Theory HOL-Cardinals.Bounded_Set
section ‹Sets Strictly Bounded by an Infinite Cardinal›
theory Bounded_Set
imports Cardinals
begin
typedef ('a, 'k) bset (‹_ set[_]› [22, 21] 21) =
"{A :: 'a set. |A| <o natLeq +c |UNIV :: 'k set|}"
morphisms set_bset Abs_bset
by (rule exI[of _ "{}"]) (auto simp: card_of_empty4 csum_def)
setup_lifting type_definition_bset
lift_definition map_bset ::
"('a ⇒ 'b) ⇒ 'a set['k] ⇒ 'b set['k]" is image
using card_of_image ordLeq_ordLess_trans by blast
lift_definition rel_bset ::
"('a ⇒ 'b ⇒ bool) ⇒ 'a set['k] ⇒ 'b set['k] ⇒ bool" is rel_set
.
lift_definition bempty :: "'a set['k]" is "{}"
by (auto simp: card_of_empty4 csum_def)
lift_definition binsert :: "'a ⇒ 'a set['k] ⇒ 'a set['k]" is "insert"
using infinite_card_of_insert ordIso_ordLess_trans Field_card_of Field_natLeq UNIV_Plus_UNIV
csum_def finite_Plus_UNIV_iff finite_insert finite_ordLess_infinite2 infinite_UNIV_nat by metis
definition bsingleton where
"bsingleton x = binsert x bempty"
lemma set_bset_to_set_bset: "|A| <o natLeq +c |UNIV :: 'k set| ⟹
set_bset (the_inv set_bset A :: 'a set['k]) = A"
apply (rule f_the_inv_into_f[unfolded inj_on_def])
apply (simp add: set_bset_inject range_eqI Abs_bset_inverse[symmetric])
apply (rule range_eqI Abs_bset_inverse[symmetric] CollectI)+
.
lemma rel_bset_aux_infinite:
fixes a :: "'a set['k]" and b :: "'b set['k]"
shows "(∀t ∈ set_bset a. ∃u ∈ set_bset b. R t u) ∧ (∀u ∈ set_bset b. ∃t ∈ set_bset a. R t u) ⟷
((BNF_Def.Grp {a. set_bset a ⊆ {(a, b). R a b}} (map_bset fst))¯¯ OO
BNF_Def.Grp {a. set_bset a ⊆ {(a, b). R a b}} (map_bset snd)) a b" (is "?L ⟷ ?R")
proof
assume ?L
define R' :: "('a × 'b) set['k]"
where "R' = the_inv set_bset (Collect (case_prod R) ∩ (set_bset a × set_bset b))"
(is "_ = the_inv set_bset ?L'")
have "|?L'| <o natLeq +c |UNIV :: 'k set|"
unfolding csum_def Field_natLeq
by (intro ordLeq_ordLess_trans[OF card_of_mono1[OF Int_lower2]]
card_of_Times_ordLess_infinite)
(simp, (transfer, simp add: csum_def Field_natLeq)+)
hence *: "set_bset R' = ?L'" unfolding R'_def by (intro set_bset_to_set_bset)
show ?R unfolding Grp_def relcompp.simps conversep.simps
proof (intro CollectI case_prodI exI[of _ a] exI[of _ b] exI[of _ R'] conjI refl)
from * show "a = map_bset fst R'" using conjunct1[OF ‹?L›]
by (transfer, auto simp add: image_def Int_def split: prod.splits)
from * show "b = map_bset snd R'" using conjunct2[OF ‹?L›]
by (transfer, auto simp add: image_def Int_def split: prod.splits)
qed (auto simp add: *)
next
assume ?R thus ?L unfolding Grp_def relcompp.simps conversep.simps
by transfer force
qed
bnf "'a set['k]"
map: map_bset
sets: set_bset
bd: "natLeq +c card_suc |UNIV :: 'k set|"
wits: bempty
rel: rel_bset
proof -
show "map_bset id = id" by (rule ext, transfer) simp
next
fix f g
show "map_bset (f o g) = map_bset f o map_bset g" by (rule ext, transfer) auto
next
fix X f g
assume "⋀z. z ∈ set_bset X ⟹ f z = g z"
then show "map_bset f X = map_bset g X" by transfer force
next
fix f
show "set_bset ∘ map_bset f = (`) f ∘ set_bset" by (rule ext, transfer) auto
next
fix X :: "'a set['k]"
have "|set_bset X| <o natLeq +c |UNIV :: 'k set|" by transfer blast
then show "|set_bset X| <o natLeq +c card_suc |UNIV :: 'k set|"
by (rule ordLess_ordLeq_trans[OF _ csum_mono2[OF ordLess_imp_ordLeq[OF card_suc_greater[OF card_of_card_order_on]]]])
next
fix R S
show "rel_bset R OO rel_bset S ≤ rel_bset (R OO S)"
by (rule predicate2I, transfer) (auto simp: rel_set_OO[symmetric])
next
fix R :: "'a ⇒ 'b ⇒ bool"
show "rel_bset R = ((λx y. ∃z. set_bset z ⊆ {(x, y). R x y} ∧
map_bset fst z = x ∧ map_bset snd z = y) :: 'a set['k] ⇒ 'b set['k] ⇒ bool)"
by (simp add: rel_bset_def map_fun_def o_def rel_set_def
rel_bset_aux_infinite[unfolded OO_Grp_alt])
next
fix x
assume "x ∈ set_bset bempty"
then show False by transfer simp
qed (simp_all add: card_order_bd_fun Cinfinite_bd_fun regularCard_bd_fun)
lemma map_bset_bempty[simp]: "map_bset f bempty = bempty"
by transfer auto
lemma map_bset_binsert[simp]: "map_bset f (binsert x X) = binsert (f x) (map_bset f X)"
by transfer auto
lemma map_bset_bsingleton: "map_bset f (bsingleton x) = bsingleton (f x)"
unfolding bsingleton_def by simp
lemma bempty_not_binsert: "bempty ≠ binsert x X" "binsert x X ≠ bempty"
by (transfer, auto)+
lemma bempty_not_bsingleton[simp]: "bempty ≠ bsingleton x" "bsingleton x ≠ bempty"
unfolding bsingleton_def by (simp_all add: bempty_not_binsert)
lemma bsingleton_inj[simp]: "bsingleton x = bsingleton y ⟷ x = y"
unfolding bsingleton_def by transfer auto
lemma rel_bsingleton[simp]:
"rel_bset R (bsingleton x1) (bsingleton x2) = R x1 x2"
unfolding bsingleton_def
by transfer (auto simp: rel_set_def)
lemma rel_bset_bsingleton[simp]:
"rel_bset R (bsingleton x1) = (λX. X ≠ bempty ∧ (∀x2∈set_bset X. R x1 x2))"
"rel_bset R X (bsingleton x2) = (X ≠ bempty ∧ (∀x1∈set_bset X. R x1 x2))"
unfolding bsingleton_def fun_eq_iff
by (transfer, force simp add: rel_set_def)+
lemma rel_bset_bempty[simp]:
"rel_bset R bempty X = (X = bempty)"
"rel_bset R Y bempty = (Y = bempty)"
by (transfer, simp add: rel_set_def)+
definition bset_of_option where
"bset_of_option = case_option bempty bsingleton"
lift_definition bgraph :: "('a ⇒ 'b option) ⇒ ('a × 'b) set['a set]" is
"λf. {(a, b). f a = Some b}"
proof -
fix f :: "'a ⇒ 'b option"
have "|{(a, b). f a = Some b}| ≤o |UNIV :: 'a set|"
by (rule surj_imp_ordLeq[of _ "λx. (x, the (f x))"]) auto
also have "|UNIV :: 'a set| <o |UNIV :: 'a set set|"
by simp
also have "|UNIV :: 'a set set| ≤o natLeq +c |UNIV :: 'a set set|"
by (rule ordLeq_csum2) simp
finally show "|{(a, b). f a = Some b}| <o natLeq +c |UNIV :: 'a set set|" .
qed
lemma rel_bset_False[simp]: "rel_bset (λx y. False) x y = (x = bempty ∧ y = bempty)"
by transfer (auto simp: rel_set_def)
lemma rel_bset_of_option[simp]:
"rel_bset R (bset_of_option x1) (bset_of_option x2) = rel_option R x1 x2"
unfolding bset_of_option_def bsingleton_def[abs_def]
by transfer (auto simp: rel_set_def split: option.splits)
lemma rel_bgraph[simp]:
"rel_bset (rel_prod (=) R) (bgraph f1) (bgraph f2) = rel_fun (=) (rel_option R) f1 f2"
apply transfer
apply (auto simp: rel_fun_def rel_option_iff rel_set_def split: option.splits)
using option.collapse apply fastforce+
done
lemma set_bset_bsingleton[simp]:
"set_bset (bsingleton x) = {x}"
unfolding bsingleton_def by transfer auto
lemma binsert_absorb[simp]: "binsert a (binsert a x) = binsert a x"
by transfer simp
lemma map_bset_eq_bempty_iff[simp]: "map_bset f X = bempty ⟷ X = bempty"
by transfer auto
lemma map_bset_eq_bsingleton_iff[simp]:
"map_bset f X = bsingleton x ⟷ (set_bset X ≠ {} ∧ (∀y ∈ set_bset X. f y = x))"
unfolding bsingleton_def by transfer auto
lift_definition bCollect :: "('a ⇒ bool) ⇒ 'a set['a set]" is Collect
apply (rule ordLeq_ordLess_trans[OF card_of_mono1[OF subset_UNIV]])
apply (rule ordLess_ordLeq_trans[OF card_of_set_type])
apply (rule ordLeq_csum2[OF card_of_Card_order])
done
lift_definition bmember :: "'a ⇒ 'a set['k] ⇒ bool" is "(∈)" .
lemma bmember_bCollect[simp]: "bmember a (bCollect P) = P a"
by transfer simp
lemma bset_eq_iff: "A = B ⟷ (∀a. bmember a A = bmember a B)"
by transfer auto
locale bset_lifting
begin
declare bset.rel_eq[relator_eq]
declare bset.rel_mono[relator_mono]
declare bset.rel_compp[symmetric, relator_distr]
declare bset.rel_transfer[transfer_rule]
lemma bset_quot_map[quot_map]: "Quotient R Abs Rep T ⟹
Quotient (rel_bset R) (map_bset Abs) (map_bset Rep) (rel_bset T)"
unfolding Quotient_alt_def5 bset.rel_Grp[of UNIV, simplified, symmetric]
bset.rel_conversep[symmetric] bset.rel_compp[symmetric]
by (auto elim: bset.rel_mono_strong)
lemma set_relator_eq_onp [relator_eq_onp]:
"rel_bset (eq_onp P) = eq_onp (λA. Ball (set_bset A) P)"
unfolding fun_eq_iff eq_onp_def by transfer (auto simp: rel_set_def)
end
end