Theory Positions

   
theory Positions
  imports Lexer LexicalVals
begin

section ‹An alternative definition for POSIX values by Okui \& Suzuki›

section ‹Positions in Values›

fun 
  at :: "'a val  nat list  'a val"
where
  "at v [] = v"
| "at (Left v) (0#ps)= at v ps"
| "at (Right v) (Suc 0#ps)= at v ps"
| "at (Seq v1 v2) (0#ps)= at v1 ps"
| "at (Seq v1 v2) (Suc 0#ps)= at v2 ps"
| "at (Stars vs) (n#ps)= at (nth vs n) ps"



fun Pos :: "'a val  (nat list) set"
where
  "Pos (Void) = {[]}"
| "Pos (Atm c) = {[]}"
| "Pos (Left v) = {[]}  {0#ps | ps. ps  Pos v}"
| "Pos (Right v) = {[]}  {1#ps | ps. ps  Pos v}"
| "Pos (Seq v1 v2) = {[]}  {0#ps | ps. ps  Pos v1}  {1#ps | ps. ps  Pos v2}" 
| "Pos (Stars []) = {[]}"
| "Pos (Stars (v#vs)) = {[]}  {0#ps | ps. ps  Pos v}  {Suc n#ps | n ps. n#ps  Pos (Stars vs)}"


lemma Pos_stars:
  "Pos (Stars vs) = {[]}  (n < length vs. {n#ps | ps. ps  Pos (vs ! n)})"
apply(induct vs)
apply(auto simp add: insert_ident less_Suc_eq_0_disj)
done

lemma Pos_empty:
  shows "[]  Pos v"
by (induct v rule: Pos.induct)(auto)


abbreviation
  "intlen vs  int (length vs)"


definition pflat_len :: "'a val  nat list => int"
where
  "pflat_len v p  (if p  Pos v then intlen (flat (at v p)) else -1)"

lemma pflat_len_simps:
  shows "pflat_len (Seq v1 v2) (0#p) = pflat_len v1 p"
  and   "pflat_len (Seq v1 v2) (Suc 0#p) = pflat_len v2 p"
  and   "pflat_len (Left v) (0#p) = pflat_len v p"
  and   "pflat_len (Left v) (Suc 0#p) = -1"
  and   "pflat_len (Right v) (Suc 0#p) = pflat_len v p"
  and   "pflat_len (Right v) (0#p) = -1"
  and   "pflat_len (Stars (v#vs)) (Suc n#p) = pflat_len (Stars vs) (n#p)"
  and   "pflat_len (Stars (v#vs)) (0#p) = pflat_len v p"
  and   "pflat_len v [] = intlen (flat v)"
by (auto simp add: pflat_len_def Pos_empty)

lemma pflat_len_Stars_simps:
  assumes "n < length vs"
  shows "pflat_len (Stars vs) (n#p) = pflat_len (vs!n) p"
using assms
apply(induct vs arbitrary: n p)
apply(auto simp add: less_Suc_eq_0_disj pflat_len_simps)
done

lemma pflat_len_outside:
  assumes "p  Pos v1"
  shows "pflat_len v1 p = -1 "
using assms by (simp add: pflat_len_def)



section ‹Orderings›


definition prefix_list:: "'a list  'a list  bool" (‹_ ⊑pre _› [60,59] 60)
where
  "ps1 ⊑pre ps2  ps'. ps1 @ps' = ps2"

definition sprefix_list:: "'a list  'a list  bool" (‹_ ⊏spre _› [60,59] 60)
where
  "ps1 ⊏spre ps2  ps1 ⊑pre ps2  ps1  ps2"

inductive lex_list :: "nat list  nat list  bool" (‹_ ⊏lex _› [60,59] 60)
where
  "[] ⊏lex (p#ps)"
| "ps1 ⊏lex ps2  (p#ps1) ⊏lex (p#ps2)"
| "p1 < p2  (p1#ps1) ⊏lex (p2#ps2)"

lemma lex_irrfl:
  fixes ps1 ps2 :: "nat list"
  assumes "ps1 ⊏lex ps2"
  shows "ps1  ps2"
using assms
by(induct rule: lex_list.induct)(auto)

lemma lex_simps [simp]:
  fixes xs ys :: "nat list"
  shows "[] ⊏lex ys  ys  []"
  and   "xs ⊏lex []  False"
  and   "(x # xs) ⊏lex (y # ys)  (x < y  (x = y  xs ⊏lex ys))"
by (auto simp add: neq_Nil_conv elim: lex_list.cases intro: lex_list.intros)

lemma lex_trans:
  fixes ps1 ps2 ps3 :: "nat list"
  assumes "ps1 ⊏lex ps2" "ps2 ⊏lex ps3"
  shows "ps1 ⊏lex ps3"
using assms
by (induct arbitrary: ps3 rule: lex_list.induct)
   (auto elim: lex_list.cases)


lemma lex_trichotomous:
  fixes p q :: "nat list"
  shows "p = q  p ⊏lex q  q ⊏lex p"
apply(induct p arbitrary: q)
apply(auto elim: lex_list.cases)
apply(case_tac q)
apply(auto)
done




section ‹POSIX Ordering of Values According to Okui \& Suzuki›


definition PosOrd:: "'a val  nat list  'a val  bool" (‹_ ⊏val _ _› [60, 60, 59] 60)
where
  "v1 ⊏val p v2  pflat_len v1 p > pflat_len v2 p 
                   (q  Pos v1  Pos v2. q ⊏lex p  pflat_len v1 q = pflat_len v2 q)"

lemma PosOrd_def2:
  shows "v1 ⊏val p v2  
         pflat_len v1 p > pflat_len v2 p 
         (q  Pos v1. q ⊏lex p  pflat_len v1 q = pflat_len v2 q) 
         (q  Pos v2. q ⊏lex p  pflat_len v1 q = pflat_len v2 q)"
unfolding PosOrd_def
apply(auto)
done


definition PosOrd_ex:: "'a val  'a val  bool" (‹_ :⊏val _› [60, 59] 60)
where
  "v1 :⊏val v2  p. v1 ⊏val p v2"

definition PosOrd_ex_eq:: "'a val  'a val  bool" (‹_ :⊑val _› [60, 59] 60)
where
  "v1 :⊑val v2  v1 :⊏val v2  v1 = v2"


lemma PosOrd_trans:
  assumes "v1 :⊏val v2" "v2 :⊏val v3"
  shows "v1 :⊏val v3"
proof -
  from assms obtain p p'
    where as: "v1 ⊏val p v2" "v2 ⊏val p' v3" unfolding PosOrd_ex_def by blast
  then have pos: "p  Pos v1" "p'  Pos v2" unfolding PosOrd_def pflat_len_def
    by (smt not_int_zless_negative)+
  have "p = p'  p ⊏lex p'  p' ⊏lex p"
    by (rule lex_trichotomous)
  moreover
    { assume "p = p'"
      with as have "v1 ⊏val p v3" unfolding PosOrd_def pflat_len_def
      by (smt Un_iff)
      then have " v1 :⊏val v3" unfolding PosOrd_ex_def by blast
    }   
  moreover
    { assume "p ⊏lex p'"
      with as have "v1 ⊏val p v3" unfolding PosOrd_def pflat_len_def
      by (smt Un_iff lex_trans)
      then have " v1 :⊏val v3" unfolding PosOrd_ex_def by blast
    }
  moreover
    { assume "p' ⊏lex p"
      with as have "v1 ⊏val p' v3" unfolding PosOrd_def
      by (smt Un_iff lex_trans pflat_len_def)
      then have "v1 :⊏val v3" unfolding PosOrd_ex_def by blast
    }
  ultimately show "v1 :⊏val v3" by blast
qed

lemma PosOrd_irrefl:
  assumes "v :⊏val v"
  shows "False"
using assms unfolding PosOrd_ex_def PosOrd_def
by auto

lemma PosOrd_assym:
  assumes "v1 :⊏val v2" 
  shows "¬(v2 :⊏val v1)"
using assms
using PosOrd_irrefl PosOrd_trans by blast 

(*
  :⊑val and :⊏val are partial orders.
*)

lemma PosOrd_ordering:
  shows "ordering (λv1 v2. v1 :⊑val v2) (λ v1 v2. v1 :⊏val v2)"
unfolding ordering_def PosOrd_ex_eq_def
apply(auto)
using PosOrd_trans partial_preordering_def apply blast
using PosOrd_assym ordering_axioms_def by blast

lemma PosOrd_order:
  shows "class.order (λv1 v2. v1 :⊑val v2) (λ v1 v2. v1 :⊏val v2)"
  using PosOrd_ordering
  apply(simp add: class.order_def class.preorder_def class.order_axioms_def)
  by (smt (verit) PosOrd_ex_eq_def PosOrd_irrefl PosOrd_trans)


lemma PosOrd_ex_eq2:
  shows "v1 :⊏val v2  (v1 :⊑val v2  v1  v2)"
  using PosOrd_ordering
  using PosOrd_ex_eq_def PosOrd_irrefl by blast 

lemma PosOrdeq_trans:
  assumes "v1 :⊑val v2" "v2 :⊑val v3"
  shows "v1 :⊑val v3"
using assms PosOrd_ordering 
  unfolding ordering_def
  by (metis partial_preordering.trans)

lemma PosOrdeq_antisym:
  assumes "v1 :⊑val v2" "v2 :⊑val v1"
  shows "v1 = v2"
using assms PosOrd_ordering 
  by (metis ordering.eq_iff)

lemma PosOrdeq_refl:
  shows "v :⊑val v" 
unfolding PosOrd_ex_eq_def
by auto


lemma PosOrd_shorterE:
  assumes "v1 :⊏val v2" 
  shows "length (flat v2)  length (flat v1)"
using assms unfolding PosOrd_ex_def PosOrd_def
apply(auto)
apply(case_tac p)
apply(simp add: pflat_len_simps)
apply(drule_tac x="[]" in bspec)
apply(simp add: Pos_empty)
apply(simp add: pflat_len_simps)
done

lemma PosOrd_shorterI:
  assumes "length (flat v2) < length (flat v1)"
  shows "v1 :⊏val v2"
unfolding PosOrd_ex_def PosOrd_def pflat_len_def 
using assms Pos_empty by force

lemma PosOrd_spreI:
  assumes "flat v' ⊏spre flat v"
  shows "v :⊏val v'" 
using assms
apply(rule_tac PosOrd_shorterI)
unfolding prefix_list_def sprefix_list_def
by (metis append_Nil2 append_eq_conv_conj drop_all le_less_linear)

lemma pflat_len_inside:
  assumes "pflat_len v2 p < pflat_len v1 p"
  shows "p  Pos v1"
using assms 
unfolding pflat_len_def
by (auto split: if_splits)


lemma PosOrd_Left_Right:
  assumes "flat v1 = flat v2"
  shows "Left v1 :⊏val Right v2" 
unfolding PosOrd_ex_def
apply(rule_tac x="[0]" in exI)
apply(auto simp add: PosOrd_def pflat_len_simps assms)
done

lemma PosOrd_LeftE:
  assumes "Left v1 :⊏val Left v2" "flat v1 = flat v2"
  shows "v1 :⊏val v2"
using assms
unfolding PosOrd_ex_def PosOrd_def2
apply(auto simp add: pflat_len_simps)
apply(frule pflat_len_inside)
apply(auto simp add: pflat_len_simps)
by (metis lex_simps(3) pflat_len_simps(3))

lemma PosOrd_LeftI:
  assumes "v1 :⊏val v2" "flat v1 = flat v2"
  shows  "Left v1 :⊏val Left v2"
using assms
unfolding PosOrd_ex_def PosOrd_def2
apply(auto simp add: pflat_len_simps)
by (metis less_numeral_extra(3) lex_simps(3) pflat_len_simps(3))

lemma PosOrd_Left_eq:
  assumes "flat v1 = flat v2"
  shows "Left v1 :⊏val Left v2  v1 :⊏val v2" 
using assms PosOrd_LeftE PosOrd_LeftI
by blast


lemma PosOrd_RightE:
  assumes "Right v1 :⊏val Right v2" "flat v1 = flat v2"
  shows "v1 :⊏val v2"
using assms
unfolding PosOrd_ex_def PosOrd_def2
apply(auto simp add: pflat_len_simps)
apply(frule pflat_len_inside)
apply(auto simp add: pflat_len_simps)
by (metis lex_simps(3) pflat_len_simps(5))

lemma PosOrd_RightI:
  assumes "v1 :⊏val v2" "flat v1 = flat v2"
  shows  "Right v1 :⊏val Right v2"
using assms
unfolding PosOrd_ex_def PosOrd_def2
apply(auto simp add: pflat_len_simps)
by (metis lex_simps(3) nat_neq_iff pflat_len_simps(5))


lemma PosOrd_Right_eq:
  assumes "flat v1 = flat v2"
  shows "Right v1 :⊏val Right v2  v1 :⊏val v2" 
using assms PosOrd_RightE PosOrd_RightI
by blast


lemma PosOrd_SeqI1:
  assumes "v1 :⊏val w1" "flat (Seq v1 v2) = flat (Seq w1 w2)"
  shows "Seq v1 v2 :⊏val Seq w1 w2" 
using assms(1)
apply(subst (asm) PosOrd_ex_def)
apply(subst (asm) PosOrd_def)
apply(clarify)
apply(subst PosOrd_ex_def)
apply(rule_tac x="0#p" in exI)
apply(subst PosOrd_def)
apply(rule conjI)
apply(simp add: pflat_len_simps)
apply(rule ballI)
apply(rule impI)
apply(simp only: Pos.simps)
apply(auto)[1]
apply(simp add: pflat_len_simps)
apply(auto simp add: pflat_len_simps)
using assms(2)
apply(simp)
apply(metis length_append of_nat_add)
done

lemma PosOrd_SeqI2:
  assumes "v2 :⊏val w2" "flat v2 = flat w2"
  shows "Seq v v2 :⊏val Seq v w2" 
using assms(1)
apply(subst (asm) PosOrd_ex_def)
apply(subst (asm) PosOrd_def)
apply(clarify)
apply(subst PosOrd_ex_def)
apply(rule_tac x="Suc 0#p" in exI)
apply(subst PosOrd_def)
apply(rule conjI)
apply(simp add: pflat_len_simps)
apply(rule ballI)
apply(rule impI)
apply(simp only: Pos.simps)
apply(auto)[1]
apply(simp add: pflat_len_simps)
using assms(2)
apply(simp)
apply(auto simp add: pflat_len_simps)
done

lemma PosOrd_Seq_eq:
  assumes "flat v2 = flat w2"
  shows "(Seq v v2) :⊏val (Seq v w2)  v2 :⊏val w2"
using assms 
apply(auto)
prefer 2
apply(simp add: PosOrd_SeqI2)
apply(simp add: PosOrd_ex_def)
apply(auto)
apply(case_tac p)
apply(simp add: PosOrd_def pflat_len_simps)
apply(case_tac a)
apply(simp add: PosOrd_def pflat_len_simps)
apply(clarify)
apply(case_tac nat)
prefer 2
apply(simp add: PosOrd_def pflat_len_simps pflat_len_outside)
apply(rule_tac x="list" in exI)
apply(auto simp add: PosOrd_def2 pflat_len_simps)
apply(smt Collect_disj_eq lex_list.intros(2) mem_Collect_eq pflat_len_simps(2))
apply(smt Collect_disj_eq lex_list.intros(2) mem_Collect_eq pflat_len_simps(2))
done



lemma PosOrd_StarsI:
  assumes "v1 :⊏val v2" "flats (v1#vs1) = flats (v2#vs2)"
  shows "Stars (v1#vs1) :⊏val Stars (v2#vs2)" 
using assms(1)
apply(subst (asm) PosOrd_ex_def)
apply(subst (asm) PosOrd_def)
apply(clarify)
apply(subst PosOrd_ex_def)
apply(subst PosOrd_def)
apply(rule_tac x="0#p" in exI)
apply(simp add: pflat_len_Stars_simps pflat_len_simps)
using assms(2)
apply(simp add: pflat_len_simps)
apply(auto simp add: pflat_len_Stars_simps pflat_len_simps)
by (metis length_append of_nat_add)

lemma PosOrd_StarsI2:
  assumes "Stars vs1 :⊏val Stars vs2" "flats vs1 = flats vs2"
  shows "Stars (v#vs1) :⊏val Stars (v#vs2)" 
using assms(1)
apply(subst (asm) PosOrd_ex_def)
apply(subst (asm) PosOrd_def)
apply(clarify)
apply(subst PosOrd_ex_def)
apply(subst PosOrd_def)
apply(case_tac p)
apply(simp add: pflat_len_simps)
apply(rule_tac x="Suc a#list" in exI)
apply(auto simp add: pflat_len_Stars_simps pflat_len_simps assms(2))
done

lemma PosOrd_Stars_appendI:
  assumes "Stars vs1 :⊏val Stars vs2" "flat (Stars vs1) = flat (Stars vs2)"
  shows "Stars (vs @ vs1) :⊏val Stars (vs @ vs2)"
using assms
apply(induct vs)
apply(simp)
apply(simp add: PosOrd_StarsI2)
done

lemma PosOrd_StarsE2:
  assumes "Stars (v # vs1) :⊏val Stars (v # vs2)"
  shows "Stars vs1 :⊏val Stars vs2"
using assms
apply(subst (asm) PosOrd_ex_def)
apply(erule exE)
apply(case_tac p)
apply(simp)
apply(simp add: PosOrd_def pflat_len_simps)
apply(subst PosOrd_ex_def)
apply(rule_tac x="[]" in exI)
apply(simp add: PosOrd_def pflat_len_simps Pos_empty)
apply(simp)
apply(case_tac a)
apply(clarify)
apply(auto simp add: pflat_len_simps PosOrd_def pflat_len_def split: if_splits)[1]
apply(clarify)
apply(simp add: PosOrd_ex_def)
apply(rule_tac x="nat#list" in exI)
apply(auto simp add: PosOrd_def pflat_len_simps)[1]
apply(case_tac q)
apply(simp add: PosOrd_def pflat_len_simps)
apply(clarify)
apply(drule_tac x="Suc a # lista" in bspec)
apply(simp)
apply(auto simp add: PosOrd_def pflat_len_simps)[1]
apply(case_tac q)
apply(simp add: PosOrd_def pflat_len_simps)
apply(clarify)
apply(drule_tac x="Suc a # lista" in bspec)
apply(simp)
apply(auto simp add: PosOrd_def pflat_len_simps)[1]
done

lemma PosOrd_Stars_appendE:
  assumes "Stars (vs @ vs1) :⊏val Stars (vs @ vs2)"
  shows "Stars vs1 :⊏val Stars vs2"
using assms
apply(induct vs)
apply(simp)
apply(simp add: PosOrd_StarsE2)
done

lemma PosOrd_Stars_append_eq:
  assumes "flats vs1 = flats vs2"
  shows "Stars (vs @ vs1) :⊏val Stars (vs @ vs2)  Stars vs1 :⊏val Stars vs2"
using assms
apply(rule_tac iffI)
apply(erule PosOrd_Stars_appendE)
apply(rule PosOrd_Stars_appendI)
apply(auto)
done  

lemma PosOrd_almost_trichotomous:
  shows "v1 :⊏val v2  v2 :⊏val v1  (length (flat v1) = length (flat v2))"
apply(auto simp add: PosOrd_ex_def)
apply(auto simp add: PosOrd_def)
apply(rule_tac x="[]" in exI)
apply(auto simp add: Pos_empty pflat_len_simps)
apply(drule_tac x="[]" in spec)
apply(auto simp add: Pos_empty pflat_len_simps)
done


section ‹The Posix Value is smaller than any other lexical value›


lemma Posix_PosOrd:
  assumes "s  r  v1" "v2  LV r s" 
  shows "v1 :⊑val v2"
using assms
proof (induct arbitrary: v2 rule: Posix.induct)
  case (Posix_One v)
  have "v  LV One []" by fact
  then have "v = Void"
    by (simp add: LV_simps)
  then show "Void :⊑val v"
    by (simp add: PosOrd_ex_eq_def)
next
  case (Posix_Atom c v)
  have "v  LV (Atom c) [c]" by fact
  then have "v = Atm c"
    by (simp add: LV_simps)
  then show "Atm c :⊑val v"
    by (simp add: PosOrd_ex_eq_def)
next
  case (Posix_Plus1 s r1 v r2 v2)
  have as1: "s  r1  v" by fact
  have IH: "v2. v2  LV r1 s  v :⊑val v2" by fact
  have "v2  LV (Plus r1 r2) s" by fact
  then have " v2 : Plus r1 r2" "flat v2 = s"
    by(auto simp add: LV_def prefix_list_def)
  then consider
    (Left) v3 where "v2 = Left v3" " v3 : r1" "flat v3 = s" 
  | (Right) v3 where "v2 = Right v3" " v3 : r2" "flat v3 = s"
  by (auto elim: Prf.cases)
  then show "Left v :⊑val v2"
  proof(cases)
     case (Left v3)
     have "v3  LV r1 s" using Left(2,3) 
       by (auto simp add: LV_def prefix_list_def)
     with IH have "v :⊑val v3" by simp
     moreover
     have "flat v3 = flat v" using as1 Left(3)
       by (simp add: Posix1(2)) 
     ultimately have "Left v :⊑val Left v3"
       by (simp add: PosOrd_ex_eq_def PosOrd_Left_eq)
     then show "Left v :⊑val v2" unfolding Left .
  next
     case (Right v3)
     have "flat v3 = flat v" using as1 Right(3)
       by (simp add: Posix1(2)) 
     then have "Left v :⊑val Right v3" 
       unfolding PosOrd_ex_eq_def
       by (simp add: PosOrd_Left_Right)
     then show "Left v :⊑val v2" unfolding Right .
  qed
next
  case (Posix_Plus2 s r2 v r1 v2)
  have as1: "s  r2  v" by fact
  have as2: "s  lang r1" by fact
  have IH: "v2. v2  LV r2 s  v :⊑val v2" by fact
  have "v2  LV (Plus r1 r2) s" by fact
  then have " v2 : Plus r1 r2" "flat v2 = s"
    by(auto simp add: LV_def prefix_list_def)
  then consider
    (Left) v3 where "v2 = Left v3" " v3 : r1" "flat v3 = s" 
  | (Right) v3 where "v2 = Right v3" " v3 : r2" "flat v3 = s"
  by (auto elim: Prf.cases)
  then show "Right v :⊑val v2"
  proof (cases)
    case (Right v3)
     have "v3  LV r2 s" using Right(2,3) 
       by (auto simp add: LV_def prefix_list_def)
     with IH have "v :⊑val v3" by simp
     moreover
     have "flat v3 = flat v" using as1 Right(3)
       by (simp add: Posix1(2)) 
     ultimately have "Right v :⊑val Right v3" 
        by (auto simp add: PosOrd_ex_eq_def PosOrd_RightI)
     then show "Right v :⊑val v2" unfolding Right .
  next
     case (Left v3)
     have "v3  LV r1 s" using Left(2,3) as2  
       by (auto simp add: LV_def prefix_list_def)
     then have "flat v3 = flat v   v3 : r1" using as1 Left(3)
       by (simp add: Posix1(2) LV_def) 
     then have "False" using as1 as2 Left
       by (auto simp add: Posix1(2) L_flat_Prf1)
     then show "Right v :⊑val v2" by simp
  qed
next 
  case (Posix_Times s1 r1 v1 s2 r2 v2 v3)
  have "s1  r1  v1" "s2  r2  v2" by fact+
  then have as1: "s1 = flat v1" "s2 = flat v2" by (simp_all add: Posix1(2))
  have IH1: "v3. v3  LV r1 s1  v1 :⊑val v3" by fact
  have IH2: "v3. v3  LV r2 s2  v2 :⊑val v3" by fact
  have cond: "¬ (s3 s4. s3  []  s3 @ s4 = s2  s1 @ s3  lang r1  s4  lang r2)" by fact
  have "v3  LV (Times r1 r2) (s1 @ s2)" by fact
  then obtain v3a v3b where eqs:
    "v3 = Seq v3a v3b" " v3a : r1" " v3b : r2"
    "flat v3a @ flat v3b = s1 @ s2" 
    by (force simp add: prefix_list_def LV_def elim: Prf.cases)
  with cond have "flat v3a ⊑pre s1" unfolding prefix_list_def
    by (smt L_flat_Prf1 append_eq_append_conv2 append_self_conv)
  then have "flat v3a ⊏spre s1  (flat v3a = s1  flat v3b = s2)" using eqs
    by (simp add: sprefix_list_def append_eq_conv_conj)
  then have q2: "v1 :⊏val v3a  (flat v3a = s1  flat v3b = s2)" 
    using PosOrd_spreI as1(1) eqs by blast
  then have "v1 :⊏val v3a  (v3a  LV r1 s1  v3b  LV r2 s2)" using eqs(2,3)
    by (auto simp add: LV_def)
  then have "v1 :⊏val v3a  (v1 :⊑val v3a  v2 :⊑val v3b)" using IH1 IH2 by blast         
  then have "Seq v1 v2 :⊑val Seq v3a v3b" using eqs q2 as1
    unfolding  PosOrd_ex_eq_def by (auto simp add: PosOrd_SeqI1 PosOrd_Seq_eq) 
  then show "Seq v1 v2 :⊑val v3" unfolding eqs by blast
next 
  case (Posix_Star1 s1 r v s2 vs v3) 
  have "s1  r  v" "s2  Star r  Stars vs" by fact+
  then have as1: "s1 = flat v" "s2 = flat (Stars vs)" by (auto dest: Posix1(2))
  have IH1: "v3. v3  LV r s1  v :⊑val v3" by fact
  have IH2: "v3. v3  LV (Star r) s2  Stars vs :⊑val v3" by fact
  have cond: "¬ (s3 s4. s3  []  s3 @ s4 = s2  s1 @ s3  lang r  s4  lang (Star r))" by fact
  have cond2: "flat v  []" by fact
  have "v3  LV (Star r) (s1 @ s2)" by fact
  then consider 
    (NonEmpty) v3a vs3 where "v3 = Stars (v3a # vs3)" 
    " v3a : r" " Stars vs3 : Star r"
    "flat (Stars (v3a # vs3)) = s1 @ s2"
  | (Empty) "v3 = Stars []"
  unfolding LV_def  
  apply(auto)
  apply(erule Prf_elims)
  by (metis NonEmpty Prf.intros(6) list.set_intros(1) list.set_intros(2) neq_Nil_conv)
  then show "Stars (v # vs) :⊑val v3" 
    proof (cases)
      case (NonEmpty v3a vs3)
      have "flat (Stars (v3a # vs3)) = s1 @ s2" using NonEmpty(4) . 
      with cond have "flat v3a ⊑pre s1" using NonEmpty(2,3)
        unfolding prefix_list_def
        by (smt L_flat_Prf1 append_Nil2 append_eq_append_conv2 flat.simps(7)) 
      then have "flat v3a ⊏spre s1  (flat v3a = s1  flat (Stars vs3) = s2)" using NonEmpty(4)
        by (simp add: sprefix_list_def append_eq_conv_conj)
      then have q2: "v :⊏val v3a  (flat v3a = s1  flat (Stars vs3) = s2)" 
        using PosOrd_spreI as1(1) NonEmpty(4) by blast
      then have "v :⊏val v3a  (v3a  LV r s1  Stars vs3  LV (Star r) s2)" 
        using NonEmpty(2,3) by (auto simp add: LV_def)
      then have "v :⊏val v3a  (v :⊑val v3a  Stars vs :⊑val Stars vs3)" using IH1 IH2 by blast
      then have "v :⊏val v3a  (v = v3a  Stars vs :⊑val Stars vs3)" 
         unfolding PosOrd_ex_eq_def by auto     
      then have "Stars (v # vs) :⊑val Stars (v3a # vs3)" using NonEmpty(4) q2 as1
        unfolding  PosOrd_ex_eq_def
        using PosOrd_StarsI PosOrd_StarsI2
        by (metis flat.simps(7) flat_Stars val.inject(5)) 
      then show "Stars (v # vs) :⊑val v3" unfolding NonEmpty by blast
    next 
      case Empty
      have "v3 = Stars []" by fact
      then show "Stars (v # vs) :⊑val v3"
      unfolding PosOrd_ex_eq_def using cond2
      by (simp add: PosOrd_shorterI)
    qed    
next
  case (Posix_Star2 r v2)
  have "v2  LV (Star r) []" by fact
  then have "v2 = Stars []" 
    unfolding LV_def by (auto elim: Prf.cases) 
  then show "Stars [] :⊑val v2"
  by (simp add: PosOrd_ex_eq_def)
qed


lemma Posix_PosOrd_reverse:
  assumes "s  r  v1" 
  shows "¬(v2  LV r s. v2 :⊏val v1)"
using assms
by (metis Posix_PosOrd less_irrefl PosOrd_def 
    PosOrd_ex_eq_def PosOrd_ex_def PosOrd_trans)

lemma PosOrd_Posix:
  assumes "v1  LV r s" "v2  LV r s. ¬ v2 :⊏val v1"
  shows "s  r  v1" 
proof -
  have "s  lang r" using assms(1) unfolding LV_def
    using L_flat_Prf1 by blast 
  then obtain vposix where vp: "s  r  vposix"
    using lexer_correct_Some by blast 
  with assms(1) have "vposix :⊑val v1" by (simp add: Posix_PosOrd) 
  then have "vposix = v1  vposix :⊏val v1" unfolding PosOrd_ex_eq2 by auto
  moreover
    { assume "vposix :⊏val v1"
      moreover
      have "vposix  LV r s" using vp 
         using Posix_LV by blast 
      ultimately have "False" using assms(2) by blast
    }
  ultimately show "s  r  v1" using vp by blast
qed

lemma Least_existence:
  assumes "LV r s  {}"
  shows " vmin  LV r s. v  LV r s. vmin :⊑val v"
proof -
  from assms
  obtain vposix where "s  r  vposix"
  unfolding LV_def 
  using L_flat_Prf1 lexer_correct_Some by blast
  then have "v  LV r s. vposix :⊑val v"
    by (simp add: Posix_PosOrd)
  then show "vmin  LV r s. v  LV r s. vmin :⊑val v"
    using Posix_LV s  r  vposix by blast
qed 

lemma Least_existence1:
  assumes "LV r s  {}"
  shows " ∃! vmin  LV r s. v  LV r s. vmin :⊑val v"
using Least_existence[OF assms] assms
using PosOrdeq_antisym by blast

lemma Least_existence2:
  assumes "LV r s  {}"
  shows " ∃!vmin  LV r s. lexer r s = Some vmin  (v  LV r s. vmin :⊑val v)"
using Least_existence[OF assms] assms
using PosOrdeq_antisym 
using PosOrd_Posix PosOrd_ex_eq2 lexer_correctness(1)
  by (metis (mono_tags, lifting)) 


lemma Least_existence1_pre:
  assumes "LV r s  {}"
  shows " ∃!vmin  LV r s. v  (LV r s  {v'. flat v' ⊏spre s}). vmin :⊑val v"
using Least_existence[OF assms] assms
apply -
apply(erule bexE)
apply(rule_tac a="vmin" in ex1I)
apply(auto)[1]
apply (metis PosOrd_Posix PosOrd_ex_eq2 PosOrd_spreI PosOrdeq_antisym Posix1(2))
apply(auto)[1]
apply(simp add: PosOrdeq_antisym)
done

lemma PosOrd_partial:
  shows "partial_order_on UNIV {(v1, v2). v1 :⊑val v2}"
apply(simp add: partial_order_on_def)
apply(simp add: preorder_on_def refl_on_def)
apply(simp add: PosOrdeq_refl)
apply(auto)
apply(rule transI)
apply(auto intro: PosOrdeq_trans)[1]
apply(rule antisymI)
apply(simp add: PosOrdeq_antisym)
done
  
lemma PosOrd_wf:
  shows "wf {(v1, v2). v1 :⊏val v2  v1  LV r s  v2  LV r s}"
proof -
  have "finite {(v1, v2). v1  LV r s  v2  LV r s}"
    by (simp add: LV_finite)
  moreover
  have "{(v1, v2). v1 :⊏val v2  v1  LV r s  v2  LV r s}  {(v1, v2). v1  LV r s  v2  LV r s}"
    by auto
  ultimately have "finite {(v1, v2). v1 :⊏val v2  v1  LV r s  v2  LV r s}" 
    using finite_subset by blast 
  moreover
  have "acyclicP (λv1 v2. v1 :⊏val v2  v1  LV r s  v2  LV r s)" 
    unfolding acyclic_def
    by (smt (verit, ccfv_threshold) PosOrd_irrefl PosOrd_trans tranclp_trans_induct tranclp_unfold)    
  ultimately show "wf {(v1, v2). v1 :⊏val v2  v1  LV r s  v2  LV r s}"
    using finite_acyclic_wf by blast
qed  

unused_thms

end