Theory During_Execution
section ‹During-execution security›
theory During_Execution
imports Bisim Language_Semantics begin
subsection ‹Basic setting›
locale PL_Indis = PL tval aval
for
tval :: "'test ⇒ 'state ⇒ bool" and
aval :: "'atom ⇒ 'state ⇒ 'state"
+
fixes
indis :: "'state rel"
assumes
equiv_indis: "equiv UNIV indis"
context PL_Indis
begin
abbreviation indisAbbrev (infix ‹≈› 50)
where "s1 ≈ s2 ≡ (s1,s2) ∈ indis"
definition indisE (infix ‹≈e› 50) where
"se1 ≈e se2 ≡
case (se1,se2) of
(Inl s1, Inl s2) ⇒ s1 ≈ s2
|(Inr err1, Inr err2) ⇒ err1 = err2"
lemma refl_indis: "refl indis"
and trans_indis: "trans indis"
and sym_indis: "sym indis"
using equiv_indis unfolding equiv_def by auto
lemma indis_refl[intro]: "s ≈ s"
using refl_indis unfolding refl_on_def by simp
lemma indis_trans: "⟦s ≈ s'; s' ≈ s''⟧ ⟹ s ≈ s''"
using trans_indis unfolding trans_def by blast
lemma indis_sym: "s ≈ s' ⟹ s' ≈ s"
using sym_indis unfolding sym_def by blast
subsection‹Compatibility and discreetness›
definition compatTst where
"compatTst tst ≡
∀ s t. s ≈ t ⟶ tval tst s = tval tst t"
definition compatAtm where
"compatAtm atm ≡
∀ s t. s ≈ t ⟶ aval atm s ≈ aval atm t"
definition presAtm where
"presAtm atm ≡
∀ s. s ≈ aval atm s"
coinductive discr where
intro:
"⟦⋀ s c' s'. (c,s) →c (c',s') ⟹ s ≈ s' ∧ discr c';
⋀ s s'. (c,s) →t s' ⟹ s ≈ s'⟧
⟹ discr c"
lemma presAtm_compatAtm[simp]:
assumes "presAtm atm"
shows "compatAtm atm"
using assms unfolding compatAtm_def
by (metis presAtm_def indis_sym indis_trans)
text‹Coinduction for discreetness:›
lemma discr_coind:
assumes *: "phi c" and
**: "⋀ c s c' s'. ⟦phi c; (c,s) →c (c',s')⟧ ⟹ s ≈ s' ∧ (phi c' ∨ discr c')" and
***: "⋀ c s s'. ⟦phi c; (c,s) →t s'⟧ ⟹ s ≈ s'"
shows "discr c"
using * apply - apply(erule discr.coinduct) using ** *** by auto
lemma discr_raw_coind:
assumes *: "phi c" and
**: "⋀ c s c' s'. ⟦phi c; (c,s) →c (c',s')⟧ ⟹ s ≈ s' ∧ phi c'" and
***: "⋀ c s s'. ⟦phi c; (c,s) →t s'⟧ ⟹ s ≈ s'"
shows "discr c"
using * apply - apply(erule discr_coind) using ** *** by blast+
text‹Discreetness versus transition:›
lemma discr_transC:
assumes *: "discr c" and **: "(c,s) →c (c',s')"
shows "discr c'"
using * apply - apply(erule discr.cases) using ** by blast
lemma discr_MtransC:
assumes "discr c" and "(c,s) →*c (c',s')"
shows "discr c'"
proof-
have "(c,s) →*c (c',s') ⟹ discr c ⟶ discr c'"
apply(erule MtransC_induct2) using discr_transC by blast+
thus ?thesis using assms by blast
qed
lemma discr_transC_indis:
assumes *: "discr c" and **: "(c,s) →c (c',s')"
shows "s ≈ s'"
using * apply - apply(erule discr.cases) using ** by blast
lemma discr_MtransC_indis:
assumes "discr c" and "(c,s) →*c (c',s')"
shows "s ≈ s'"
proof-
have "(c,s) →*c (c',s') ⟹ discr c ⟶ s ≈ s'"
apply(erule MtransC_induct2)
apply (metis indis_refl)
by (metis discr.cases discr_MtransC indis_trans)
thus ?thesis using assms by blast
qed
lemma discr_transT:
assumes *: "discr c" and **: "(c,s) →t s'"
shows "s ≈ s'"
using * apply - apply(erule discr.cases) using ** by blast
lemma discr_MtransT:
assumes *: "discr c" and **: "(c,s) →*t s'"
shows "s ≈ s'"
proof-
obtain d' t' where
cs: "(c,s) →*c (d',t')" and d't': "(d',t') →t s'"
using ** by(rule MtransT_invert2)
hence "s ≈ t'" using * discr_MtransC_indis by blast
moreover
{have "discr d'" using cs * discr_MtransC by blast
hence "t' ≈ s'" using d't' discr_transT by blast
}
ultimately show ?thesis using indis_trans by blast
qed
subsection‹Terminating-interctive discreetness›
coinductive discr0 where
intro:
"⟦⋀ s c' s'. ⟦mustT c s; (c,s) →c (c',s')⟧ ⟹ s ≈ s' ∧ discr0 c';
⋀ s s'. ⟦mustT c s; (c,s) →t s'⟧ ⟹ s ≈ s'⟧
⟹ discr0 c"
text‹Coinduction for 0-discreetness:›
lemma discr0_coind[consumes 1, case_names Cont Term, induct pred: discr0]:
assumes *: "phi c" and
**: "⋀ c s c' s'.
⟦mustT c s; phi c; (c,s) →c (c',s')⟧ ⟹
s ≈ s' ∧ (phi c' ∨ discr0 c')" and
***: "⋀ c s s'. ⟦mustT c s; phi c; (c,s) →t s'⟧ ⟹ s ≈ s'"
shows "discr0 c"
using * apply - apply(erule discr0.coinduct) using ** *** by auto
lemma discr0_raw_coind[consumes 1, case_names Cont Term]:
assumes *: "phi c" and
**: "⋀ c s c' s'. ⟦mustT c s; phi c; (c,s) →c (c',s')⟧ ⟹ s ≈ s' ∧ phi c'" and
***: "⋀ c s s'. ⟦mustT c s; phi c; (c,s) →t s'⟧ ⟹ s ≈ s'"
shows "discr0 c"
using * apply - apply(erule discr0_coind) using ** *** by blast+
text‹0-Discreetness versus transition:›
lemma discr0_transC:
assumes *: "discr0 c" and **: "mustT c s" "(c,s) →c (c',s')"
shows "discr0 c'"
using * apply - apply(erule discr0.cases) using ** by blast
lemma discr0_MtransC:
assumes "discr0 c" and "mustT c s" "(c,s) →*c (c',s')"
shows "discr0 c'"
proof-
have "(c,s) →*c (c',s') ⟹ mustT c s ∧ discr0 c ⟶ discr0 c'"
apply(erule MtransC_induct2) using discr0_transC mustT_MtransC
by blast+
thus ?thesis using assms by blast
qed
lemma discr0_transC_indis:
assumes *: "discr0 c" and **: "mustT c s" "(c,s) →c (c',s')"
shows "s ≈ s'"
using * apply - apply(erule discr0.cases) using ** by blast
lemma discr0_MtransC_indis:
assumes "discr0 c" and "mustT c s" "(c,s) →*c (c',s')"
shows "s ≈ s'"
proof-
have "(c,s) →*c (c',s') ⟹ mustT c s ∧ discr0 c ⟶ s ≈ s'"
apply(erule MtransC_induct2)
apply (metis indis_refl)
by (metis discr0_MtransC discr0_transC_indis indis_trans mustT_MtransC)
thus ?thesis using assms by blast
qed
lemma discr0_transT:
assumes *: "discr0 c" and **: "mustT c s" "(c,s) →t s'"
shows "s ≈ s'"
using * apply - apply(erule discr0.cases) using ** by blast
lemma discr0_MtransT:
assumes *: "discr0 c" and ***: "mustT c s" and **: "(c,s) →*t s'"
shows "s ≈ s'"
proof-
obtain d' t' where
cs: "(c,s) →*c (d',t')" and d't': "(d',t') →t s'"
using ** by(rule MtransT_invert2)
hence "s ≈ t'" using * discr0_MtransC_indis *** by blast
moreover
{have "discr0 d'" using cs * discr0_MtransC *** by blast
hence "t' ≈ s'"
using *** by (metis mustT_MtransC cs d't' discr0_transT)
}
ultimately show ?thesis using indis_trans by blast
qed
lemma discr_discr0[simp]: "discr c ⟹ discr0 c"
by (induct rule: discr0_coind)
(metis discr_transC discr_transC_indis discr_transT)+
subsection‹Self-isomorphism›
coinductive siso where
intro:
"⟦⋀ s c' s'. (c,s) →c (c',s') ⟹ siso c';
⋀ s t c' s'. ⟦s ≈ t; (c,s) →c (c',s')⟧ ⟹ ∃ t'. s' ≈ t' ∧ (c,t) →c (c',t');
⋀ s t s'. ⟦s ≈ t; (c,s) →t s'⟧ ⟹ ∃ t'. s' ≈ t' ∧ (c,t) →t t'⟧
⟹ siso c"
text‹Coinduction for self-isomorphism:›
lemma siso_coind:
assumes *: "phi c" and
**: "⋀ c s c' s'. ⟦phi c; (c,s) →c (c',s')⟧ ⟹ phi c' ∨ siso c'" and
***: "⋀ c s t c' s'. ⟦phi c; s ≈ t; (c,s) →c (c',s')⟧ ⟹ ∃ t'. s' ≈ t' ∧ (c,t) →c (c',t')" and
****: "⋀ c s t s'. ⟦phi c; s ≈ t; (c,s) →t s'⟧ ⟹ ∃ t'. s' ≈ t' ∧ (c,t) →t t'"
shows "siso c"
using * apply - apply(erule siso.coinduct) using ** *** **** by auto
lemma siso_raw_coind:
assumes *: "phi c" and
**: "⋀ c s c' s'. ⟦phi c; (c,s) →c (c',s')⟧ ⟹ phi c'" and
***: "⋀ c s t c' s'. ⟦phi c; s ≈ t; (c,s) →c (c',s')⟧ ⟹ ∃ t'. s' ≈ t' ∧ (c,t) →c (c',t')" and
****: "⋀ c s t s'. ⟦phi c; s ≈ t; (c,s) →t s'⟧ ⟹ ∃ t'. s' ≈ t' ∧ (c,t) →t t'"
shows "siso c"
using * apply - apply(erule siso_coind) using ** *** **** by blast+
text‹Self-Isomorphism versus transition:›
lemma siso_transC:
assumes *: "siso c" and **: "(c,s) →c (c',s')"
shows "siso c'"
using * apply - apply(erule siso.cases) using ** by blast
lemma siso_MtransC:
assumes "siso c" and "(c,s) →*c (c',s')"
shows "siso c'"
proof-
have "(c,s) →*c (c',s') ⟹ siso c ⟶ siso c'"
apply(erule MtransC_induct2) using siso_transC by blast+
thus ?thesis using assms by blast
qed
lemma siso_transC_indis:
assumes *: "siso c" and **: "(c,s) →c (c',s')" and ***: "s ≈ t"
shows "∃ t'. s' ≈ t' ∧ (c,t) →c (c',t')"
using * apply - apply(erule siso.cases) using ** *** by blast
lemma siso_transT:
assumes *: "siso c" and **: "(c,s) →t s'" and ***: "s ≈ t"
shows "∃ t'. s' ≈ t' ∧ (c,t) →t t'"
using * apply - apply(erule siso.cases) using ** *** by blast
subsection‹MustT-interactive self-isomorphism›
coinductive siso0 where
intro:
"⟦⋀ s c' s'. ⟦mustT c s; (c,s) →c (c',s')⟧ ⟹ siso0 c';
⋀ s t c' s'.
⟦mustT c s; mustT c t; s ≈ t; (c,s) →c (c',s')⟧ ⟹
∃ t'. s' ≈ t' ∧ (c,t) →c (c',t');
⋀ s t s'.
⟦mustT c s; mustT c t; s ≈ t; (c,s) →t s'⟧ ⟹
∃ t'. s' ≈ t' ∧ (c,t) →t t'⟧
⟹ siso0 c"
text‹Coinduction for self-isomorphism:›
lemma siso0_coind[consumes 1, case_names Indef Cont Term, induct pred: discr0]:
assumes *: "phi c" and
**: "⋀ c s c' s'. ⟦phi c; mustT c s; (c,s) →c (c',s')⟧ ⟹ phi c' ∨ siso0 c'" and
***: "⋀ c s t c' s'.
⟦phi c; mustT c s; mustT c t; s ≈ t; (c,s) →c (c',s')⟧ ⟹
∃ t'. s' ≈ t' ∧ (c,t) →c (c',t')" and
****: "⋀ c s t s'.
⟦mustT c s; mustT c t; phi c; s ≈ t; (c,s) →t s'⟧ ⟹
∃ t'. s' ≈ t' ∧ (c,t) →t t'"
shows "siso0 c"
using * apply - apply(erule siso0.coinduct) using ** *** **** by auto
lemma siso0_raw_coind[consumes 1, case_names Indef Cont Term]:
assumes *: "phi c" and
**: "⋀ c s c' s'. ⟦phi c; mustT c s; (c,s) →c (c',s')⟧ ⟹ phi c'" and
***: "⋀ c s t c' s'.
⟦phi c; mustT c s; mustT c t; s ≈ t; (c,s) →c (c',s')⟧ ⟹
∃ t'. s' ≈ t' ∧ (c,t) →c (c',t')" and
****: "⋀ c s t s'.
⟦phi c; mustT c s; mustT c t; s ≈ t; (c,s) →t s'⟧ ⟹
∃ t'. s' ≈ t' ∧ (c,t) →t t'"
shows "siso0 c"
using * apply - apply(erule siso0_coind) using ** *** **** by blast+
text‹Self-Isomorphism versus transition:›
lemma siso0_transC:
assumes *: "siso0 c" and **: "mustT c s" "(c,s) →c (c',s')"
shows "siso0 c'"
using * apply - apply(erule siso0.cases) using ** by blast
lemma siso0_MtransC:
assumes "siso0 c" and "mustT c s" and "(c,s) →*c (c',s')"
shows "siso0 c'"
proof-
have "(c,s) →*c (c',s') ⟹ mustT c s ∧ siso0 c ⟶ siso0 c'"
apply(erule MtransC_induct2) using siso0_transC mustT_MtransC siso0_transC
by blast+
thus ?thesis using assms by blast
qed
lemma siso0_transC_indis:
assumes *: "siso0 c"
and **: "mustT c s" "mustT c t" "(c,s) →c (c',s')"
and ***: "s ≈ t"
shows "∃ t'. s' ≈ t' ∧ (c,t) →c (c',t')"
using * apply - apply(erule siso0.cases) using ** *** by blast
lemma siso0_transT:
assumes *: "siso0 c"
and **: "mustT c s" "mustT c t" "(c,s) →t s'"
and ***: "s ≈ t"
shows "∃ t'. s' ≈ t' ∧ (c,t) →t t'"
using * apply - apply(erule siso0.cases) using ** *** by blast
subsection‹Notions of bisimilarity›
text‹Matchers:›
definition matchC_C where
"matchC_C theta c d ≡
∀ s t c' s'.
s ≈ t ∧ (c,s) →c (c',s')
⟶
(∃ d' t'. (d,t) →c (d',t') ∧ s' ≈ t' ∧ (c',d') ∈ theta)"
definition matchC_ZOC where
"matchC_ZOC theta c d ≡
∀ s t c' s'.
s ≈ t ∧ (c,s) →c (c',s')
⟶
(s' ≈ t ∧ (c',d) ∈ theta)
∨
(∃ d' t'. (d,t) →c (d',t') ∧ s' ≈ t' ∧ (c',d') ∈ theta)"
definition matchC_ZO where
"matchC_ZO theta c d ≡
∀ s t c' s'.
s ≈ t ∧ (c,s) →c (c',s')
⟶
(s' ≈ t ∧ (c',d) ∈ theta)
∨
(∃ d' t'. (d,t) →c (d',t') ∧ s' ≈ t' ∧ (c',d') ∈ theta)
∨
(∃ t'. (d,t) →t t' ∧ s' ≈ t' ∧ discr c')"
definition matchT_T where
"matchT_T c d ≡
∀ s t s'.
s ≈ t ∧ (c,s) →t s'
⟶
(∃ t'. (d,t) →t t' ∧ s' ≈ t')"
definition matchT_ZO where
"matchT_ZO c d ≡
∀ s t s'.
s ≈ t ∧ (c,s) →t s'
⟶
(s' ≈ t ∧ discr d)
∨
(∃ d' t'. (d,t) →c (d',t') ∧ s' ≈ t' ∧ discr d')
∨
(∃ t'. (d,t) →t t' ∧ s' ≈ t')"
definition matchC_MC where
"matchC_MC theta c d ≡
∀ s t c' s'.
s ≈ t ∧ (c,s) →c (c',s')
⟶
(∃ d' t'. (d,t) →*c (d',t') ∧ s' ≈ t' ∧ (c',d') ∈ theta)"
definition matchC_TMC where
"matchC_TMC theta c d ≡
∀ s t c' s'.
mustT c s ∧ mustT d t ∧ s ≈ t ∧ (c,s) →c (c',s')
⟶
(∃ d' t'. (d,t) →*c (d',t') ∧ s' ≈ t' ∧ (c',d') ∈ theta)"
definition matchC_M where
"matchC_M theta c d ≡
∀ s t c' s'.
s ≈ t ∧ (c,s) →c (c',s')
⟶
(∃ d' t'. (d,t) →*c (d',t') ∧ s' ≈ t' ∧ (c',d') ∈ theta)
∨
(∃ t'. (d,t) →*t t' ∧ s' ≈ t' ∧ discr c')"
definition matchT_MT where
"matchT_MT c d ≡
∀ s t s'.
s ≈ t ∧ (c,s) →t s'
⟶
(∃ t'. (d,t) →*t t' ∧ s' ≈ t')"
definition matchT_TMT where
"matchT_TMT c d ≡
∀ s t s'.
mustT c s ∧ mustT d t ∧ s ≈ t ∧ (c,s) →t s'
⟶
(∃ t'. (d,t) →*t t' ∧ s' ≈ t')"
definition matchT_M where
"matchT_M c d ≡
∀ s t s'.
s ≈ t ∧ (c,s) →t s'
⟶
(∃ d' t'. (d,t) →*c (d',t') ∧ s' ≈ t' ∧ discr d')
∨
(∃ t'. (d,t) →*t t' ∧ s' ≈ t')"
lemmas match_defs =
matchC_C_def
matchC_ZOC_def matchC_ZO_def
matchT_T_def matchT_ZO_def
matchC_MC_def matchC_M_def
matchT_MT_def matchT_M_def
matchC_TMC_def matchT_TMT_def
lemma matchC_C_def2:
"matchC_C theta d c =
(∀ s t d' t'.
s ≈ t ∧ (d,t) →c (d',t')
⟶
(∃ c' s'. (c,s) →c (c',s') ∧ s' ≈ t' ∧ (d',c') ∈ theta))"
unfolding matchC_C_def using indis_sym by blast
lemma matchC_ZOC_def2:
"matchC_ZOC theta d c=
(∀ s t d' t'.
s ≈ t ∧ (d,t) →c (d',t')
⟶
(s ≈ t' ∧ (d',c) ∈ theta)
∨
(∃ c' s'. (c,s) →c (c',s') ∧ s' ≈ t' ∧ (d',c') ∈ theta))"
unfolding matchC_ZOC_def using indis_sym by blast
lemma matchC_ZO_def2:
"matchC_ZO theta d c =
(∀ s t d' t'.
s ≈ t ∧ (d,t) →c (d',t')
⟶
(s ≈ t' ∧ (d',c) ∈ theta)
∨
(∃ c' s'. (c,s) →c (c',s') ∧ s' ≈ t' ∧ (d',c') ∈ theta)
∨
(∃ s'. (c,s) →t s' ∧ s' ≈ t' ∧ discr d'))"
unfolding matchC_ZO_def using indis_sym by blast
lemma matchT_T_def2:
"matchT_T d c =
(∀ s t t'.
s ≈ t ∧ (d,t) →t t'
⟶
(∃ s'. (c,s) →t s' ∧ s' ≈ t'))"
unfolding matchT_T_def using indis_sym by blast
lemma matchT_ZO_def2:
"matchT_ZO d c =
(∀ s t t'.
s ≈ t ∧ (d,t) →t t'
⟶
(s ≈ t' ∧ discr c)
∨
(∃ c' s'. (c,s) →c (c',s') ∧ s' ≈ t' ∧ discr c')
∨
(∃ s'. (c,s) →t s' ∧ s' ≈ t'))"
unfolding matchT_ZO_def using indis_sym by blast
lemma matchC_MC_def2:
"matchC_MC theta d c=
(∀ s t d' t'.
s ≈ t ∧ (d,t) →c (d',t')
⟶
(∃ c' s'. (c,s) →*c (c',s') ∧ s' ≈ t' ∧ (d',c') ∈ theta))"
unfolding matchC_MC_def using indis_sym by blast
lemma matchC_TMC_def2:
"matchC_TMC theta d c=
(∀ s t d' t'.
mustT c s ∧ mustT d t ∧ s ≈ t ∧ (d,t) →c (d',t')
⟶
(∃ c' s'. (c,s) →*c (c',s') ∧ s' ≈ t' ∧ (d',c') ∈ theta))"
unfolding matchC_TMC_def using indis_sym by blast
lemma matchC_M_def2:
"matchC_M theta d c =
(∀ s t d' t'.
s ≈ t ∧ (d,t) →c (d',t')
⟶
(∃ c' s'. (c,s) →*c (c',s') ∧ s' ≈ t' ∧ (d',c') ∈ theta)
∨
(∃ s'. (c,s) →*t s' ∧ s' ≈ t' ∧ discr d'))"
unfolding matchC_M_def using indis_sym by blast
lemma matchT_MT_def2:
"matchT_MT d c =
(∀ s t t'.
s ≈ t ∧ (d,t) →t t'
⟶
(∃ s'. (c,s) →*t s' ∧ s' ≈ t'))"
unfolding matchT_MT_def using indis_sym by blast
lemma matchT_TMT_def2:
"matchT_TMT d c =
(∀ s t t'.
mustT c s ∧ mustT d t ∧ s ≈ t ∧ (d,t) →t t'
⟶
(∃ s'. (c,s) →*t s' ∧ s' ≈ t'))"
unfolding matchT_TMT_def using indis_sym by blast
lemma matchT_M_def2:
"matchT_M d c =
(∀ s t t'.
s ≈ t ∧ (d,t) →t t'
⟶
(∃ c' s'. (c,s) →*c (c',s') ∧ s' ≈ t' ∧ discr c')
∨
(∃ s'. (c,s) →*t s' ∧ s' ≈ t'))"
unfolding matchT_M_def using indis_sym by blast
text‹Retracts:›
definition Sretr where
"Sretr theta ≡
{(c,d).
matchC_C theta c d ∧
matchT_T c d}"
definition ZOretr where
"ZOretr theta ≡
{(c,d).
matchC_ZO theta c d ∧
matchT_ZO c d}"
definition ZOretrT where
"ZOretrT theta ≡
{(c,d).
matchC_ZOC theta c d ∧
matchT_T c d}"
definition Wretr where
"Wretr theta ≡
{(c,d).
matchC_M theta c d ∧
matchT_M c d }"
definition WretrT where
"WretrT theta ≡
{(c,d).
matchC_MC theta c d ∧
matchT_MT c d}"
definition RetrT where
"RetrT theta ≡
{(c,d).
matchC_TMC theta c d ∧
matchT_TMT c d}"
lemmas Retr_defs =
Sretr_def
ZOretr_def ZOretrT_def
Wretr_def WretrT_def
RetrT_def
text‹The associated bisimilarity relations:›
definition Sbis where "Sbis ≡ bis Sretr"
definition ZObis where "ZObis ≡ bis ZOretr"
definition ZObisT where "ZObisT ≡ bis ZOretrT"
definition Wbis where "Wbis ≡ bis Wretr"
definition WbisT where "WbisT ≡ bis WretrT"
definition BisT where "BisT ≡ bis RetrT"
lemmas bis_defs =
Sbis_def
ZObis_def ZObisT_def
Wbis_def WbisT_def
BisT_def
abbreviation Sbis_abbrev (infix ‹≈s› 55) where "c1 ≈s c2 ≡ (c1,c2) ∈ Sbis"
abbreviation ZObis_abbrev (infix ‹≈01› 55) where "c1 ≈01 c2 ≡ (c1,c2) ∈ ZObis"
abbreviation ZObisT_abbrev (infix ‹≈01T› 55) where "c1 ≈01T c2 ≡ (c1,c2) ∈ ZObisT"
abbreviation Wbis_abbrev (infix ‹≈w› 55) where "c1 ≈w c2 ≡ (c1,c2) ∈ Wbis"
abbreviation WbisT_abbrev (infix ‹≈wT› 55) where "c1 ≈wT c2 ≡ (c1,c2) ∈ WbisT"
abbreviation BisT_abbrev (infix ‹≈T› 55) where "c1 ≈T c2 ≡ (c1,c2) ∈ BisT"
lemma mono_Retr:
"mono Sretr"
"mono ZOretr" "mono ZOretrT"
"mono Wretr" "mono WretrT"
"mono RetrT"
unfolding mono_def Retr_defs match_defs by blast+
lemma Sbis_prefix:
"Sbis ⊆ Sretr Sbis"
unfolding Sbis_def using mono_Retr bis_prefix by blast
lemma Sbis_sym: "sym Sbis"
unfolding Sbis_def using mono_Retr sym_bis by blast
lemma Sbis_Sym: "c ≈s d ⟹ d ≈s c"
using Sbis_sym unfolding sym_def by blast
lemma Sbis_converse:
"((c,d) ∈ theta^-1 ∪ Sbis) = ((d,c) ∈ theta ∪ Sbis)"
by (metis Sbis_sym converseI converse_Un converse_converse sym_conv_converse_eq)
lemma
Sbis_matchC_C: "⋀ s t. c ≈s d ⟹ matchC_C Sbis c d"
and
Sbis_matchT_T: "⋀ c d. c ≈s d ⟹ matchT_T c d"
using Sbis_prefix unfolding Sretr_def by auto
lemmas Sbis_step = Sbis_matchC_C Sbis_matchT_T
lemma
Sbis_matchC_C_rev: "⋀ s t. s ≈s t ⟹ matchC_C Sbis t s"
and
Sbis_matchT_T_rev: "⋀ s t. s ≈s t ⟹ matchT_T t s"
using Sbis_step Sbis_sym unfolding sym_def by blast+
lemmas Sbis_step_rev = Sbis_matchC_C_rev Sbis_matchT_T_rev
lemma Sbis_coind:
assumes "sym theta" and "theta ⊆ Sretr (theta ∪ Sbis)"
shows "theta ⊆ Sbis"
using assms mono_Retr bis_coind
unfolding Sbis_def by blast
lemma Sbis_raw_coind:
assumes "sym theta" and "theta ⊆ Sretr theta"
shows "theta ⊆ Sbis"
using assms mono_Retr bis_raw_coind
unfolding Sbis_def by blast
lemma Sbis_coind2:
assumes "theta ⊆ Sretr (theta ∪ Sbis)" and
"theta ^-1 ⊆ Sretr ((theta ^-1) ∪ Sbis)"
shows "theta ⊆ Sbis"
using assms mono_Retr bis_coind2
unfolding Sbis_def by blast
lemma Sbis_raw_coind2:
assumes "theta ⊆ Sretr theta" and
"theta ^-1 ⊆ Sretr (theta ^-1)"
shows "theta ⊆ Sbis"
using assms mono_Retr bis_raw_coind2
unfolding Sbis_def by blast
lemma ZObis_prefix:
"ZObis ⊆ ZOretr ZObis"
unfolding ZObis_def using mono_Retr bis_prefix by blast
lemma ZObis_sym: "sym ZObis"
unfolding ZObis_def using mono_Retr sym_bis by blast
lemma ZObis_converse:
"((c,d) ∈ theta^-1 ∪ ZObis) = ((d,c) ∈ theta ∪ ZObis)"
by (metis ZObis_sym converseI converse_Un converse_converse sym_conv_converse_eq)
lemma ZObis_Sym: "s ≈01 t ⟹ t ≈01 s"
using ZObis_sym unfolding sym_def by blast
lemma
ZObis_matchC_ZO: "⋀ s t. s ≈01 t ⟹ matchC_ZO ZObis s t"
and
ZObis_matchT_ZO: "⋀ s t. s ≈01 t ⟹ matchT_ZO s t"
using ZObis_prefix unfolding ZOretr_def by auto
lemmas ZObis_step = ZObis_matchC_ZO ZObis_matchT_ZO
lemma
ZObis_matchC_ZO_rev: "⋀ s t. s ≈01 t ⟹ matchC_ZO ZObis t s"
and
ZObis_matchT_ZO_rev: "⋀ s t. s ≈01 t ⟹ matchT_ZO t s"
using ZObis_step ZObis_sym unfolding sym_def by blast+
lemmas ZObis_step_rev = ZObis_matchC_ZO_rev ZObis_matchT_ZO_rev
lemma ZObis_coind:
assumes "sym theta" and "theta ⊆ ZOretr (theta ∪ ZObis)"
shows "theta ⊆ ZObis"
using assms mono_Retr bis_coind
unfolding ZObis_def by blast
lemma ZObis_raw_coind:
assumes "sym theta" and "theta ⊆ ZOretr theta"
shows "theta ⊆ ZObis"
using assms mono_Retr bis_raw_coind
unfolding ZObis_def by blast
lemma ZObis_coind2:
assumes "theta ⊆ ZOretr (theta ∪ ZObis)" and
"theta ^-1 ⊆ ZOretr ((theta ^-1) ∪ ZObis)"
shows "theta ⊆ ZObis"
using assms mono_Retr bis_coind2
unfolding ZObis_def by blast
lemma ZObis_raw_coind2:
assumes "theta ⊆ ZOretr theta" and
"theta ^-1 ⊆ ZOretr (theta ^-1)"
shows "theta ⊆ ZObis"
using assms mono_Retr bis_raw_coind2
unfolding ZObis_def by blast
lemma ZObisT_prefix:
"ZObisT ⊆ ZOretrT ZObisT"
unfolding ZObisT_def using mono_Retr bis_prefix by blast
lemma ZObisT_sym: "sym ZObisT"
unfolding ZObisT_def using mono_Retr sym_bis by blast
lemma ZObisT_Sym: "s ≈01T t ⟹ t ≈01T s"
using ZObisT_sym unfolding sym_def by blast
lemma ZObisT_converse:
"((c,d) ∈ theta^-1 ∪ ZObisT) = ((d,c) ∈ theta ∪ ZObisT)"
by (metis ZObisT_sym converseI converse_Un converse_converse sym_conv_converse_eq)
lemma
ZObisT_matchC_ZOC: "⋀ s t. s ≈01T t ⟹ matchC_ZOC ZObisT s t"
and
ZObisT_matchT_T: "⋀ s t. s ≈01T t ⟹ matchT_T s t"
using ZObisT_prefix unfolding ZOretrT_def by auto
lemmas ZObisT_step = ZObisT_matchC_ZOC ZObisT_matchT_T
lemma
ZObisT_matchC_ZOC_rev: "⋀ s t. s ≈01T t ⟹ matchC_ZOC ZObisT t s"
and
ZObisT_matchT_T_rev: "⋀ s t. s ≈01T t ⟹ matchT_T t s"
using ZObisT_step ZObisT_sym unfolding sym_def by blast+
lemmas ZObisT_step_rev = ZObisT_matchC_ZOC_rev ZObisT_matchT_T_rev
lemma ZObisT_coind:
assumes "sym theta" and "theta ⊆ ZOretrT (theta ∪ ZObisT)"
shows "theta ⊆ ZObisT"
using assms mono_Retr bis_coind
unfolding ZObisT_def by blast
lemma ZObisT_raw_coind:
assumes "sym theta" and "theta ⊆ ZOretrT theta"
shows "theta ⊆ ZObisT"
using assms mono_Retr bis_raw_coind
unfolding ZObisT_def by blast
lemma ZObisT_coind2:
assumes "theta ⊆ ZOretrT (theta ∪ ZObisT)" and
"theta ^-1 ⊆ ZOretrT ((theta ^-1) ∪ ZObisT)"
shows "theta ⊆ ZObisT"
using assms mono_Retr bis_coind2
unfolding ZObisT_def by blast
lemma ZObisT_raw_coind2:
assumes "theta ⊆ ZOretrT theta" and
"theta ^-1 ⊆ ZOretrT (theta ^-1)"
shows "theta ⊆ ZObisT"
using assms mono_Retr bis_raw_coind2
unfolding ZObisT_def by blast
lemma Wbis_prefix:
"Wbis ⊆ Wretr Wbis"
unfolding Wbis_def using mono_Retr bis_prefix by blast
lemma Wbis_sym: "sym Wbis"
unfolding Wbis_def using mono_Retr sym_bis by blast
lemma Wbis_converse:
"((c,d) ∈ theta^-1 ∪ Wbis) = ((d,c) ∈ theta ∪ Wbis)"
by (metis Wbis_sym converseI converse_Un converse_converse sym_conv_converse_eq)
lemma Wbis_Sym: "c ≈w d ⟹ d ≈w c"
using Wbis_sym unfolding sym_def by blast
lemma
Wbis_matchC_M: "⋀ c d. c ≈w d ⟹ matchC_M Wbis c d"
and
Wbis_matchT_M: "⋀ c d. c ≈w d ⟹ matchT_M c d"
using Wbis_prefix unfolding Wretr_def by auto
lemmas Wbis_step = Wbis_matchC_M Wbis_matchT_M
lemma
Wbis_matchC_M_rev: "⋀ s t. s ≈w t ⟹ matchC_M Wbis t s"
and
Wbis_matchT_M_rev: "⋀ s t. s ≈w t ⟹ matchT_M t s"
using Wbis_step Wbis_sym unfolding sym_def by blast+
lemmas Wbis_step_rev = Wbis_matchC_M_rev Wbis_matchT_M_rev
lemma Wbis_coind:
assumes "sym theta" and "theta ⊆ Wretr (theta ∪ Wbis)"
shows "theta ⊆ Wbis"
using assms mono_Retr bis_coind
unfolding Wbis_def by blast
lemma Wbis_raw_coind:
assumes "sym theta" and "theta ⊆ Wretr theta"
shows "theta ⊆ Wbis"
using assms mono_Retr bis_raw_coind
unfolding Wbis_def by blast
lemma Wbis_coind2:
assumes "theta ⊆ Wretr (theta ∪ Wbis)" and
"theta ^-1 ⊆ Wretr ((theta ^-1) ∪ Wbis)"
shows "theta ⊆ Wbis"
using assms mono_Retr bis_coind2
unfolding Wbis_def by blast
lemma Wbis_raw_coind2:
assumes "theta ⊆ Wretr theta" and
"theta ^-1 ⊆ Wretr (theta ^-1)"
shows "theta ⊆ Wbis"
using assms mono_Retr bis_raw_coind2
unfolding Wbis_def by blast
lemma WbisT_prefix:
"WbisT ⊆ WretrT WbisT"
unfolding WbisT_def using mono_Retr bis_prefix by blast
lemma WbisT_sym: "sym WbisT"
unfolding WbisT_def using mono_Retr sym_bis by blast
lemma WbisT_Sym: "c ≈wT d ⟹ d ≈wT c"
using WbisT_sym unfolding sym_def by blast
lemma WbisT_converse:
"((c,d) ∈ theta^-1 ∪ WbisT) = ((d,c) ∈ theta ∪ WbisT)"
by (metis WbisT_sym converseI converse_Un converse_converse sym_conv_converse_eq)
lemma
WbisT_matchC_MC: "⋀ c d. c ≈wT d ⟹ matchC_MC WbisT c d"
and
WbisT_matchT_MT: "⋀ c d. c ≈wT d ⟹ matchT_MT c d"
using WbisT_prefix unfolding WretrT_def by auto
lemmas WbisT_step = WbisT_matchC_MC WbisT_matchT_MT
lemma
WbisT_matchC_MC_rev: "⋀ s t. s ≈wT t ⟹ matchC_MC WbisT t s"
and
WbisT_matchT_MT_rev: "⋀ s t. s ≈wT t ⟹ matchT_MT t s"
using WbisT_step WbisT_sym unfolding sym_def by blast+
lemmas WbisT_step_rev = WbisT_matchC_MC_rev WbisT_matchT_MT_rev
lemma WbisT_coind:
assumes "sym theta" and "theta ⊆ WretrT (theta ∪ WbisT)"
shows "theta ⊆ WbisT"
using assms mono_Retr bis_coind
unfolding WbisT_def by blast
lemma WbisT_raw_coind:
assumes "sym theta" and "theta ⊆ WretrT theta"
shows "theta ⊆ WbisT"
using assms mono_Retr bis_raw_coind
unfolding WbisT_def by blast
lemma WbisT_coind2:
assumes "theta ⊆ WretrT (theta ∪ WbisT)" and
"theta ^-1 ⊆ WretrT ((theta ^-1) ∪ WbisT)"
shows "theta ⊆ WbisT"
using assms mono_Retr bis_coind2
unfolding WbisT_def by blast
lemma WbisT_raw_coind2:
assumes "theta ⊆ WretrT theta" and
"theta ^-1 ⊆ WretrT (theta ^-1)"
shows "theta ⊆ WbisT"
using assms mono_Retr bis_raw_coind2
unfolding WbisT_def by blast
lemma WbisT_coinduct[consumes 1, case_names sym cont termi]:
assumes φ: "φ c d"
assumes S: "⋀c d. φ c d ⟹ φ d c"
assumes C: "⋀c s d t c' s'.
⟦ φ c d ; s ≈ t ; (c, s) →c (c', s') ⟧ ⟹ ∃d' t'. (d, t) →*c (d', t') ∧ s' ≈ t' ∧ (φ c' d' ∨ c' ≈wT d')"
assumes T: "⋀c s d t s'.
⟦ φ c d ; s ≈ t ; (c, s) →t s' ⟧ ⟹ ∃t'. (d, t) →*t t' ∧ s' ≈ t'"
shows "c ≈wT d"
proof -
let ?θ = "{(c, d). φ c d}"
have "sym ?θ" by (auto intro!: symI S)
moreover
have "?θ ⊆ WretrT (?θ ∪ WbisT)"
using C T by (auto simp: WretrT_def matchC_MC_def matchT_MT_def)
ultimately have "?θ ⊆ WbisT"
using WbisT_coind by auto
with φ show ?thesis
by auto
qed
lemma BisT_prefix:
"BisT ⊆ RetrT BisT"
unfolding BisT_def using mono_Retr bis_prefix by blast
lemma BisT_sym: "sym BisT"
unfolding BisT_def using mono_Retr sym_bis by blast
lemma BisT_Sym: "c ≈T d ⟹ d ≈T c"
using BisT_sym unfolding sym_def by blast
lemma BisT_converse:
"((c,d) ∈ theta^-1 ∪ BisT) = ((d,c) ∈ theta ∪ BisT)"
by (metis BisT_sym converseI converse_Un converse_converse sym_conv_converse_eq)
lemma
BisT_matchC_TMC: "⋀ c d. c ≈T d ⟹ matchC_TMC BisT c d"
and
BisT_matchT_TMT: "⋀ c d. c ≈T d ⟹ matchT_TMT c d"
using BisT_prefix unfolding RetrT_def by auto
lemmas BisT_step = BisT_matchC_TMC BisT_matchT_TMT
lemma
BisT_matchC_TMC_rev: "⋀ c d. c ≈T d ⟹ matchC_TMC BisT d c"
and
BisT_matchT_TMT_rev: "⋀ c d. c ≈T d ⟹ matchT_TMT d c"
using BisT_step BisT_sym unfolding sym_def by blast+
lemmas BisT_step_rev = BisT_matchC_TMC_rev BisT_matchT_TMT_rev
lemma BisT_coind:
assumes "sym theta" and "theta ⊆ RetrT (theta ∪ BisT)"
shows "theta ⊆ BisT"
using assms mono_Retr bis_coind
unfolding BisT_def by blast
lemma BisT_raw_coind:
assumes "sym theta" and "theta ⊆ RetrT theta"
shows "theta ⊆ BisT"
using assms mono_Retr bis_raw_coind
unfolding BisT_def by blast
lemma BisT_coind2:
assumes "theta ⊆ RetrT (theta ∪ BisT)" and
"theta ^-1 ⊆ RetrT ((theta ^-1) ∪ BisT)"
shows "theta ⊆ BisT"
using assms mono_Retr bis_coind2
unfolding BisT_def by blast
lemma BisT_raw_coind2:
assumes "theta ⊆ RetrT theta" and
"theta ^-1 ⊆ RetrT (theta ^-1)"
shows "theta ⊆ BisT"
using assms mono_Retr bis_raw_coind2
unfolding BisT_def by blast
text‹Inclusions between bisimilarities:›
lemma match_imp[simp]:
"⋀ theta c1 c2. matchC_C theta c1 c2 ⟹ matchC_ZOC theta c1 c2"
"⋀ theta c1 c2. matchC_ZOC theta c1 c2 ⟹ matchC_ZO theta c1 c2"
"⋀ theta c1 c2. matchC_ZOC theta c1 c2 ⟹ matchC_MC theta c1 c2"
"⋀ theta c1 c2. matchC_ZO theta c1 c2 ⟹ matchC_M theta c1 c2"
"⋀ theta c1 c2. matchC_MC theta c1 c2 ⟹ matchC_M theta c1 c2"
"⋀ c1 c2. matchT_T c1 c2 ⟹ matchT_ZO c1 c2"
"⋀ c1 c2. matchT_T c1 c2 ⟹ matchT_MT c1 c2"
"⋀ c1 c2. matchT_ZO c1 c2 ⟹ matchT_M c1 c2"
"⋀ c1 c2. matchT_MT c1 c2 ⟹ matchT_M c1 c2"
"⋀ theta c1 c2. matchC_MC theta c1 c2 ⟹ matchC_TMC theta c1 c2"
"⋀ theta c1 c2. matchT_MT c1 c2 ⟹ matchT_TMT c1 c2"
unfolding match_defs apply(tactic ‹mauto_no_simp_tac @{context}›)
apply fastforce apply fastforce
apply (metis MtransC_Refl transC_MtransC)
by force+
lemma Retr_incl:
"⋀theta. Sretr theta ⊆ ZOretrT theta"
"⋀theta. ZOretrT theta ⊆ ZOretr theta"
"⋀theta. ZOretrT theta ⊆ WretrT theta"
"⋀theta. ZOretr theta ⊆ Wretr theta"
"⋀theta. WretrT theta ⊆ Wretr theta"
"⋀theta. WretrT theta ⊆ RetrT theta"
unfolding Retr_defs by auto
lemma bis_incl:
"Sbis ⊆ ZObisT"
"ZObisT ⊆ ZObis"
"ZObisT ⊆ WbisT"
"ZObis ⊆ Wbis"
"WbisT ⊆ Wbis"
"WbisT ⊆ BisT"
unfolding bis_defs
using Retr_incl mono_bis mono_Retr by blast+
lemma bis_imp[simp]:
"⋀ c1 c2. c1 ≈s c2 ⟹ c1 ≈01T c2"
"⋀ c1 c2. c1 ≈01T c2 ⟹ c1 ≈01 c2"
"⋀ c1 c2. c1 ≈01T c2 ⟹ c1 ≈wT c2"
"⋀ c1 c2. c1 ≈01 c2 ⟹ c1 ≈w c2"
"⋀ c1 c2. c1 ≈wT c2 ⟹ c1 ≈w c2"
"⋀ c1 c2. c1 ≈wT c2 ⟹ c1 ≈T c2"
using bis_incl rev_subsetD by auto
text‹Self-isomorphism implies strong bisimilarity:›
lemma siso_Sbis[simp]:
assumes "siso c"
shows "c ≈s c"
proof-
let ?theta = "{(c,c) | c . siso c}"
have "?theta ⊆ Sbis"
proof(rule Sbis_raw_coind)
show "sym ?theta" unfolding sym_def by blast
next
show "?theta ⊆ Sretr ?theta"
proof clarify
fix c assume c: "siso c"
show "(c, c) ∈ Sretr ?theta"
unfolding Sretr_def proof (clarify, intro conjI)
show "matchC_C ?theta c c"
unfolding matchC_C_def apply simp
by (metis c siso_transC siso_transC_indis)
next
show "matchT_T c c"
unfolding matchT_T_def
by (metis c siso_transT)
qed
qed
qed
thus ?thesis using assms by blast
qed
text‹0-Self-isomorphism implies weak T 0-bisimilarity:›
lemma siso0_Sbis[simp]:
assumes "siso0 c"
shows "c ≈T c"
proof-
let ?theta = "{(c,c) | c . siso0 c}"
have "?theta ⊆ BisT"
proof(rule BisT_raw_coind)
show "sym ?theta" unfolding sym_def by blast
next
show "?theta ⊆ RetrT ?theta"
proof clarify
fix c assume c: "siso0 c"
show "(c, c) ∈ RetrT ?theta"
unfolding RetrT_def proof (clarify, intro conjI)
show "matchC_TMC ?theta c c"
unfolding matchC_TMC_def apply simp
by (metis c siso0_transC siso0_transC_indis transC_MtransC)
next
show "matchT_TMT c c"
unfolding matchC_TMC_def
by (metis c matchT_TMT_def siso0_transT transT_MtransT)
qed
qed
qed
thus ?thesis using assms by blast
qed
end
end