Theory HOL-Algebra.Group

(*  Title:      HOL/Algebra/Group.thy
    Author:     Clemens Ballarin, started 4 February 2003

Based on work by Florian Kammueller, L C Paulson and Markus Wenzel.
With additional contributions from Martin Baillon and Paulo Emílio de Vilhena.
*)

theory Group
imports Complete_Lattice "HOL-Library.FuncSet"
begin

section ‹Monoids and Groups›

subsection ‹Definitions›

text ‹
  Definitions follow cite"Jacobson:1985".
›

record 'a monoid =  "'a partial_object" +
  mult    :: "['a, 'a]  'a" (infixl ı› 70)
  one     :: 'a (𝟭ı›)

definition
  m_inv :: "('a, 'b) monoid_scheme => 'a => 'a" (invı _› [81] 80)
  where "invGx = (THE y. y  carrier G  x Gy = 𝟭G y Gx = 𝟭G)"

definition
  Units :: "_ => 'a set"
  ― ‹The set of invertible elements›
  where "Units G = {y. y  carrier G  (x  carrier G. x Gy = 𝟭G y Gx = 𝟭G)}"

locale monoid =
  fixes G (structure)
  assumes m_closed [intro, simp]:
         "x  carrier G; y  carrier G  x  y  carrier G"
      and m_assoc:
         "x  carrier G; y  carrier G; z  carrier G
           (x  y)  z = x  (y  z)"
      and one_closed [intro, simp]: "𝟭  carrier G"
      and l_one [simp]: "x  carrier G  𝟭  x = x"
      and r_one [simp]: "x  carrier G  x  𝟭 = x"

lemma monoidI:
  fixes G (structure)
  assumes m_closed:
      "!!x y. [| x  carrier G; y  carrier G |] ==> x  y  carrier G"
    and one_closed: "𝟭  carrier G"
    and m_assoc:
      "!!x y z. [| x  carrier G; y  carrier G; z  carrier G |] ==>
      (x  y)  z = x  (y  z)"
    and l_one: "!!x. x  carrier G ==> 𝟭  x = x"
    and r_one: "!!x. x  carrier G ==> x  𝟭 = x"
  shows "monoid G"
  by (fast intro!: monoid.intro intro: assms)

lemma (in monoid) Units_closed [dest]:
  "x  Units G ==> x  carrier G"
  by (unfold Units_def) fast

lemma (in monoid) one_unique:
  assumes "u  carrier G"
    and "x. x  carrier G  u  x = x"
  shows "u = 𝟭"
  using assms(2)[OF one_closed] r_one[OF assms(1)] by simp

lemma (in monoid) inv_unique:
  assumes eq: "y  x = 𝟭"  "x  y' = 𝟭"
    and G: "x  carrier G"  "y  carrier G"  "y'  carrier G"
  shows "y = y'"
proof -
  from G eq have "y = y  (x  y')" by simp
  also from G have "... = (y  x)  y'" by (simp add: m_assoc)
  also from G eq have "... = y'" by simp
  finally show ?thesis .
qed

lemma (in monoid) Units_m_closed [simp, intro]:
  assumes x: "x  Units G" and y: "y  Units G"
  shows "x  y  Units G"
proof -
  from x obtain x' where x: "x  carrier G" "x'  carrier G" and xinv: "x  x' = 𝟭" "x'  x = 𝟭"
    unfolding Units_def by fast
  from y obtain y' where y: "y  carrier G" "y'  carrier G" and yinv: "y  y' = 𝟭" "y'  y = 𝟭"
    unfolding Units_def by fast
  from x y xinv yinv have "y'  (x'  x)  y = 𝟭" by simp
  moreover from x y xinv yinv have "x  (y  y')  x' = 𝟭" by simp
  moreover note x y
  ultimately show ?thesis unfolding Units_def
    by simp (metis m_assoc m_closed)
qed

lemma (in monoid) Units_one_closed [intro, simp]:
  "𝟭  Units G"
  by (unfold Units_def) auto

lemma (in monoid) Units_inv_closed [intro, simp]:
  "x  Units G ==> inv x  carrier G"
  apply (simp add: Units_def m_inv_def)
  by (metis (mono_tags, lifting) inv_unique the_equality)

lemma (in monoid) Units_l_inv_ex:
  "x  Units G ==> y  carrier G. y  x = 𝟭"
  by (unfold Units_def) auto

lemma (in monoid) Units_r_inv_ex:
  "x  Units G ==> y  carrier G. x  y = 𝟭"
  by (unfold Units_def) auto

lemma (in monoid) Units_l_inv [simp]:
  "x  Units G ==> inv x  x = 𝟭"
  apply (unfold Units_def m_inv_def, simp)
  by (metis (mono_tags, lifting) inv_unique the_equality)

lemma (in monoid) Units_r_inv [simp]:
  "x  Units G ==> x  inv x = 𝟭"
  by (metis (full_types) Units_closed Units_inv_closed Units_l_inv Units_r_inv_ex inv_unique)

lemma (in monoid) inv_one [simp]:
  "inv 𝟭 = 𝟭"
  by (metis Units_one_closed Units_r_inv l_one monoid.Units_inv_closed monoid_axioms)

lemma (in monoid) Units_inv_Units [intro, simp]:
  "x  Units G ==> inv x  Units G"
proof -
  assume x: "x  Units G"
  show "inv x  Units G"
    by (auto simp add: Units_def
      intro: Units_l_inv Units_r_inv x Units_closed [OF x])
qed

lemma (in monoid) Units_l_cancel [simp]:
  "[| x  Units G; y  carrier G; z  carrier G |] ==>
   (x  y = x  z) = (y = z)"
proof
  assume eq: "x  y = x  z"
    and G: "x  Units G"  "y  carrier G"  "z  carrier G"
  then have "(inv x  x)  y = (inv x  x)  z"
    by (simp add: m_assoc Units_closed del: Units_l_inv)
  with G show "y = z" by simp
next
  assume eq: "y = z"
    and G: "x  Units G"  "y  carrier G"  "z  carrier G"
  then show "x  y = x  z" by simp
qed

lemma (in monoid) Units_inv_inv [simp]:
  "x  Units G ==> inv (inv x) = x"
proof -
  assume x: "x  Units G"
  then have "inv x  inv (inv x) = inv x  x" by simp
  with x show ?thesis by (simp add: Units_closed del: Units_l_inv Units_r_inv)
qed

lemma (in monoid) inv_inj_on_Units:
  "inj_on (m_inv G) (Units G)"
proof (rule inj_onI)
  fix x y
  assume G: "x  Units G"  "y  Units G" and eq: "inv x = inv y"
  then have "inv (inv x) = inv (inv y)" by simp
  with G show "x = y" by simp
qed

lemma (in monoid) Units_inv_comm:
  assumes inv: "x  y = 𝟭"
    and G: "x  Units G"  "y  Units G"
  shows "y  x = 𝟭"
proof -
  from G have "x  y  x = x  𝟭" by (auto simp add: inv Units_closed)
  with G show ?thesis by (simp del: r_one add: m_assoc Units_closed)
qed

lemma (in monoid) carrier_not_empty: "carrier G  {}"
by auto

(* Jacobson defines submonoid here. *)
(* Jacobson defines the order of a monoid here. *)


subsection ‹Groups›

text ‹
  A group is a monoid all of whose elements are invertible.
›

locale group = monoid +
  assumes Units: "carrier G <= Units G"

lemma (in group) is_group [iff]: "group G" by (rule group_axioms)

lemma (in group) is_monoid [iff]: "monoid G"
  by (rule monoid_axioms)

theorem groupI:
  fixes G (structure)
  assumes m_closed [simp]:
      "!!x y. [| x  carrier G; y  carrier G |] ==> x  y  carrier G"
    and one_closed [simp]: "𝟭  carrier G"
    and m_assoc:
      "!!x y z. [| x  carrier G; y  carrier G; z  carrier G |] ==>
      (x  y)  z = x  (y  z)"
    and l_one [simp]: "!!x. x  carrier G ==> 𝟭  x = x"
    and l_inv_ex: "!!x. x  carrier G ==> y  carrier G. y  x = 𝟭"
  shows "group G"
proof -
  have l_cancel [simp]:
    "!!x y z. [| x  carrier G; y  carrier G; z  carrier G |] ==>
    (x  y = x  z) = (y = z)"
  proof
    fix x y z
    assume eq: "x  y = x  z"
      and G: "x  carrier G"  "y  carrier G"  "z  carrier G"
    with l_inv_ex obtain x_inv where xG: "x_inv  carrier G"
      and l_inv: "x_inv  x = 𝟭" by fast
    from G eq xG have "(x_inv  x)  y = (x_inv  x)  z"
      by (simp add: m_assoc)
    with G show "y = z" by (simp add: l_inv)
  next
    fix x y z
    assume eq: "y = z"
      and G: "x  carrier G"  "y  carrier G"  "z  carrier G"
    then show "x  y = x  z" by simp
  qed
  have r_one:
    "!!x. x  carrier G ==> x  𝟭 = x"
  proof -
    fix x
    assume x: "x  carrier G"
    with l_inv_ex obtain x_inv where xG: "x_inv  carrier G"
      and l_inv: "x_inv  x = 𝟭" by fast
    from x xG have "x_inv  (x  𝟭) = x_inv  x"
      by (simp add: m_assoc [symmetric] l_inv)
    with x xG show "x  𝟭 = x" by simp
  qed
  have inv_ex:
    "x. x  carrier G  y  carrier G. y  x = 𝟭  x  y = 𝟭"
  proof -
    fix x
    assume x: "x  carrier G"
    with l_inv_ex obtain y where y: "y  carrier G"
      and l_inv: "y  x = 𝟭" by fast
    from x y have "y  (x  y) = y  𝟭"
      by (simp add: m_assoc [symmetric] l_inv r_one)
    with x y have r_inv: "x  y = 𝟭"
      by simp
    from x y show "y  carrier G. y  x = 𝟭  x  y = 𝟭"
      by (fast intro: l_inv r_inv)
  qed
  then have carrier_subset_Units: "carrier G  Units G"
    by (unfold Units_def) fast
  show ?thesis
    by standard (auto simp: r_one m_assoc carrier_subset_Units)
qed

lemma (in monoid) group_l_invI:
  assumes l_inv_ex:
    "!!x. x  carrier G ==> y  carrier G. y  x = 𝟭"
  shows "group G"
  by (rule groupI) (auto intro: m_assoc l_inv_ex)

lemma (in group) Units_eq [simp]:
  "Units G = carrier G"
proof
  show "Units G  carrier G" by fast
next
  show "carrier G  Units G" by (rule Units)
qed

lemma (in group) inv_closed [intro, simp]:
  "x  carrier G ==> inv x  carrier G"
  using Units_inv_closed by simp

lemma (in group) l_inv_ex [simp]:
  "x  carrier G ==> y  carrier G. y  x = 𝟭"
  using Units_l_inv_ex by simp

lemma (in group) r_inv_ex [simp]:
  "x  carrier G ==> y  carrier G. x  y = 𝟭"
  using Units_r_inv_ex by simp

lemma (in group) l_inv [simp]:
  "x  carrier G ==> inv x  x = 𝟭"
  by simp


subsection ‹Cancellation Laws and Basic Properties›

lemma (in group) inv_eq_1_iff [simp]:
  assumes "x  carrier G" shows "invGx = 𝟭G x = 𝟭G⇙"
proof -
  have "x = 𝟭" if "inv x = 𝟭"
  proof -
    have "inv x  x = 𝟭"
      using assms l_inv by blast
    then show "x = 𝟭"
      using that assms by simp
  qed
  then show ?thesis
    by auto
qed

lemma (in group) r_inv [simp]:
  "x  carrier G ==> x  inv x = 𝟭"
  by simp

lemma (in group) right_cancel [simp]:
  "[| x  carrier G; y  carrier G; z  carrier G |] ==>
   (y  x = z  x) = (y = z)"
  by (metis inv_closed m_assoc r_inv r_one)

lemma (in group) inv_inv [simp]:
  "x  carrier G ==> inv (inv x) = x"
  using Units_inv_inv by simp

lemma (in group) inv_inj:
  "inj_on (m_inv G) (carrier G)"
  using inv_inj_on_Units by simp

lemma (in group) inv_mult_group:
  "[| x  carrier G; y  carrier G |] ==> inv (x  y) = inv y  inv x"
proof -
  assume G: "x  carrier G"  "y  carrier G"
  then have "inv (x  y)  (x  y) = (inv y  inv x)  (x  y)"
    by (simp add: m_assoc) (simp add: m_assoc [symmetric])
  with G show ?thesis by (simp del: l_inv Units_l_inv)
qed

lemma (in group) inv_comm:
  "[| x  y = 𝟭; x  carrier G; y  carrier G |] ==> y  x = 𝟭"
  by (rule Units_inv_comm) auto

lemma (in group) inv_equality:
     "[|y  x = 𝟭; x  carrier G; y  carrier G|] ==> inv x = y"
  using inv_unique r_inv by blast

lemma (in group) inv_solve_left:
  " a  carrier G; b  carrier G; c  carrier G   a = inv b  c  c = b  a"
  by (metis inv_equality l_inv_ex l_one m_assoc r_inv)

lemma (in group) inv_solve_left':
  " a  carrier G; b  carrier G; c  carrier G   inv b  c = a  c = b  a"
  by (metis inv_equality l_inv_ex l_one m_assoc r_inv)

lemma (in group) inv_solve_right:
  " a  carrier G; b  carrier G; c  carrier G   a = b  inv c  b = a  c"
  by (metis inv_equality l_inv_ex l_one m_assoc r_inv)

lemma (in group) inv_solve_right':
  "a  carrier G; b  carrier G; c  carrier G  b  inv c = a  b = a  c"
  by (auto simp: m_assoc)
  

subsection ‹Power›

consts
  pow :: "[('a, 'm) monoid_scheme, 'a, 'b::semiring_1] => 'a"  (infixr [^]ı› 75)

overloading nat_pow == "pow :: [_, 'a, nat] => 'a"
begin
  definition "nat_pow G a n = rec_nat 𝟭G(%u b. b Ga) n"
end

lemma (in monoid) nat_pow_closed [intro, simp]:
  "x  carrier G ==> x [^] (n::nat)  carrier G"
  by (induct n) (simp_all add: nat_pow_def)

lemma (in monoid) nat_pow_0 [simp]:
  "x [^] (0::nat) = 𝟭"
  by (simp add: nat_pow_def)

lemma (in monoid) nat_pow_Suc [simp]:
  "x [^] (Suc n) = x [^] n  x"
  by (simp add: nat_pow_def)

lemma (in monoid) nat_pow_one [simp]:
  "𝟭 [^] (n::nat) = 𝟭"
  by (induct n) simp_all

lemma (in monoid) nat_pow_mult:
  "x  carrier G ==> x [^] (n::nat)  x [^] m = x [^] (n + m)"
  by (induct m) (simp_all add: m_assoc [THEN sym])

lemma (in monoid) nat_pow_comm:
  "x  carrier G  (x [^] (n::nat))  (x [^] (m :: nat)) = (x [^] m)  (x [^] n)"
  using nat_pow_mult[of x n m] nat_pow_mult[of x m n] by (simp add: add.commute)

lemma (in monoid) nat_pow_Suc2:
  "x  carrier G  x [^] (Suc n) = x  (x [^] n)"
  using nat_pow_mult[of x 1 n] Suc_eq_plus1[of n]
  by (metis One_nat_def Suc_eq_plus1_left l_one nat.rec(1) nat_pow_Suc nat_pow_def)

lemma (in monoid) nat_pow_pow:
  "x  carrier G ==> (x [^] n) [^] m = x [^] (n * m::nat)"
  by (induct m) (simp, simp add: nat_pow_mult add.commute)

lemma (in monoid) nat_pow_consistent:
  "x [^] (n :: nat) = x [^](G  carrier := H )n"
  unfolding nat_pow_def by simp

lemma nat_pow_0 [simp]: "x [^]G(0::nat) = 𝟭G⇙"
  by (simp add: nat_pow_def)

lemma nat_pow_Suc [simp]: "x [^]G(Suc n) = (x [^]Gn)Gx"
  by (simp add: nat_pow_def)

lemma (in group) nat_pow_inv:
  assumes "x  carrier G" shows "(inv x) [^] (i :: nat) = inv (x [^] i)"
proof (induction i)
  case 0 thus ?case by simp
next
  case (Suc i)
  have "(inv x) [^] Suc i = ((inv x) [^] i)  inv x"
    by simp
  also have " ... = (inv (x [^] i))  inv x"
    by (simp add: Suc.IH Suc.prems)
  also have " ... = inv (x  (x [^] i))"
    by (simp add: assms inv_mult_group)
  also have " ... = inv (x [^] (Suc i))"
    using assms nat_pow_Suc2 by auto
  finally show ?case .
qed

overloading int_pow == "pow :: [_, 'a, int] => 'a"
begin
  definition "int_pow G a z =
   (let p = rec_nat 𝟭G(%u b. b Ga)
    in if z < 0 then invG(p (nat (-z))) else p (nat z))"
end

lemma int_pow_int: "x [^]G(int n) = x [^]Gn"
  by(simp add: int_pow_def nat_pow_def)

lemma pow_nat:
  assumes "i0"
  shows "x [^]Gnat i = x [^]Gi"
proof (cases i rule: int_cases)
  case (nonneg n)
  then show ?thesis
    by (simp add: int_pow_int)
next
  case (neg n)
  then show ?thesis
    using assms by linarith
qed

lemma int_pow_0 [simp]: "x [^]G(0::int) = 𝟭G⇙"
  by (simp add: int_pow_def)

lemma int_pow_def2: "a [^]Gz =
   (if z < 0 then invG(a [^]G(nat (-z))) else a [^]G(nat z))"
  by (simp add: int_pow_def nat_pow_def)

lemma (in group) int_pow_one [simp]:
  "𝟭 [^] (z::int) = 𝟭"
  by (simp add: int_pow_def2)

lemma (in group) int_pow_closed [intro, simp]:
  "x  carrier G ==> x [^] (i::int)  carrier G"
  by (simp add: int_pow_def2)

lemma (in group) int_pow_1 [simp]:
  "x  carrier G  x [^] (1::int) = x"
  by (simp add: int_pow_def2)

lemma (in group) int_pow_neg:
  "x  carrier G  x [^] (-i::int) = inv (x [^] i)"
  by (simp add: int_pow_def2)

lemma (in group) int_pow_neg_int: "x  carrier G  x [^] -(int n) = inv (x [^] n)"
  by (simp add: int_pow_neg int_pow_int)

lemma (in group) int_pow_mult:
  assumes "x  carrier G" shows "x [^] (i + j::int) = x [^] i  x [^] j"
proof -
  have [simp]: "-i - j = -j - i" by simp
  show ?thesis
    by (auto simp: assms int_pow_def2 inv_solve_left inv_solve_right nat_add_distrib [symmetric] nat_pow_mult)
qed

lemma (in group) int_pow_inv:
  "x  carrier G  (inv x) [^] (i :: int) = inv (x [^] i)"
  by (metis int_pow_def2 nat_pow_inv)

lemma (in group) int_pow_pow:
  assumes "x  carrier G"
  shows "(x [^] (n :: int)) [^] (m :: int) = x [^] (n * m :: int)"
proof (cases)
  assume n_ge: "n  0" thus ?thesis
  proof (cases)
    assume m_ge: "m  0" thus ?thesis
      using n_ge nat_pow_pow[OF assms, of "nat n" "nat m"] int_pow_def2 [where G=G]
      by (simp add: mult_less_0_iff nat_mult_distrib)
  next
    assume m_lt: "¬ m  0" 
    with n_ge show ?thesis
      apply (simp add: int_pow_def2 mult_less_0_iff)
      by (metis assms mult_minus_right n_ge nat_mult_distrib nat_pow_pow)
  qed
next
  assume n_lt: "¬ n  0" thus ?thesis
  proof (cases)
    assume m_ge: "m  0" 
    have "inv x [^] (nat m * nat (- n)) = inv x [^] nat (- (m * n))"
      by (metis (full_types) m_ge mult_minus_right nat_mult_distrib)
    with m_ge n_lt show ?thesis
      by (simp add: int_pow_def2 mult_less_0_iff assms mult.commute nat_pow_inv nat_pow_pow)
  next
    assume m_lt: "¬ m  0" thus ?thesis
      using n_lt by (auto simp: int_pow_def2 mult_less_0_iff assms nat_mult_distrib_neg nat_pow_inv nat_pow_pow)
  qed
qed

lemma (in group) int_pow_diff:
  "x  carrier G  x [^] (n - m :: int) = x [^] n  inv (x [^] m)"
  by(simp only: diff_conv_add_uminus int_pow_mult int_pow_neg)

lemma (in group) inj_on_multc: "c  carrier G  inj_on (λx. x  c) (carrier G)"
  by(simp add: inj_on_def)

lemma (in group) inj_on_cmult: "c  carrier G  inj_on (λx. c  x) (carrier G)"
  by(simp add: inj_on_def)


lemma (in monoid) group_commutes_pow:
  fixes n::nat
  shows "x  y = y  x; x  carrier G; y  carrier G  x [^] n  y = y  x [^] n"
  apply (induction n, auto)
  by (metis m_assoc nat_pow_closed)

lemma (in monoid) pow_mult_distrib:
  assumes eq: "x  y = y  x" and xy: "x  carrier G" "y  carrier G"
  shows "(x  y) [^] (n::nat) = x [^] n  y [^] n"
proof (induct n)
  case (Suc n)
  have "x  (y [^] n  y) = y [^] n  x  y"
    by (simp add: eq group_commutes_pow m_assoc xy)
  then show ?case
    using assms Suc.hyps m_assoc by auto
qed auto

lemma (in group) int_pow_mult_distrib:
  assumes eq: "x  y = y  x" and xy: "x  carrier G" "y  carrier G"
  shows "(x  y) [^] (i::int) = x [^] i  y [^] i"
proof (cases i rule: int_cases)
  case (nonneg n)
  then show ?thesis
    by (metis eq int_pow_int pow_mult_distrib xy)
next
  case (neg n)
  then show ?thesis
    unfolding neg
    apply (simp add: xy int_pow_neg_int del: of_nat_Suc)
    by (metis eq inv_mult_group local.nat_pow_Suc nat_pow_closed pow_mult_distrib xy)
qed

lemma (in group) pow_eq_div2:
  fixes m n :: nat
  assumes x_car: "x  carrier G"
  assumes pow_eq: "x [^] m = x [^] n"
  shows "x [^] (m - n) = 𝟭"
proof (cases "m < n")
  case False
  have "𝟭  x [^] m = x [^] m" by (simp add: x_car)
  also have " = x [^] (m - n)  x [^] n"
    using False by (simp add: nat_pow_mult x_car)
  also have " = x [^] (m - n)  x [^] m"
    by (simp add: pow_eq)
  finally show ?thesis
    by (metis nat_pow_closed one_closed right_cancel x_car)
qed simp

subsection ‹Submonoids›

locale submonoid = contributor ‹Martin Baillon›
  fixes H and G (structure)
  assumes subset: "H  carrier G"
    and m_closed [intro, simp]: "x  H; y  H  x  y  H"
    and one_closed [simp]: "𝟭  H"

lemma (in submonoid) is_submonoid: contributor ‹Martin Baillon›
  "submonoid H G" by (rule submonoid_axioms)

lemma (in submonoid) mem_carrier [simp]: contributor ‹Martin Baillon›
  "x  H  x  carrier G"
  using subset by blast

lemma (in submonoid) submonoid_is_monoid [intro]: contributor ‹Martin Baillon›
  assumes "monoid G"
  shows "monoid (Gcarrier := H)"
proof -
  interpret monoid G by fact
  show ?thesis
    by (simp add: monoid_def m_assoc)
qed

lemma submonoid_nonempty: contributor ‹Martin Baillon›
  "~ submonoid {} G"
  by (blast dest: submonoid.one_closed)

lemma (in submonoid) finite_monoid_imp_card_positive: contributor ‹Martin Baillon›
  "finite (carrier G) ==> 0 < card H"
proof (rule classical)
  assume "finite (carrier G)" and a: "~ 0 < card H"
  then have "finite H" by (blast intro: finite_subset [OF subset])
  with is_submonoid a have "submonoid {} G" by simp
  with submonoid_nonempty show ?thesis by contradiction
qed


lemma (in monoid) monoid_incl_imp_submonoid : contributor ‹Martin Baillon›
  assumes "H  carrier G"
and "monoid (Gcarrier := H)"
shows "submonoid H G"
proof (intro submonoid.intro[OF assms(1)])
  have ab_eq : " a b. a  H  b  H  a Gcarrier := Hb = a  b" using assms by simp
  have "a b. a  H  b  H  a  b  carrier (Gcarrier := H) "
    using assms ab_eq unfolding group_def using monoid.m_closed by fastforce
  thus "a b. a  H  b  H  a  b  H" by simp
  show "𝟭  H " using monoid.one_closed[OF assms(2)] assms by simp
qed

lemma (in monoid) inv_unique': contributor ‹Martin Baillon›
  assumes "x  carrier G" "y  carrier G"
  shows " x  y = 𝟭; y  x = 𝟭   y = inv x"
proof -
  assume "x  y = 𝟭" and l_inv: "y  x = 𝟭"
  hence unit: "x  Units G"
    using assms unfolding Units_def by auto
  show "y = inv x"
    using inv_unique[OF l_inv Units_r_inv[OF unit] assms Units_inv_closed[OF unit]] .
qed

lemma (in monoid) m_inv_monoid_consistent: contributor ‹Paulo Emílio de Vilhena›
  assumes "x  Units (G  carrier := H )" and "submonoid H G"
  shows "inv(G  carrier := H )x = inv x"
proof -
  have monoid: "monoid (G  carrier := H )"
    using submonoid.submonoid_is_monoid[OF assms(2) monoid_axioms] .
  obtain y where y: "y  H" "x  y = 𝟭" "y  x = 𝟭"
    using assms(1) unfolding Units_def by auto
  have x: "x  H" and in_carrier: "x  carrier G" "y  carrier G"
    using y(1) submonoid.subset[OF assms(2)] assms(1) unfolding Units_def by auto
  show ?thesis
    using monoid.inv_unique'[OF monoid, of x y] x y
    using inv_unique'[OF in_carrier y(2-3)] by auto
qed

subsection ‹Subgroups›

locale subgroup =
  fixes H and G (structure)
  assumes subset: "H  carrier G"
    and m_closed [intro, simp]: "x  H; y  H  x  y  H"
    and one_closed [simp]: "𝟭  H"
    and m_inv_closed [intro,simp]: "x  H  inv x  H"

lemma (in subgroup) is_subgroup:
  "subgroup H G" by (rule subgroup_axioms)

declare (in subgroup) group.intro [intro]

lemma (in subgroup) mem_carrier [simp]:
  "x  H  x  carrier G"
  using subset by blast

lemma (in subgroup) subgroup_is_group [intro]:
  assumes "group G"
  shows "group (Gcarrier := H)"
proof -
  interpret group G by fact
  have "Group.monoid (Gcarrier := H)"
    by (simp add: monoid_axioms submonoid.intro submonoid.submonoid_is_monoid subset)
  then show ?thesis
    by (rule monoid.group_l_invI) (auto intro: l_inv mem_carrier)
qed

lemma (in group) triv_subgroup: "subgroup {𝟭} G"
  by (auto simp: subgroup_def)

lemma subgroup_is_submonoid:
  assumes "subgroup H G" shows "submonoid H G"
  using assms by (auto intro: submonoid.intro simp add: subgroup_def)

lemma (in group) subgroup_Units:
  assumes "subgroup H G" shows "H  Units (G  carrier := H )"
  using group.Units[OF subgroup.subgroup_is_group[OF assms group_axioms]] by simp

lemma (in group) m_inv_consistent [simp]:
  assumes "subgroup H G" "x  H"
  shows "inv(G  carrier := H )x = inv x"
  using assms m_inv_monoid_consistent[OF _ subgroup_is_submonoid] subgroup_Units[of H] by auto

lemma (in group) int_pow_consistent: contributor ‹Paulo Emílio de Vilhena›
  assumes "subgroup H G" "x  H"
  shows "x [^] (n :: int) = x [^](G  carrier := H )n"
proof (cases)
  assume ge: "n  0"
  hence "x [^] n = x [^] (nat n)"
    using int_pow_def2 [of G] by auto
  also have " ... = x [^](G  carrier := H )(nat n)"
    using nat_pow_consistent by simp
  also have " ... = x [^](G  carrier := H )n"
    by (metis ge int_nat_eq int_pow_int)
  finally show ?thesis .
next
  assume "¬ n  0" hence lt: "n < 0" by simp
  hence "x [^] n = inv (x [^] (nat (- n)))"
    using int_pow_def2 [of G] by auto
  also have " ... = (inv x) [^] (nat (- n))"
    by (metis assms nat_pow_inv subgroup.mem_carrier)
  also have " ... = (inv(G  carrier := H )x) [^](G  carrier := H )(nat (- n))"
    using m_inv_consistent[OF assms] nat_pow_consistent by auto
  also have " ... = inv(G  carrier := H )(x [^](G  carrier := H )(nat (- n)))"
    using group.nat_pow_inv[OF subgroup.subgroup_is_group[OF assms(1) is_group]] assms(2) by auto
  also have " ... = x [^](G  carrier := H )n"
    by (simp add: int_pow_def2 lt)
  finally show ?thesis .
qed

text ‹
  Since termH is nonempty, it contains some element termx.  Since
  it is closed under inverse, it contains inv x›.  Since
  it is closed under product, it contains x ⊗ inv x = 𝟭›.
›

lemma (in group) one_in_subset:
  "H  carrier G; H  {}; a  H. inv a  H; aH. bH. a  b  H
    𝟭  H"
by force

text ‹A characterization of subgroups: closed, non-empty subset.›

lemma (in group) subgroupI:
  assumes subset: "H  carrier G" and non_empty: "H  {}"
    and inv: "!!a. a  H  inv a  H"
    and mult: "!!a b. a  H; b  H  a  b  H"
  shows "subgroup H G"
proof (simp add: subgroup_def assms)
  show "𝟭  H" by (rule one_in_subset) (auto simp only: assms)
qed

lemma (in group) subgroupE:
  assumes "subgroup H G"
  shows "H  carrier G"
    and "H  {}"
    and "a. a  H  inv a  H"
    and "a b.  a  H; b  H   a  b  H"
  using assms unfolding subgroup_def[of H G] by auto

declare monoid.one_closed [iff] group.inv_closed [simp]
  monoid.l_one [simp] monoid.r_one [simp] group.inv_inv [simp]

lemma subgroup_nonempty:
  "¬ subgroup {} G"
  by (blast dest: subgroup.one_closed)

lemma (in subgroup) finite_imp_card_positive: "finite (carrier G)  0 < card H"
  using subset one_closed card_gt_0_iff finite_subset by blast

lemma (in subgroup) subgroup_is_submonoid : contributor ‹Martin Baillon›
  "submonoid H G"
  by (simp add: submonoid.intro subset)

lemma (in group) submonoid_subgroupI : contributor ‹Martin Baillon›
  assumes "submonoid H G"
    and "a. a  H  inv a  H"
  shows "subgroup H G"
  by (metis assms subgroup_def submonoid_def)

lemma (in group) group_incl_imp_subgroup: contributor ‹Martin Baillon›
  assumes "H  carrier G"
    and "group (Gcarrier := H)"
  shows "subgroup H G"
proof (intro submonoid_subgroupI[OF monoid_incl_imp_submonoid[OF assms(1)]])
  show "monoid (Gcarrier := H)" using group_def assms by blast
  have ab_eq : " a b. a  H  b  H  a Gcarrier := Hb = a  b" using assms by simp
  fix a  assume aH : "a  H"
  have " invGcarrier := Ha  carrier G"
    using assms aH group.inv_closed[OF assms(2)] by auto
  moreover have "𝟭Gcarrier := H= 𝟭" using assms monoid.one_closed ab_eq one_def by simp
  hence "a Gcarrier := HinvGcarrier := Ha= 𝟭"
    using assms ab_eq aH  group.r_inv[OF assms(2)] by simp
  hence "a  invGcarrier := Ha= 𝟭"
    using aH assms group.inv_closed[OF assms(2)] ab_eq by simp
  ultimately have "invGcarrier := Ha = inv a"
    by (metis aH assms(1) contra_subsetD group.inv_inv is_group local.inv_equality)
  moreover have "invGcarrier := Ha  H" 
    using aH group.inv_closed[OF assms(2)] by auto
  ultimately show "inv a  H" by auto
qed


subsection ‹Direct Products›

definition
  DirProd :: "_  _  ('a × 'b) monoid" (infixr ×× 80) where
  "G ×× H =
    carrier = carrier G × carrier H,
     mult = (λ(g, h) (g', h'). (g Gg', h Hh')),
     one = (𝟭G, 𝟭H)"

lemma DirProd_monoid:
  assumes "monoid G" and "monoid H"
  shows "monoid (G ×× H)"
proof -
  interpret G: monoid G by fact
  interpret H: monoid H by fact
  from assms
  show ?thesis by (unfold monoid_def DirProd_def, auto)
qed


text‹Does not use the previous result because it's easier just to use auto.›
lemma DirProd_group:
  assumes "group G" and "group H"
  shows "group (G ×× H)"
proof -
  interpret G: group G by fact
  interpret H: group H by fact
  show ?thesis by (rule groupI)
     (auto intro: G.m_assoc H.m_assoc G.l_inv H.l_inv
           simp add: DirProd_def)
qed

lemma carrier_DirProd [simp]: "carrier (G ×× H) = carrier G × carrier H"
  by (simp add: DirProd_def)

lemma one_DirProd [simp]: "𝟭G ×× H= (𝟭G, 𝟭H)"
  by (simp add: DirProd_def)

lemma mult_DirProd [simp]: "(g, h) (G ×× H)(g', h') = (g Gg', h Hh')"
  by (simp add: DirProd_def)

lemma mult_DirProd': "x (G ×× H)y = (fst x Gfst y, snd x Hsnd y)"
  by (subst mult_DirProd [symmetric]) simp

lemma DirProd_assoc: "(G ×× H ×× I) = (G ×× (H ×× I))"
  by auto

lemma inv_DirProd [simp]:
  assumes "group G" and "group H"
  assumes g: "g  carrier G"
      and h: "h  carrier H"
  shows "m_inv (G ×× H) (g, h) = (invGg, invHh)"
proof -
  interpret G: group G by fact
  interpret H: group H by fact
  interpret Prod: group "G ×× H"
    by (auto intro: DirProd_group group.intro group.axioms assms)
  show ?thesis by (simp add: Prod.inv_equality g h)
qed

lemma DirProd_subgroups :
  assumes "group G"
    and "subgroup H G"
    and "group K"
    and "subgroup I K"
  shows "subgroup (H × I) (G ×× K)"
proof (intro group.group_incl_imp_subgroup[OF DirProd_group[OF assms(1)assms(3)]])
  have "H  carrier G" "I  carrier K" using subgroup.subset assms by blast+
  thus "(H × I)  carrier (G ×× K)" unfolding DirProd_def by auto
  have "Group.group ((Gcarrier := H) ×× (Kcarrier := I))"
    using DirProd_group[OF subgroup.subgroup_is_group[OF assms(2)assms(1)]
        subgroup.subgroup_is_group[OF assms(4)assms(3)]].
  moreover have "((Gcarrier := H) ×× (Kcarrier := I)) = ((G ×× K)carrier := H × I)"
    unfolding DirProd_def using assms by simp
  ultimately show "Group.group ((G ×× K)carrier := H × I)" by simp
qed

subsection ‹Homomorphisms (mono and epi) and Isomorphisms›

definition
  hom :: "_ => _ => ('a => 'b) set" where
  "hom G H =
    {h. h  carrier G  carrier H 
      (x  carrier G. y  carrier G. h (x Gy) = h x Hh y)}"

lemma homI:
  "x. x  carrier G  h x  carrier H;
    x y. x  carrier G; y  carrier G  h (x Gy) = h x Hh y  h  hom G H"
  by (auto simp: hom_def)

lemma hom_carrier: "h  hom G H  h ` carrier G  carrier H"
  by (auto simp: hom_def)

lemma hom_in_carrier: "h  hom G H; x  carrier G  h x  carrier H"
  by (auto simp: hom_def)

lemma hom_compose:
  " f  hom G H; g  hom H I   g  f  hom G I"
  unfolding hom_def by (auto simp add: Pi_iff)

lemma (in group) hom_restrict:
  assumes "h  hom G H" and "g. g  carrier G  h g = t g" shows "t  hom G H"
  using assms unfolding hom_def by (auto simp add: Pi_iff)

lemma (in group) hom_compose:
  "[|h  hom G H; i  hom H I|] ==> compose (carrier G) i h  hom G I"
by (fastforce simp add: hom_def compose_def)

lemma (in group) restrict_hom_iff [simp]:
  "(λx. if x  carrier G then f x else g x)  hom G H  f  hom G H"
  by (simp add: hom_def Pi_iff)

definition iso :: "_ => _ => ('a => 'b) set"
  where "iso G H = {h. h  hom G H  bij_betw h (carrier G) (carrier H)}"

definition is_iso :: "_  _  bool" (infixr  60)
  where "G  H = (iso G H   {})"

definition mon where "mon G H = {f  hom G H. inj_on f (carrier G)}"

definition epi where "epi G H = {f  hom G H. f ` (carrier G) = carrier H}"

lemma isoI:
  "h  hom G H; bij_betw h (carrier G) (carrier H)  h  iso G H"
  by (auto simp: iso_def)

lemma is_isoI: "h  iso G H  G  H"
  using is_iso_def by auto

lemma epi_iff_subset:
   "f  epi G G'  f  hom G G'  carrier G'  f ` carrier G"
  by (auto simp: epi_def hom_def)

lemma iso_iff_mon_epi: "f  iso G H  f  mon G H  f  epi G H"
  by (auto simp: iso_def mon_def epi_def bij_betw_def)

lemma iso_set_refl: "(λx. x)  iso G G"
  by (simp add: iso_def hom_def inj_on_def bij_betw_def Pi_def)

lemma id_iso: "id  iso G G"
  by (simp add: iso_def hom_def inj_on_def bij_betw_def Pi_def)

corollary iso_refl [simp]: "G  G"
  using iso_set_refl unfolding is_iso_def by auto

lemma iso_iff:
   "h  iso G H  h  hom G H  h ` (carrier G) = carrier H  inj_on h (carrier G)"
  by (auto simp: iso_def hom_def bij_betw_def)

lemma iso_imp_homomorphism:
   "h  iso G H  h  hom G H"
  by (simp add: iso_iff)

lemma trivial_hom:
   "group H  (λx. one H)  hom G H"
  by (auto simp: hom_def Group.group_def)

lemma (in group) hom_eq:
  assumes "f  hom G H" "x. x  carrier G  f' x = f x"
  shows "f'  hom G H"
  using assms by (auto simp: hom_def)

lemma (in group) iso_eq:
  assumes "f  iso G H" "x. x  carrier G  f' x = f x"
  shows "f'  iso G H"
  using assms  by (fastforce simp: iso_def inj_on_def bij_betw_def hom_eq image_iff)

lemma (in group) iso_set_sym:
  assumes "h  iso G H"
  shows "inv_into (carrier G) h  iso H G"
proof -
  have h: "h  hom G H" "bij_betw h (carrier G) (carrier H)"
    using assms by (auto simp add: iso_def bij_betw_inv_into)
  then have HG: "bij_betw (inv_into (carrier G) h) (carrier H) (carrier G)"
    by (simp add: bij_betw_inv_into)
  have "inv_into (carrier G) h  hom H G"
    unfolding hom_def
  proof safe
    show *: "x. x  carrier H  inv_into (carrier G) h x  carrier G"
      by (meson HG bij_betwE)
    show "inv_into (carrier G) h (x Hy) = inv_into (carrier G) h x  inv_into (carrier G) h y"
      if "x  carrier H" "y  carrier H" for x y
    proof (rule inv_into_f_eq)
      show "inj_on h (carrier G)"
        using bij_betw_def h(2) by blast
      show "inv_into (carrier G) h x  inv_into (carrier G) h y  carrier G"
        by (simp add: * that)
      show "h (inv_into (carrier G) h x  inv_into (carrier G) h y) = x Hy"
        using h bij_betw_inv_into_right [of h] unfolding hom_def by (simp add: "*" that)
    qed
  qed
  then show ?thesis
    by (simp add: Group.iso_def bij_betw_inv_into h)
qed

corollary (in group) iso_sym: "G  H  H  G"
  using iso_set_sym unfolding is_iso_def by auto

lemma iso_set_trans:
  "h  Group.iso G H; i  Group.iso H I  i  h  Group.iso G I"
  by (force simp: iso_def hom_compose intro: bij_betw_trans)

corollary iso_trans [trans]: "G  H ; H  I  G  I"
  using iso_set_trans unfolding is_iso_def by blast

lemma iso_same_card: "G  H  card (carrier G) = card (carrier H)"
  using bij_betw_same_card  unfolding is_iso_def iso_def by auto

lemma iso_finite: "G  H  finite(carrier G)  finite(carrier H)"
  by (auto simp: is_iso_def iso_def bij_betw_finite)

lemma mon_compose:
   "f  mon G H; g  mon H K  (g  f)  mon G K"
  by (auto simp: mon_def intro: hom_compose comp_inj_on inj_on_subset [OF _ hom_carrier])

lemma mon_compose_rev:
   "f  hom G H; g  hom H K; (g  f)  mon G K  f  mon G H"
  using inj_on_imageI2 by (auto simp: mon_def)

lemma epi_compose:
   "f  epi G H; g  epi H K  (g  f)  epi G K"
  using hom_compose by (force simp: epi_def hom_compose simp flip: image_image)

lemma epi_compose_rev:
   "f  hom G H; g  hom H K; (g  f)  epi G K  g  epi H K"
  by (fastforce simp: epi_def hom_def Pi_iff image_def set_eq_iff)

lemma iso_compose_rev:
   "f  hom G H; g  hom H K; (g  f)  iso G K  f  mon G H  g  epi H K"
  unfolding iso_iff_mon_epi using mon_compose_rev epi_compose_rev by blast

lemma epi_iso_compose_rev:
  assumes "f  epi G H" "g  hom H K" "(g  f)  iso G K"
  shows "f  iso G H  g  iso H K"
proof
  show "f  iso G H"
    by (metis (no_types, lifting) assms epi_def iso_compose_rev iso_iff_mon_epi mem_Collect_eq)
  then have "f  hom G H  bij_betw f (carrier G) (carrier H)"
    using Group.iso_def f  Group.iso G H by blast
  then have "bij_betw g (carrier H) (carrier K)"
    using Group.iso_def assms(3) bij_betw_comp_iff by blast
  then show "g  iso H K"
    using Group.iso_def assms(2) by blast
qed

lemma mon_left_invertible:
   "f  hom G H; x. x  carrier G  g(f x) = x  f  mon G H"
  by (simp add: mon_def inj_on_def) metis

lemma epi_right_invertible:
   "g  hom H G; f  carrier G  carrier H; x. x  carrier G  g(f x) = x  g  epi H G"
  by (force simp: Pi_iff epi_iff_subset image_subset_iff_funcset subset_iff)

lemma (in monoid) hom_imp_img_monoid: contributor ‹Paulo Emílio de Vilhena›
  assumes "h  hom G H"
  shows "monoid (H  carrier := h ` (carrier G), one := h 𝟭G)" (is "monoid ?h_img")
proof (rule monoidI)
  show "𝟭?h_img carrier ?h_img"
    by auto
next
  fix x y z assume "x  carrier ?h_img" "y  carrier ?h_img" "z  carrier ?h_img"
  then obtain g1 g2 g3
    where g1: "g1  carrier G" "x = h g1"
      and g2: "g2  carrier G" "y = h g2"
      and g3: "g3  carrier G" "z = h g3"
    using image_iff[where ?f = h and ?A = "carrier G"] by auto
  have aux_lemma:
    "a b.  a  carrier G; b  carrier G   h a (?h_img)h b = h (a  b)"
    using assms unfolding hom_def by auto

  show "x (?h_img)𝟭(?h_img)= x"
    using aux_lemma[OF g1(1) one_closed] g1(2) r_one[OF g1(1)] by simp

  show "𝟭(?h_img)(?h_img)x = x"
    using aux_lemma[OF one_closed g1(1)] g1(2) l_one[OF g1(1)] by simp

  have "x (?h_img)y = h (g1  g2)"
    using aux_lemma g1 g2 by auto
  thus "x (?h_img)y  carrier ?h_img"
    using g1(1) g2(1) by simp

  have "(x (?h_img)y) (?h_img)z = h ((g1  g2)  g3)"
    using aux_lemma g1 g2 g3 by auto
  also have " ... = h (g1  (g2  g3))"
    using m_assoc[OF g1(1) g2(1) g3(1)] by simp
  also have " ... = x (?h_img)(y (?h_img)z)"
    using aux_lemma g1 g2 g3 by auto
  finally show "(x (?h_img)y) (?h_img)z = x (?h_img)(y (?h_img)z)" .
qed

lemma (in group) hom_imp_img_group: contributor ‹Paulo Emílio de Vilhena›
  assumes "h  hom G H"
  shows "group (H  carrier := h ` (carrier G), one := h 𝟭G)" (is "group ?h_img")
proof -
  interpret monoid ?h_img
    using hom_imp_img_monoid[OF assms] .

  show ?thesis
  proof (unfold_locales)
    show "carrier ?h_img  Units ?h_img"
    proof (auto simp add: Units_def)
      have aux_lemma:
        "g1 g2.  g1  carrier G; g2  carrier G   h g1 Hh g2 = h (g1  g2)"
        using assms unfolding hom_def by auto

      fix g1 assume g1: "g1  carrier G"
      thus "g2  carrier G. (h g2) H(h g1) = h 𝟭  (h g1) H(h g2) = h 𝟭"
        using aux_lemma[OF g1 inv_closed[OF g1]]
              aux_lemma[OF inv_closed[OF g1] g1]
              inv_closed by auto
    qed
  qed
qed

lemma (in group) iso_imp_group: contributor ‹Paulo Emílio de Vilhena›
  assumes "G  H" and "monoid H"
  shows "group H"
proof -
  obtain φ where phi: "φ  iso G H" "inv_into (carrier G) φ  iso H G"
    using iso_set_sym assms unfolding is_iso_def by blast
  define ψ where psi_def: "ψ = inv_into (carrier G) φ"

  have surj: "φ ` (carrier G) = (carrier H)" "ψ ` (carrier H) = (carrier G)"
   and inj: "inj_on φ (carrier G)" "inj_on ψ (carrier H)"
   and phi_hom: "g1 g2.  g1  carrier G; g2  carrier G   φ (g1  g2) = (φ g1) H(φ g2)"
   and psi_hom: "h1 h2.  h1  carrier H; h2  carrier H   ψ (h1 Hh2) = (ψ h1)  (ψ h2)"
   using phi psi_def unfolding iso_def bij_betw_def hom_def by auto

  have phi_one: "φ 𝟭 = 𝟭H⇙"
  proof -
    have "(φ 𝟭) H𝟭H= (φ 𝟭) H(φ 𝟭)"
      by (metis assms(2) image_eqI monoid.r_one one_closed phi_hom r_one surj(1))
    thus ?thesis
      by (metis (no_types, opaque_lifting) Units_eq Units_one_closed assms(2) f_inv_into_f imageI
          monoid.l_one monoid.one_closed phi_hom psi_def r_one surj)
  qed

  have "carrier H  Units H"
  proof
    fix h assume h: "h  carrier H"
    let ?inv_h = "φ (inv (ψ h))"
    have "h H?inv_h = φ (ψ h) H?inv_h"
      by (simp add: f_inv_into_f h psi_def surj(1))
    also have " ... = φ ((ψ h)  inv (ψ h))"
      by (metis h imageI inv_closed phi_hom surj(2))
    also have " ... = φ 𝟭"
      by (simp add: h inv_into_into psi_def surj(1))
    finally have 1: "h H?inv_h = 𝟭H⇙"
      using phi_one by simp

    have "?inv_h Hh = ?inv_h Hφ (ψ h)"
      by (simp add: f_inv_into_f h psi_def surj(1))
    also have " ... = φ (inv (ψ h)  (ψ h))"
      by (metis h imageI inv_closed phi_hom surj(2))
    also have " ... = φ 𝟭"
      by (simp add: h inv_into_into psi_def surj(1))
    finally have 2: "?inv_h Hh = 𝟭H⇙"
      using phi_one by simp

    thus "h  Units H" unfolding Units_def using 1 2 h surj by fastforce
  qed
  thus ?thesis unfolding group_def group_axioms_def using assms(2) by simp
qed

corollary (in group) iso_imp_img_group: contributor ‹Paulo Emílio de Vilhena›
  assumes "h  iso G H"
  shows "group (H  one := h 𝟭 )"
proof -
  let ?h_img = "H  carrier := h ` (carrier G), one := h 𝟭 "
  have "h  iso G ?h_img"
    using assms unfolding iso_def hom_def bij_betw_def by auto
  hence "G  ?h_img"
    unfolding is_iso_def by auto
  hence "group ?h_img"
    using iso_imp_group[of ?h_img] hom_imp_img_monoid[of h H] assms unfolding iso_def by simp
  moreover have "carrier H = carrier ?h_img"
    using assms unfolding iso_def bij_betw_def by simp
  hence "H  one := h 𝟭  = ?h_img"
    by simp
  ultimately show ?thesis by simp
qed

subsubsection ‹HOL Light's concept of an isomorphism pair›

definition group_isomorphisms
  where
 "group_isomorphisms G H f g 
        f  hom G H  g  hom H G 
        (x  carrier G. g(f x) = x) 
        (y  carrier H. f(g y) = y)"

lemma group_isomorphisms_sym: "group_isomorphisms G H f g  group_isomorphisms H G g f"
  by (auto simp: group_isomorphisms_def)

lemma group_isomorphisms_imp_iso: "group_isomorphisms G H f g  f  iso G H"
by (auto simp: iso_def inj_on_def image_def group_isomorphisms_def hom_def bij_betw_def Pi_iff, metis+)

lemma (in group) iso_iff_group_isomorphisms:
  "f  iso G H  (g. group_isomorphisms G H f g)"
proof safe
  show "g. group_isomorphisms G H f g" if "f  Group.iso G H"
    unfolding group_isomorphisms_def
  proof (intro exI conjI)
    let ?g = "inv_into (carrier G) f"
    show "xcarrier G. ?g (f x) = x"
      by (metis (no_types, lifting) Group.iso_def bij_betw_inv_into_left mem_Collect_eq that)
    show "ycarrier H. f (?g y) = y"
      by (metis (no_types, lifting) Group.iso_def bij_betw_inv_into_right mem_Collect_eq that)
  qed (use Group.iso_def iso_set_sym that in blast+)
next
  fix g
  assume "group_isomorphisms G H f g"
  then show "f  Group.iso G H"
    by (auto simp: iso_def group_isomorphisms_def hom_in_carrier intro: bij_betw_byWitness)
qed


subsubsection ‹Involving direct products›

lemma DirProd_commute_iso_set:
  shows "(λ(x,y). (y,x))  iso (G ×× H) (H ×× G)"
  by (auto simp add: iso_def hom_def inj_on_def bij_betw_def)

corollary DirProd_commute_iso :
"(G ×× H)  (H ×× G)"
  using DirProd_commute_iso_set unfolding is_iso_def by blast

lemma DirProd_assoc_iso_set:
  shows "(λ(x,y,z). (x,(y,z)))  iso (G ×× H ×× I) (G ×× (H ×× I))"
by (auto simp add: iso_def hom_def inj_on_def bij_betw_def)

lemma (in group) DirProd_iso_set_trans:
  assumes "g  iso G G2"
    and "h  iso H I"
  shows "(λ(x,y). (g x, h y))  iso (G ×× H) (G2 ×× I)"
proof-
  have "(λ(x,y). (g x, h y))  hom (G ×× H) (G2 ×× I)"
    using assms unfolding iso_def hom_def by auto
  moreover have " inj_on (λ(x,y). (g x, h y)) (carrier (G ×× H))"
    using assms unfolding iso_def DirProd_def bij_betw_def inj_on_def by auto
  moreover have "(λ(x, y). (g x, h y)) ` carrier (G ×× H) = carrier (G2 ×× I)"
    using assms unfolding iso_def bij_betw_def image_def DirProd_def by fastforce
  ultimately show "(λ(x,y). (g x, h y))  iso (G ×× H) (G2 ×× I)"
    unfolding iso_def bij_betw_def by auto
qed

corollary (in group) DirProd_iso_trans :
  assumes "G  G2" and "H  I"
  shows "G ×× H  G2 ×× I"
  using DirProd_iso_set_trans assms unfolding is_iso_def by blast

lemma hom_pairwise: "f  hom G (DirProd H K)  (fst  f)  hom G H  (snd  f)  hom G K"
  apply (auto simp: hom_def mult_DirProd' dest: Pi_mem)
   apply (metis Product_Type.mem_Times_iff comp_eq_dest_lhs funcset_mem)
  by (metis mult_DirProd prod.collapse)

lemma hom_paired:
   "(λx. (f x,g x))  hom G (DirProd H K)  f  hom G H  g  hom G K"
  by (simp add: hom_pairwise o_def)

lemma hom_paired2:
  assumes "group G" "group H"
  shows "(λ(x,y). (f x,g y))  hom (DirProd G H) (DirProd G' H')  f  hom G G'  g  hom H H'"
  using assms
  by (fastforce simp: hom_def Pi_def dest!: group.is_monoid)

lemma iso_paired2:
  assumes "group G" "group H"
  shows "(λ(x,y). (f x,g y))  iso (DirProd G H) (DirProd G' H')  f  iso G G'  g  iso H H'"
  using assms
  by (fastforce simp add: iso_def inj_on_def bij_betw_def hom_paired2 image_paired_Times
      times_eq_iff group_def monoid.carrier_not_empty)

lemma hom_of_fst:
  assumes "group H"
  shows "(f  fst)  hom (DirProd G H) K  f  hom G K"
proof -
  interpret group H
    by (rule assms)
  show ?thesis
    using one_closed by (auto simp: hom_def Pi_def)
qed

lemma hom_of_snd:
  assumes "group G"
  shows "(f  snd)  hom (DirProd G H) K  f  hom H K"
proof -
  interpret group G
    by (rule assms)
  show ?thesis
    using one_closed by (auto simp: hom_def Pi_def)
qed


subsection‹The locale for a homomorphism between two groups›

text‹Basis for homomorphism proofs: we assume two groups termG and
  termH, with a homomorphism termh between them›
locale group_hom = G?: group G + H?: group H for G (structure) and H (structure) +
  fixes h
  assumes homh [simp]: "h  hom G H"

declare group_hom.homh [simp]

lemma (in group_hom) hom_mult [simp]:
  "[| x  carrier G; y  carrier G |] ==> h (x Gy) = h x Hh y"
proof -
  assume "x  carrier G" "y  carrier G"
  with homh [unfolded hom_def] show ?thesis by simp
qed

lemma (in group_hom) hom_closed [simp]:
  "x  carrier G ==> h x  carrier H"
proof -
  assume "x  carrier G"
  with homh [unfolded hom_def] show ?thesis by auto
qed

lemma (in group_hom) one_closed: "h 𝟭  carrier H"
  by simp

lemma (in group_hom) hom_one [simp]: "h 𝟭 = 𝟭H⇙"
proof -
  have "h 𝟭 H𝟭H= h 𝟭 Hh 𝟭"
    by (simp add: hom_mult [symmetric] del: hom_mult)
  then show ?thesis
    by (metis H.Units_eq H.Units_l_cancel H.one_closed local.one_closed)
qed

lemma hom_one:
  assumes "h  hom G H" "group G" "group H"
  shows "h (one G) = one H"
  apply (rule group_hom.hom_one)
  by (simp add: assms group_hom_axioms_def group_hom_def)

lemma hom_mult:
  "h  hom G H; x  carrier G; y  carrier G  h (x Gy) = h x Hh y"
  by (auto simp: hom_def)

lemma (in group_hom) inv_closed [simp]:
  "x  carrier G ==> h (inv x)  carrier H"
  by simp

lemma (in group_hom) hom_inv [simp]:
  assumes "x  carrier G" shows "h (inv x) = invH(h x)"
proof -
  have "h x Hh (inv x) = h x HinvH(h x)" 
    using assms by (simp flip: hom_mult)
  with assms show ?thesis by (simp del: H.r_inv H.Units_r_inv)
qed

lemma (in group) int_pow_is_hom: contributor ‹Joachim Breitner›
  "x  carrier G  (([^]) x)  hom  carrier = UNIV, mult = (+), one = 0::int  G "
  unfolding hom_def by (simp add: int_pow_mult)

lemma (in group_hom) img_is_subgroup: "subgroup (h ` (carrier G)) H" contributor ‹Paulo Emílio de Vilhena›
  apply (rule subgroupI)
  apply (auto simp add: image_subsetI)
  apply (metis G.inv_closed hom_inv image_iff)
  by (metis G.monoid_axioms hom_mult image_eqI monoid.m_closed)

lemma (in group_hom) subgroup_img_is_subgroup: contributor ‹Paulo Emílio de Vilhena›
  assumes "subgroup I G"
  shows "subgroup (h ` I) H"
proof -
  have "h  hom (G  carrier := I ) H"
    using G.subgroupE[OF assms] subgroup.mem_carrier[OF assms] homh
    unfolding hom_def by auto
  hence "group_hom (G  carrier := I ) H h"
    using subgroup.subgroup_is_group[OF assms G.is_group] is_group
    unfolding group_hom_def group_hom_axioms_def by simp
  thus ?thesis
    using group_hom.img_is_subgroup[of "G  carrier := I " H h] by simp
qed

lemma (in subgroup) iso_subgroup: contributor ‹Jakob von Raumer›
  assumes "group G" "group F"
  assumes "φ  iso G F"
  shows "subgroup (φ ` H) F"
  by (metis assms Group.iso_iff group_hom.intro group_hom_axioms_def group_hom.subgroup_img_is_subgroup subgroup_axioms)

lemma (in group_hom) induced_group_hom: contributor ‹Paulo Emílio de Vilhena›
  assumes "subgroup I G"
  shows "group_hom (G  carrier := I ) (H  carrier := h ` I ) h"
proof -
  have "h  hom (G  carrier := I ) (H  carrier := h ` I )"
    using homh subgroup.mem_carrier[OF assms] unfolding hom_def by auto
  thus ?thesis
    unfolding group_hom_def group_hom_axioms_def
    using subgroup.subgroup_is_group[OF assms G.is_group]
          subgroup.subgroup_is_group[OF subgroup_img_is_subgroup[OF assms] is_group] by simp
qed

text ‹An isomorphism restricts to an isomorphism of subgroups.›

lemma iso_restrict:
  assumes "φ  iso G F"
  assumes groups: "group G" "group F"
  assumes HG: "subgroup H G"
  shows "(restrict φ H)  iso (Gcarrier := H) (Fcarrier := φ ` H)"
proof -
  have "x y. x  H; y  H; x Gy  H  φ (x Gy) = φ x Fφ y"
    by (meson assms hom_mult iso_imp_homomorphism subgroup.mem_carrier)
  moreover have "x y. x  H; y  H; x Gy  H  φ x Fφ y = undefined"
    by (simp add: HG subgroup.m_closed)
  moreover have "x y. x  H; y  H; φ x = φ y  x = y"
    by (smt (verit, ccfv_SIG) assms group.iso_iff_group_isomorphisms group_isomorphisms_def subgroup.mem_carrier)
  ultimately show ?thesis
    by (auto simp: iso_def hom_def bij_betw_def inj_on_def)
qed

lemma (in group) canonical_inj_is_hom: contributor ‹Paulo Emílio de Vilhena›
  assumes "subgroup H G"
  shows "group_hom (G  carrier := H ) G id"
  unfolding group_hom_def group_hom_axioms_def hom_def
  using subgroup.subgroup_is_group[OF assms is_group]
        is_group subgroup.subset[OF assms] by auto

lemma (in group_hom) hom_nat_pow: contributor ‹Paulo Emílio de Vilhena›
  "x  carrier G  h (x [^] (n :: nat)) = (h x) [^]Hn"
  by (induction n) auto

lemma (in group_hom) hom_int_pow: contributor ‹Paulo Emílio de Vilhena›
  "x  carrier G  h (x [^] (n :: int)) = (h x) [^]Hn"
  using hom_nat_pow by (simp add: int_pow_def2)

lemma hom_nat_pow:
  "h  hom G H; x  carrier G; group G; group H  h (x [^]G(n :: nat)) = (h x) [^]Hn"
  by (simp add: group_hom.hom_nat_pow group_hom_axioms_def group_hom_def)

lemma hom_int_pow:
  "h  hom G H; x  carrier G; group G; group H  h (x [^]G(n :: int)) = (h x) [^]Hn"
  by (simp add: group_hom.hom_int_pow group_hom_axioms.intro group_hom_def)

subsection ‹Commutative Structures›

text ‹
  Naming convention: multiplicative structures that are commutative
  are called \emph{commutative}, additive structures are called
  \emph{Abelian}.
›

locale comm_monoid = monoid +
  assumes m_comm: "x  carrier G; y  carrier G  x  y = y  x"

lemma (in comm_monoid) m_lcomm:
  "x  carrier G; y  carrier G; z  carrier G 
   x  (y  z) = y  (x  z)"
proof -
  assume xyz: "x  carrier G"  "y  carrier G"  "z  carrier G"
  from xyz have "x  (y  z) = (x  y)  z" by (simp add: m_assoc)
  also from xyz have "... = (y  x)  z" by (simp add: m_comm)
  also from xyz have "... = y  (x  z)" by (simp add: m_assoc)
  finally show ?thesis .
qed

lemmas (in comm_monoid) m_ac = m_assoc m_comm m_lcomm

lemma comm_monoidI:
  fixes G (structure)
  assumes m_closed:
      "!!x y. [| x  carrier G; y  carrier G |] ==> x  y  carrier G"
    and one_closed: "𝟭  carrier G"
    and m_assoc:
      "!!x y z. [| x  carrier G; y  carrier G; z  carrier G |] ==>
      (x  y)  z = x  (y  z)"
    and l_one: "!!x. x  carrier G ==> 𝟭  x = x"
    and m_comm:
      "!!x y. [| x  carrier G; y  carrier G |] ==> x  y = y  x"
  shows "comm_monoid G"
  using l_one
    by (auto intro!: comm_monoid.intro comm_monoid_axioms.intro monoid.intro
             intro: assms simp: m_closed one_closed m_comm)

lemma (in monoid) monoid_comm_monoidI:
  assumes m_comm:
      "!!x y. [| x  carrier G; y  carrier G |] ==> x  y = y  x"
  shows "comm_monoid G"
  by (rule comm_monoidI)