Theory Legendre_Symbol
section ‹Additional Facts about the Legendre Symbol›
theory Legendre_Symbol
imports
"HOL-Number_Theory.Number_Theory"
begin
lemma basic_cong[simp]:
fixes p :: int
assumes "2 < p"
shows "[-1 ≠ 1] (mod p)"
"[ 1 ≠ -1] (mod p)"
"[ 0 ≠ 1] (mod p)"
"[ 1 ≠ 0] (mod p)"
"[ 0 ≠ -1] (mod p)"
"[-1 ≠ 0] (mod p)"
using assms by (simp_all add: cong_iff_dvd_diff zdvd_not_zless)
lemma [simp]: "0 < n ⟹ (a mod 2) ^ n = a mod 2" for n :: nat and a :: int
by (metis not_mod_2_eq_0_eq_1 power_one zero_power)
lemma Legendre_in_cong_eq:
fixes p :: int
assumes "p > 2" and "b ∈ {-1,0,1}"
shows "[Legendre a m = b] (mod p) ⟷ Legendre a m = b"
using assms unfolding Legendre_def by auto
lemma Legendre_p_eq_2[simp]: "Legendre a 2 = a mod 2"
by (clarsimp simp: Legendre_def QuadRes_def cong_iff_dvd_diff) presburger
lemma Legendre_p_eq_1[simp]: "Legendre a 1 = 0" by (simp add: Legendre_def)
lemma euler_criterion_int:
assumes "prime p" and "2 < p"
shows "[Legendre a p = a^((nat p-1) div 2)] (mod p)"
using euler_criterion assms prime_int_nat_transfer
by (metis int_nat_eq nat_numeral prime_gt_0_int zless_nat_conj)
lemma QuadRes_neg[simp]: "QuadRes (-p) a = QuadRes p a" unfolding QuadRes_def by auto
lemma Legendre_neg[simp]: "Legendre a (-p) = Legendre a p" unfolding Legendre_def by auto
lemma Legendre_mult[simp]:
assumes "prime p"
shows "Legendre (a*b) p = Legendre a p * Legendre b p"
proof -
consider "p = 2" | "p > 2"
using assms order_le_less prime_ge_2_int by auto
thus ?thesis proof (cases)
case 1
then show ?thesis
by (metis Legendre_p_eq_2 mod_mult_eq mod_self mult_cancel_right2
mult_eq_0_iff not_mod_2_eq_1_eq_0 one_mod_two_eq_one)
next
case 2
hence "[Legendre (a*b) p = (a*b)^((nat p-1) div 2)] (mod p)"
using euler_criterion_int assms by blast
also have "[(a*b)^((nat p-1) div 2) = a^((nat p-1) div 2) * b^((nat p-1) div 2)] (mod p)"
by (simp add: field_simps)
also have "[a^((nat p-1) div 2) * b^((nat p-1) div 2) = Legendre a p * Legendre b p] (mod p)"
using cong_sym[OF euler_criterion_int] assms 2 cong_mult by blast
finally show ?thesis using Legendre_in_cong_eq[OF 2] by (simp add: Legendre_def)
qed
qed
lemma QuadRes_mod[simp]: "p dvd n ⟹ QuadRes p (a mod n) = QuadRes p a"
by (simp add: mod_mod_cancel QuadRes_def cong_def)
lemma Legendre_mod[simp]: "p dvd n ⟹ Legendre (a mod n) p = Legendre a p"
by (simp add: mod_mod_cancel Legendre_def cong_def)
lemma two_cong_0_iff: "[2 = 0] (mod p) ⟷ p = 1 ∨ p = 2" for p :: nat
unfolding cong_altdef_nat[of 0 2 p, simplified]
using dvd_refl prime_nat_iff two_is_prime_nat by blast
lemma two_cong_0_iff_nat: "[2 = 0] (mod int p) ⟷ p = 1 ∨ p = 2"
unfolding cong_iff_dvd_diff
using two_is_prime_nat prime_nat_iff int_dvd_int_iff[of p 2]
by auto
lemma two_cong_0_iff_int: "p > 0 ⟹ [2 = 0] (mod p) ⟷ p = 1 ∨ p = 2" for p :: int
by (metis of_nat_numeral pos_int_cases semiring_char_0_class.of_nat_eq_1_iff two_cong_0_iff_nat)
lemma QuadRes_2_2 [simp, intro]: "QuadRes 2 2"
unfolding QuadRes_def
unfolding cong_def
by presburger
lemma Suc_mod_eq[simp]: "[Suc a = Suc b] (mod 2) = [a = b] (mod 2)"
using Suc_eq_plus1_left cong_add_lcancel_nat by presburger
lemma div_cancel_aux: "c dvd a ⟹ (d + a * b) div c = (d div c) + a div c * b" for a b c :: nat
by (metis div_plus_div_distrib_dvd_right dvd_div_mult dvd_trans dvd_triv_left)
corollary div_cancel_Suc: "c dvd a ⟹ 1 < c ⟹ Suc (a * b) div c = a div c * b"
using div_cancel_aux[where d = 1] by fastforce
lemma cong_aux_eq_1: "odd p ⟹ [(p - 1) div 2 - p div 4 = (p^2 - 1) div 8] (mod 2)" for p :: nat
proof (induction p rule: nat_less_induct)
case (1 n)
consider "n = 1" | "n > 1" using odd_pos[OF ‹odd n›] by linarith
then show ?case proof (cases)
assume "n > 1"
then obtain m where m: "m = n - 2" and m': "odd m" "m < n" using ‹odd n› by simp
then obtain b where b: "m = 2 * b + 1" using oddE by blast
have IH: "[(m - 1) div 2 - m div 4 = (m^2 - 1) div 8] (mod 2)" using "1.IH" m' by simp
have [simp]: "n = 2 * b + 1 + 2" using m ‹n > 1› b by auto
have *: "(n⇧2 - 1) div 8 = ((n - 2)⇧2 - 1) div 8 + (n - 1) div 2"
unfolding power2_sum power2_eq_square by simp
have "[(n - 1) div 2 - n div 4 = (n - 2 - 1) div 2 - (n - 2) div 4 + (n - 1) div 2] (mod 2)"
by (rule cong_sym, cases "even b") (auto simp: cong_altdef_nat div_cancel_Suc elim: oddE)
also have "[(n - 2 - 1) div 2 - (n - 2) div 4 + (n - 1) div 2 = (n⇧2 - 1) div 8] (mod 2)"
using IH cong_add_rcancel_nat unfolding * m by presburger
finally show ?thesis .
qed simp
qed
lemma cong_2_pow[intro]: "(-1 :: int)^a = (-1)^b" if "[a = b] (mod 2)" for a b :: nat
proof -
have "even a = even b"
by (simp add: cong_dvd_iff that)
then show ?thesis by auto
qed
lemma card_Int: "card (A ∩ B) = card A - card (A - B)" if "finite A"
by (metis Diff_Diff_Int Diff_subset card_Diff_subset finite_Diff that)
text ‹Proofs are inspired by \<^cite>‹"Quadratic_Reciprocity"›.›
theorem supplement2_Legendre:
fixes p :: int
assumes "p > 2" "prime p"
shows "Legendre 2 p = (-1) ^ (((nat p)^2 - 1) div 8)"
proof -
interpret GAUSS "nat p" 2
using assms
unfolding GAUSS_def prime_int_nat_transfer
by (simp add: two_cong_0_iff_int)
have "card E = card ((λx. x * 2 mod p) `
{0<..(p - 1) div 2} ∩ {(p - 1) div 2<..})" (is "_ = card ?A")
unfolding E_def C_def B_def A_def image_image using assms by simp
also have "(λx. x * 2 mod p) ` {0<..(p - 1) div 2} = ((*) 2) ` {0<..(p - 1) div 2}"
by (intro image_cong) auto
also have "card (… ∩ {(p - 1) div 2<..}) =
nat ((p - 1) div 2) - card ((*) 2 ` {0<..(p - 1) div 2} - {(p - 1) div 2<..})"
using assms by (subst card_Int) (auto simp: card_image inj_onI)
also have "card (((*) 2) ` {0<..(p - 1) div 2} - {(p - 1) div 2<..}) = card {0 <.. (p div 4)}"
by (rule sym, intro bij_betw_same_card[of "(*) 2"] bij_betw_imageI inj_onI)
(insert assms prime_odd_int[of p], auto simp: image_def elim!: oddE)
also have "… = nat p div 4" using assms by simp
also have "nat ((p - 1) div 2) - nat p div 4 = nat ((p - 1) div 2 - p div 4)"
using assms by (simp add: nat_diff_distrib nat_div_distrib)
finally have "card E = …" .
then have "Legendre 2 p = (-1) ^ nat ((p - 1) div 2 - p div 4)"
using gauss_lemma assms by simp
also have "nat ((p - 1) div 2 - p div 4) = (nat p - 1) div 2 - nat p div 4"
using assms by (simp add: nat_div_distrib nat_diff_distrib)
also have "(-1) ^ … = ((-1) ^ (((nat p)^2 - 1) div 8) :: int)"
using cong_aux_eq_1[of "nat p"] odd_p by blast
finally show ?thesis .
qed
theorem supplement1_Legendre:
"prime p ⟹ 2 < p ⟹ Legendre (-1) p = (-1)^((p-1) div 2)"
using euler_criterion[of p "-1"] Legendre_in_cong_eq[symmetric, of p]
by (simp add: minus_one_power_iff)
lemma QuadRes_1_right [intro, simp]: "QuadRes p 1"
by (metis QuadRes_def cong_def power_one)
lemma Legendre_1_left [simp]: "prime p ⟹ Legendre 1 p = 1"
by (auto simp add: Legendre_def cong_iff_dvd_diff not_prime_unit)
lemma cong_eq_0_not_coprime: "prime p ⟹ [a = 0] (mod p) ⟹ ¬coprime a p" for a p :: int
unfolding cong_iff_dvd_diff prime_int_iff
by auto
lemma not_coprime_cong_eq_0: "prime p ⟹ ¬coprime a p ⟹ [a = 0] (mod p)" for a p :: int
unfolding cong_iff_dvd_diff
using prime_imp_coprime[of p a]
by (auto simp: coprime_commute)
lemma prime_cong_eq_0_iff: "prime p ⟹ [a = 0] (mod p) ⟷ ¬coprime a p" for a p :: int
using not_coprime_cong_eq_0[of p a] cong_eq_0_not_coprime[of p a]
by auto
lemma Legendre_eq_0_iff [simp]: "prime p ⟹ Legendre a p = 0 ⟷ ¬coprime a p"
unfolding Legendre_def by (auto simp: prime_cong_eq_0_iff)
lemma Legendre_prod_mset [simp]: "prime p ⟹ Legendre (prod_mset M) p = (∏q∈#M. Legendre q p)"
by (induction M) simp_all
lemma Legendre_0_eq_0[simp]: "Legendre 0 p = 0" unfolding Legendre_def by auto
lemma Legendre_values: "Legendre p q ∈ {1, - 1, 0}"
unfolding Legendre_def by auto
end