in exI)
apply auto
apply(drule_tac Ψ=Ψ in quietFrame)
apply(rule_tac G="⟨ε, Ψ⟩" in FrameStatImpTrans)
using Identity
apply(simp add: AssertionStatEq_def)
apply(simp add: FrameStatEq_def)
apply(drule_tac Ψ=Ψ in quietFrame)
apply(rule_tac G="⟨ε, Ψ⟩" in FrameStatImpTrans)
apply auto
defer
using Identity
apply(simp add: AssertionStatEq_def)
apply(simp add: FrameStatEq_def)
done
next
case(cSim Ψ P Q)
moreover have "eqvt ?X" by(auto simp add: eqvt_def intro: quietEqvt)
ultimately show ?case
apply auto
apply(rule quietSim)
apply auto
apply(auto simp add: weakSimulation_def)
done
next
case(cExt Ψ P Q Ψ')
thus ?case by blast
next
case(cSym Ψ P Q)
thus ?case by blast
qed
qed
lemma weakTransitiveWeakCoinduct[case_names cStatImp cSim cExt cSym, case_conclusion bisim step, consumes 2]:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and X :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"
assumes p: "(Ψ, P, Q) ∈ X"
and Eqvt: "eqvt X"
and rStatImp: "⋀Ψ P Q. (Ψ, P, Q) ∈ X ⟹ Ψ ⊳ P ⪅<X> Q"
and rSim: "⋀Ψ P Q. (Ψ, P, Q) ∈ X ⟹ Ψ ⊳ P ↝<({(Ψ, P, Q) | Ψ P Q. ∃P' Q'. Ψ ⊳ P ∼ P' ∧
(Ψ, P', Q') ∈ X ∧
Ψ ⊳ Q' ∼ Q})> Q"
and rExt: "⋀Ψ P Q Ψ'. (Ψ, P, Q) ∈ X ⟹ (Ψ ⊗ Ψ', P, Q) ∈ X"
and rSym: "⋀Ψ P Q. (Ψ, P, Q) ∈ X ⟹ (Ψ, Q, P) ∈ X"
shows "Ψ ⊳ P ≈ Q"
proof -
let ?X = "{(Ψ, P, Q) | Ψ P Q. ∃P' Q'. Ψ ⊳ P ∼ P' ∧ (Ψ, P', Q') ∈ X ∧ Ψ ⊳ Q' ∼ Q}"
from p have "(Ψ, P, Q) ∈ ?X"
by(blast intro: bisimReflexive)
thus ?thesis
proof(coinduct rule: weakBisimWeakCoinduct)
case(cStatImp Ψ P Q)
{
fix Ψ'
from ‹(Ψ , P, Q) ∈ ?X› obtain P' Q' where "Ψ ⊳ P ∼ P'" and "(Ψ, P', Q') ∈ X" and "Ψ ⊳ Q' ∼ Q" by auto
from ‹(Ψ, P', Q') ∈ X› obtain Q'' Q''' where Q'Chain: "Ψ ⊳ Q' ⟹⇧^⇩τ Q''"
and PImpQ: "insertAssertion (extractFrame P') Ψ ↪⇩F insertAssertion (extractFrame Q'') Ψ"
and Q''Chain: "Ψ ⊗ Ψ' ⊳ Q'' ⟹⇧^⇩τ Q'''" and "(Ψ ⊗ Ψ', P', Q''') ∈ X"
apply(drule_tac rStatImp) by(auto simp add: weakStatImp_def) blast
from ‹Ψ ⊳ Q' ∼ Q› have "Ψ ⊳ Q ∼ Q'" by(rule bisimE)
then obtain Q'''' where "Ψ ⊳ Q ⟹⇧^⇩τ Q''''" and "Ψ ⊳ Q'''' ∼ Q''" using ‹Ψ ⊳ Q' ⟹⇧^⇩τ Q''› bisimE(2)
by(rule simTauChain)
note ‹Ψ ⊳ Q ⟹⇧^⇩τ Q''''›
moreover have "insertAssertion (extractFrame P) Ψ ↪⇩F insertAssertion (extractFrame Q'''') Ψ"
proof -
from ‹Ψ ⊳ P ∼ P'› have "insertAssertion (extractFrame P) Ψ ↪⇩F insertAssertion (extractFrame P') Ψ"
by(drule_tac bisimE) (simp add: FrameStatEq_def)
moreover from ‹Ψ ⊳ Q'''' ∼ Q''› have "insertAssertion (extractFrame Q'') Ψ ↪⇩F insertAssertion (extractFrame Q'''') Ψ"
by(drule_tac bisimE) (simp add: FrameStatEq_def)
ultimately show ?thesis using PImpQ by(blast intro: FrameStatImpTrans)
qed
moreover from ‹Ψ ⊳ Q'''' ∼ Q''› have "Ψ ⊗ Ψ' ⊳ Q'''' ∼ Q''" by(metis bisimE)
then obtain Q''''' where Q''''Chain: "Ψ ⊗ Ψ' ⊳ Q'''' ⟹⇧^⇩τ Q'''''" and "Ψ ⊗ Ψ' ⊳ Q''''' ∼ Q'''" using Q''Chain bisimE(2)
by(rule simTauChain)
moreover from ‹Ψ ⊳ P ∼ P'› ‹(Ψ ⊗ Ψ' , P', Q''') ∈ X› ‹Ψ ⊗ Ψ' ⊳ Q''''' ∼ Q'''› have "(Ψ ⊗ Ψ', P, Q''''') ∈ ?X" by(auto dest: bisimE)
ultimately have "∃Q' Q''. Ψ ⊳ Q ⟹⇧^⇩τ Q'' ∧ insertAssertion (extractFrame P) Ψ ↪⇩F insertAssertion (extractFrame Q'') Ψ ∧ Ψ ⊗ Ψ' ⊳ Q'' ⟹⇧^⇩τ Q' ∧ (Ψ ⊗ Ψ', P, Q') ∈ ?X" by blast
}
with ‹(Ψ, P, Q) ∈ ?X› show ?case by(simp add: weakStatImp_def) blast
next
case(cSim Ψ P Q)
from ‹(Ψ, P, Q) ∈ ?X› obtain P' Q' where "Ψ ⊳ P ∼ P'" and "(Ψ, P', Q') ∈ X" and "Ψ ⊳ Q' ∼ Q" by auto
from ‹(Ψ, P', Q') ∈ X› have "Ψ ⊳ P' ↝<?X> Q'"
by(rule rSim)
moreover from ‹Ψ ⊳ Q' ∼ Q› have "Ψ ⊳ Q' ↝[bisim] Q" by(rule bisimE)
moreover from ‹eqvt X› have "eqvt ?X"
apply(auto simp add: eqvt_def)
apply(drule_tac p=p in bisimClosed)
apply(drule_tac p=p in bisimClosed)
apply(rule_tac x="p ∙ P'" in exI, simp)
by(rule_tac x="p ∙ Q'" in exI, auto)
moreover from ‹Ψ ⊳ Q' ∼ Q› have "insertAssertion (extractFrame Q) Ψ ↪⇩F insertAssertion (extractFrame Q') Ψ"
by(drule_tac bisimE) (simp add: FrameStatEq_def)
moreover have "{(Ψ, P, R) | Ψ P R. ∃Q. (Ψ, P, Q) ∈ ?X ∧ Ψ ⊳ Q ∼ R} ⊆ ?X"
by(blast intro: bisimTransitive)
moreover note bisimE(3)
ultimately have "Ψ ⊳ P' ↝<?X> Q" by(rule strongAppend)
moreover have "{(Ψ, P, R) | Ψ P R. ∃Q. Ψ ⊳ P ∼ Q ∧ (Ψ, Q, R) ∈ ?X} ⊆ ?X"
by(blast intro: bisimTransitive)
moreover {
fix Ψ P Q
assume "Ψ ⊳ P ∼ Q"
moreover have "⋀Ψ P Q. Ψ ⊳ P ∼ Q ⟹ insertAssertion (extractFrame Q) Ψ ↪⇩F insertAssertion (extractFrame P) Ψ"
by(drule_tac bisimE) (simp add: FrameStatEq_def)
ultimately have "Ψ ⊳ P ↝<bisim> Q" using bisimE(2) bisimE(3)
by(rule strongSimWeakSim)
}
ultimately show ?case using ‹Ψ ⊳ P ∼ P'› ‹eqvt ?X›
by(rule_tac weakSimTransitive)
next
case(cExt Ψ P Q Ψ')
thus ?case by(blast dest: bisimE intro: rExt)
next
case(cSym Ψ P Q)
thus ?case by(blast dest: bisimE intro: rSym)
qed
qed
lemma weakTransitiveCoinduct[case_names cStatImp cSim cExt cSym, case_conclusion bisim step, consumes 2]:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and X :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"
assumes p: "(Ψ, P, Q) ∈ X"
and Eqvt: "eqvt X"
and rStatImp: "⋀Ψ P Q. (Ψ, P, Q) ∈ X ⟹ Ψ ⊳ P ⪅<(X ∪ weakBisim)> Q"
and rSim: "⋀Ψ P Q. (Ψ, P, Q) ∈ X ⟹ Ψ ⊳ P ↝<({(Ψ, P, Q) | Ψ P Q. ∃P' Q'. Ψ ⊳ P ∼ P' ∧
(Ψ, P', Q') ∈ (X ∪ weakBisim) ∧
Ψ ⊳ Q' ∼ Q})> Q"
and rExt: "⋀Ψ P Q Ψ'. (Ψ, P, Q) ∈ X ⟹ (Ψ ⊗ Ψ', P, Q) ∈ X ∪ weakBisim"
and rSym: "⋀Ψ P Q. (Ψ, P, Q) ∈ X ⟹ (Ψ, Q, P) ∈ X ∪ weakBisim"
shows "Ψ ⊳ P ≈ Q"
proof -
from p have "(Ψ, P, Q) ∈ X ∪ weakBisim" by auto
moreover from ‹eqvt X› have "eqvt(X ∪ weakBisim)" by auto
ultimately show ?thesis
proof(coinduct rule: weakTransitiveWeakCoinduct)
case(cStatImp Ψ P Q)
thus ?case by(blast dest: rStatImp weakBisimE(1) weakStatImpMonotonic)
next
case(cSim Ψ P Q)
thus ?case by(fastforce intro: rSim weakBisimE(2) weakSimMonotonic bisimReflexive)
next
case(cExt Ψ P Q Ψ')
thus ?case by(blast dest: weakBisimE rExt)
next
case(cSym Ψ P Q)
thus ?case by(blast dest: weakBisimE rSym)
qed
qed
lemma weakTransitiveCoinduct2[case_names cStatImp cSim cExt cSym, case_conclusion bisim step, consumes 2]:
fixes Ψ :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and X :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"
assumes p: "(Ψ, P, Q) ∈ X"
and Eqvt: "eqvt X"
and rStatImp: "⋀Ψ P Q. (Ψ, P, Q) ∈ X ⟹ Ψ ⊳ P ⪅<X> Q"
and rSim: "⋀Ψ P Q. (Ψ, P, Q) ∈ X ⟹ Ψ ⊳ P ↝<({(Ψ, P, Q) | Ψ P Q. ∃P' Q'. Ψ ⊳ P ≈ P' ∧ (Ψ, P', Q') ∈ X ∧ Ψ ⊳ Q' ∼ Q})> Q"
and rExt: "⋀Ψ P Q Ψ'. (Ψ, P, Q) ∈ X ⟹ (Ψ ⊗ Ψ', P, Q) ∈ X"
and rSym: "⋀Ψ P Q. (Ψ, P, Q) ∈ X ⟹ (Ψ, Q, P) ∈ X"
shows "Ψ ⊳ P ≈ Q"
proof -
let ?X = "{(Ψ, P, Q) | Ψ P Q. ∃P' Q'. Ψ ⊳ P ≈ P' ∧ (Ψ, P', Q') ∈ X ∧ Ψ ⊳ Q' ∼ Q}"
let ?Y = "{(Ψ, P, Q) | Ψ P Q. ∃P' Q'. Ψ ⊳ P ≈ P' ∧ (Ψ, P', Q') ∈ X ∧ Ψ ⊳ Q' ≈ Q}"
from ‹eqvt X› have "eqvt ?X"
apply(auto simp add: eqvt_def)
apply(drule_tac p=p in bisimClosed)
apply(drule_tac p=p in weakBisimClosed)
apply(rule_tac x="p ∙ P'" in exI, simp)
by(rule_tac x="p ∙ Q'" in exI, auto)
from ‹eqvt X› have "eqvt ?Y"
apply(auto simp add: eqvt_def)
apply(drule_tac p=p in weakBisimClosed)
apply(drule_tac p=p in weakBisimClosed)
apply(rule_tac x="p ∙ P'" in exI, simp)
by(rule_tac x="p ∙ Q'" in exI, auto)
{
fix Ψ P Q
assume "(Ψ, P, Q) ∈ ?X"
then obtain P' Q' where "Ψ ⊳ P ≈ P'" and "(Ψ, P', Q') ∈ X" and "Ψ ⊳ Q' ∼ Q"
by auto
note ‹Ψ ⊳ P ≈ P'›
moreover from ‹(Ψ, P', Q') ∈ X› have "Ψ ⊳ P' ↝<?X> Q'" by(rule rSim)
moreover note ‹eqvt ?X›
moreover have "{(Ψ, P, R) | Ψ P R. ∃Q. Ψ ⊳ P ≈ Q ∧ (Ψ, Q, R) ∈ ?X} ⊆ ?X"
by(blast intro: weakBisimTransitive)
ultimately have "Ψ ⊳ P ↝<?X> Q'" using weakBisimE(2) by(rule weakSimTransitive)
moreover from ‹Ψ ⊳ Q' ∼ Q› have "Ψ ⊳ Q' ↝[bisim] Q" by(rule bisimE)
moreover note ‹eqvt ?X›
moreover from ‹Ψ ⊳ Q' ∼ Q› have "insertAssertion (extractFrame Q) Ψ ↪⇩F insertAssertion (extractFrame Q') Ψ"
by(drule_tac bisimE) (simp add: FrameStatEq_def)
moreover have "{(Ψ, P, R) | Ψ P R. ∃Q. (Ψ, P, Q) ∈ ?X ∧ Ψ ⊳ Q ∼ R} ⊆ ?X"
by(blast dest: bisimTransitive)
moreover note bisimE(3)
ultimately have "Ψ ⊳ P ↝<?X> Q" by(rule_tac strongAppend)
}
note Goal = this
from p have "(Ψ, P, Q) ∈ ?Y" by(blast intro: weakBisimReflexive bisimReflexive rSym)
thus ?thesis
proof(coinduct rule: weakBisimWeakCoinduct)
next
case(cStatImp Ψ P Q)
{
fix Ψ'
from ‹(Ψ, P, Q) ∈ ?Y› obtain R S where "Ψ ⊳ P ≈ R" and "(Ψ, R, S) ∈ X" and "Ψ ⊳ S ≈ Q" by auto
from ‹Ψ ⊳ P ≈ R› obtain R'' R'
where RChain: "Ψ ⊳ R ⟹⇧^⇩τ R''"
and PImpR'': "insertAssertion (extractFrame P) Ψ ↪⇩F insertAssertion (extractFrame R'') Ψ"
and R''Chain: "Ψ ⊗ Ψ' ⊳ R'' ⟹⇧^⇩τ R'"
and "Ψ ⊗ Ψ' ⊳ P ≈ R'"
apply(drule_tac weakBisimE) by(simp add: weakStatImp_def) blast
from ‹(Ψ, R, S) ∈ X› have "(Ψ, S, R) ∈ ?X" by(blast intro: weakBisimReflexive bisimReflexive rSym)
with RChain obtain S'' where SChain: "Ψ ⊳ S ⟹⇧^⇩τ S''" and "(Ψ, S'', R'') ∈ ?X" using Goal
by(rule weakSimTauChain)
from ‹(Ψ, S'', R'') ∈ ?X› obtain T U where "Ψ ⊳ S'' ≈ T" and "(Ψ, T, U) ∈ X" and "Ψ ⊳ U ∼ R''"
by auto
from ‹Ψ ⊳ U ∼ R''› have R''ImpU: "insertAssertion (extractFrame R'') Ψ ↪⇩F insertAssertion (extractFrame U) Ψ"
by(drule_tac bisimE) (simp add: FrameStatEq_def)
from ‹(Ψ, T, U) ∈ X› weakStatImp_def
obtain T'' T' where TChain: "Ψ ⊳ T ⟹⇧^⇩τ T''"
and UImpT'': "insertAssertion (extractFrame U) Ψ ↪⇩F insertAssertion (extractFrame T'') Ψ"
and T''Chain: "Ψ ⊗ Ψ' ⊳ T'' ⟹⇧^⇩τ T'"
and "(Ψ ⊗ Ψ', U, T') ∈ X"
by(blast dest: rStatImp rSym)
from TChain ‹Ψ ⊳ S'' ≈ T› weakBisimE(2) obtain S''' where S''Chain: "Ψ ⊳ S'' ⟹⇧^⇩τ S'''" and "Ψ ⊳ S''' ≈ T''"
by(rule weakSimTauChain)
from ‹Ψ ⊳ S''' ≈ T''› weakStatImp_def
obtain S''''' S'''' where S'''Chain: "Ψ ⊳ S''' ⟹⇧^⇩τ S'''''"
and T''ImpS''''': "insertAssertion (extractFrame T'') Ψ ↪⇩F insertAssertion (extractFrame S''''') Ψ"
and S'''''Chain: "Ψ ⊗ Ψ' ⊳ S''''' ⟹⇧^⇩τ S''''"
and "Ψ ⊗ Ψ' ⊳ T'' ≈ S''''"
by(metis weakBisimE)
from SChain S''Chain S'''Chain have "Ψ ⊳ S ⟹⇧^⇩τ S'''''" by auto
moreover from ‹Ψ ⊳ S ≈ Q› have "Ψ ⊳ Q ≈ S" by(rule weakBisimE)
ultimately obtain Q''' where QChain: "Ψ ⊳ Q ⟹⇧^⇩τ Q'''" and "Ψ ⊳ Q''' ≈ S'''''" using weakBisimE(2)
by(rule weakSimTauChain)
from ‹Ψ ⊳ Q''' ≈ S'''''› have "Ψ ⊳ S''''' ≈ Q'''" by(rule weakBisimE)
then obtain Q'' Q' where Q'''Chain: "Ψ ⊳ Q''' ⟹⇧^⇩τ Q''"
and S'''''ImpQ'': "insertAssertion (extractFrame S''''') Ψ ↪⇩F insertAssertion (extractFrame Q'') Ψ"
and Q''Chain: "Ψ ⊗ Ψ' ⊳ Q'' ⟹⇧^⇩τ Q'"
and "Ψ ⊗ Ψ' ⊳ S''''' ≈ Q'" using weakStatImp_def
by(metis weakBisimE)
from QChain Q'''Chain have "Ψ ⊳ Q ⟹⇧^⇩τ Q''" by auto
moreover from PImpR'' R''ImpU UImpT'' T''ImpS''''' S'''''ImpQ''
have "insertAssertion (extractFrame P) Ψ ↪⇩F insertAssertion (extractFrame Q'') Ψ"
by(blast dest: FrameStatImpTrans)
moreover from ‹Ψ ⊳ U ∼ R''› have "Ψ ⊗ Ψ' ⊳ U ≈ R''" by(metis weakBisimE strongBisimWeakBisim)
with R''Chain obtain U' where UChain: "Ψ ⊗ Ψ' ⊳ U ⟹⇧^⇩τ U'" and "Ψ ⊗ Ψ' ⊳ U' ≈ R'" using weakBisimE(2)
by(rule weakSimTauChain)
from ‹Ψ ⊗ Ψ' ⊳ U' ≈ R'› have "Ψ ⊗ Ψ' ⊳ R' ≈ U'" by(rule weakBisimE)
from ‹(Ψ ⊗ Ψ', U, T') ∈ X› have "(Ψ ⊗ Ψ', T', U) ∈ ?X" by(blast intro: rSym weakBisimReflexive bisimReflexive)
with UChain obtain T''' where T'Chain: "Ψ ⊗ Ψ' ⊳ T' ⟹⇧^⇩τ T'''" and "(Ψ ⊗ Ψ', T''', U') ∈ ?X" using Goal
by(rule weakSimTauChain)
from ‹(Ψ ⊗ Ψ', T''', U') ∈ ?X› have "(Ψ ⊗ Ψ', U', T''') ∈ ?Y"
by(blast dest: weakBisimE rSym strongBisimWeakBisim)
from T''Chain T'Chain have "Ψ ⊗ Ψ' ⊳ T'' ⟹⇧^⇩τ T'''" by auto
then obtain S'''''' where S''''Chain: "Ψ ⊗ Ψ' ⊳ S'''' ⟹⇧^⇩τ S''''''" and "Ψ ⊗ Ψ' ⊳ T''' ≈ S''''''"
using ‹Ψ ⊗ Ψ' ⊳ T'' ≈ S''''› weakBisimE(2)
apply(drule_tac weakBisimE(4))
by(rule weakSimTauChain) (auto dest: weakBisimE(4))
from S'''''Chain S''''Chain have "Ψ ⊗ Ψ' ⊳ S''''' ⟹⇧^⇩τ S''''''" by auto
with ‹Ψ ⊗ Ψ' ⊳ S''''' ≈ Q'›
obtain Q'''' where Q'Chain: "Ψ ⊗ Ψ' ⊳ Q' ⟹⇧^⇩τ Q''''" and "Ψ ⊗ Ψ' ⊳ S'''''' ≈ Q''''" using weakBisimE(2)
apply(drule_tac weakBisimE(4))
by(rule weakSimTauChain) (auto dest: weakBisimE(4))
from Q''Chain Q'Chain have "Ψ ⊗ Ψ' ⊳ Q'' ⟹⇧^⇩τ Q''''" by auto
moreover from ‹Ψ ⊗ Ψ' ⊳ P ≈ R'› ‹Ψ ⊗ Ψ' ⊳ R' ≈ U'› ‹(Ψ ⊗ Ψ', U', T''') ∈ ?Y› ‹Ψ ⊗ Ψ' ⊳ T''' ≈ S''''''›
‹Ψ ⊗ Ψ' ⊳ S'''''' ≈ Q''''›
have "(Ψ ⊗ Ψ', P, Q'''') ∈ ?Y"
by auto (blast dest: weakBisimTransitive)
ultimately have "∃Q'' Q'. Ψ ⊳ Q ⟹⇧^⇩τ Q'' ∧ insertAssertion (extractFrame P) Ψ ↪⇩F insertAssertion (extractFrame Q'') Ψ ∧ Ψ ⊗ Ψ' ⊳ Q'' ⟹⇧^⇩τ Q' ∧ (Ψ ⊗ Ψ', P, Q') ∈ ?Y"
by blast
}
thus ?case by(simp add: weakStatImp_def)
next
case(cSim Ψ P Q)
moreover {
fix Ψ P P' Q' Q
assume "Ψ ⊳ P ≈ P'" and "(Ψ, P', Q') ∈ X" and "Ψ ⊳ Q' ≈ Q"
from ‹(Ψ, P', Q') ∈ X› have "(Ψ, P', Q') ∈ ?X"
by(blast intro: weakBisimReflexive bisimReflexive)
moreover from ‹Ψ ⊳ Q' ≈ Q› have "Ψ ⊳ Q' ↝<weakBisim> Q" by(rule weakBisimE)
moreover note ‹eqvt ?Y›
moreover have "{(Ψ, P, R) | Ψ P R. ∃Q. (Ψ, P, Q) ∈ ?X ∧ Ψ ⊳ Q ≈ R} ⊆ ?Y"
by(blast dest: weakBisimTransitive strongBisimWeakBisim)
ultimately have "Ψ ⊳ P' ↝<?Y> Q" using Goal
by(rule weakSimTransitive)
note ‹Ψ ⊳ P ≈ P'› this ‹eqvt ?Y›
moreover have "{(Ψ, P, R) | Ψ P R. ∃Q. Ψ ⊳ P ≈ Q ∧ (Ψ, Q, R) ∈ ?Y} ⊆ ?Y"
by(blast dest: weakBisimTransitive)
ultimately have "Ψ ⊳ P ↝<?Y> Q" using weakBisimE(2)
by(rule weakSimTransitive)
}
ultimately show ?case by auto
next
case(cExt Ψ P Q Ψ')
thus ?case by(blast dest: bisimE weakBisimE intro: rExt)
next
case(cSym Ψ P Q)
thus ?case by(blast dest: bisimE(4) weakBisimE(4) rSym)
qed
qed
end
end