Theory Ring_Hom_Poly
section ‹Connecting Polynomials with Homomorphism Locales›
theory Ring_Hom_Poly
imports
"HOL-Computational_Algebra.Euclidean_Algorithm"
Ring_Hom
Missing_Polynomial
begin
text‹@{term poly} as a homomorphism. Note that types differ.›
interpretation poly_hom: comm_semiring_hom "λp. poly p a" by (unfold_locales, auto)
interpretation poly_hom: comm_ring_hom "λp. poly p a"..
interpretation poly_hom: idom_hom "λp. poly p a"..
text ‹@{term "(∘⇩p)"} as a homomorphism.›
interpretation pcompose_hom: comm_semiring_hom "λq. q ∘⇩p p"
using pcompose_add pcompose_mult pcompose_1 by (unfold_locales, auto)
interpretation pcompose_hom: comm_ring_hom "λq. q ∘⇩p p" ..
interpretation pcompose_hom: idom_hom "λq. q ∘⇩p p" ..
definition eval_poly :: "('a ⇒ 'b :: comm_semiring_1) ⇒ 'a :: zero poly ⇒ 'b ⇒ 'b" where
[code del]: "eval_poly h p = poly (map_poly h p)"
lemma eval_poly_code[code]: "eval_poly h p x = fold_coeffs (λ a b. h a + x * b) p 0"
by (induct p, auto simp: eval_poly_def)
lemma eval_poly_as_sum:
fixes h :: "'a :: zero ⇒ 'b :: comm_semiring_1"
assumes "h 0 = 0"
shows "eval_poly h p x = (∑i≤degree p. x^i * h (coeff p i))"
unfolding eval_poly_def
proof (induct p)
case 0 show ?case using assms by simp
next case (pCons a p) thus ?case
proof (cases "p = 0")
case True show ?thesis by (simp add: True map_poly_simps assms)
next case False show ?thesis
unfolding degree_pCons_eq[OF False]
unfolding sum.atMost_Suc_shift
unfolding map_poly_pCons[OF pCons(1)]
by (simp add: pCons(2) sum_distrib_left mult.assoc)
qed
qed
lemma coeff_const: "coeff [: a :] i = (if i = 0 then a else 0)"
by (metis coeff_monom monom_0)
lemma x_as_monom: "[:0,1:] = monom 1 1"
by (simp add: monom_0 monom_Suc)
lemma x_pow_n: "monom 1 1 ^ n = monom 1 n"
by (induct n) (simp_all add: monom_0 monom_Suc)
lemma map_poly_eval_poly: assumes h0: "h 0 = 0"
shows "map_poly h p = eval_poly (λ a. [: h a :]) p [:0,1:]" (is "?mp = ?ep")
proof (rule poly_eqI)
fix i :: nat
have 2: "(∑x≤i. ∑xa≤degree p. (if xa = x then 1 else 0) * coeff [:h (coeff p xa):] (i - x))
= h (coeff p i)" (is "sum ?f ?s = ?r")
proof -
have "sum ?f ?s = ?f i + sum ?f ({..i} - {i})"
by (rule sum.remove[of _ i], auto)
also have "sum ?f ({..i} - {i}) = 0"
by (rule sum.neutral, intro ballI, rule sum.neutral, auto simp: coeff_const)
also have "?f i = (∑xa≤degree p. (if xa = i then 1 else 0) * h (coeff p xa))" (is "_ = ?m")
unfolding coeff_const by simp
also have "… = ?r"
proof (cases "i ≤ degree p")
case True
show ?thesis
by (subst sum.remove[of _ i], insert True, auto)
next
case False
hence [simp]: "coeff p i = 0" using le_degree by blast
show ?thesis
by (subst sum.neutral, auto simp: h0)
qed
finally show ?thesis by simp
qed
have h'0: "[: h 0 :] = 0" using h0 by auto
show "coeff ?mp i = coeff ?ep i"
unfolding coeff_map_poly[of h, OF h0]
unfolding eval_poly_as_sum[of "λa. [: h a :]", OF h'0]
unfolding coeff_sum
unfolding x_as_monom x_pow_n coeff_mult
unfolding sum.swap[of _ _ "{..degree p}"]
unfolding coeff_monom using 2 by auto
qed
lemma smult_as_map_poly: "smult a = map_poly ((*) a)"
by (rule ext, rule poly_eqI, subst coeff_map_poly, auto)
subsection ‹@{const map_poly} of Homomorphisms›
context zero_hom begin
text ‹We will consider @{term hom} is always simpler than @{term "map_poly hom"}.›
lemma map_poly_hom_monom[simp]: "map_poly hom (monom a i) = monom (hom a) i"
by(rule map_poly_monom, auto)
lemma coeff_map_poly_hom[simp]: "coeff (map_poly hom p) i = hom (coeff p i)"
by (rule coeff_map_poly, rule hom_zero)
end
locale map_poly_zero_hom = base: zero_hom
begin
sublocale zero_hom "map_poly hom" by (unfold_locales, auto)
end
text ‹@{const map_poly} preserves homomorphisms over addition.›
context comm_monoid_add_hom
begin
lemma map_poly_hom_add[hom_distribs]:
"map_poly hom (p + q) = map_poly hom p + map_poly hom q"
by (rule map_poly_add; simp add: hom_distribs)
end
locale map_poly_comm_monoid_add_hom = base: comm_monoid_add_hom
begin
sublocale comm_monoid_add_hom "map_poly hom" by (unfold_locales, auto simp:hom_distribs)
end
text ‹To preserve homomorphisms over multiplication, it demands commutative ring homomorphisms.›
context comm_semiring_hom begin
lemma map_poly_pCons_hom[hom_distribs]: "map_poly hom (pCons a p) = pCons (hom a) (map_poly hom p)"
unfolding map_poly_simps by auto
lemma map_poly_hom_smult[hom_distribs]:
"map_poly hom (smult c p) = smult (hom c) (map_poly hom p)"
by (induct p, auto simp: hom_distribs)
lemma poly_map_poly[simp]: "poly (map_poly hom p) (hom x) = hom (poly p x)"
by (induct p; simp add: hom_distribs)
end
locale map_poly_comm_semiring_hom = base: comm_semiring_hom
begin
sublocale map_poly_comm_monoid_add_hom..
sublocale comm_semiring_hom "map_poly hom"
proof
show "map_poly hom 1 = 1" by simp
fix p q show "map_poly hom (p * q) = map_poly hom p * map_poly hom q"
by (induct p, auto simp: hom_distribs)
qed
end
locale map_poly_comm_ring_hom = base: comm_ring_hom
begin
sublocale map_poly_comm_semiring_hom..
sublocale comm_ring_hom "map_poly hom"..
end
locale map_poly_idom_hom = base: idom_hom
begin
sublocale map_poly_comm_ring_hom..
sublocale idom_hom "map_poly hom"..
end
subsubsection ‹Injectivity›
locale map_poly_inj_zero_hom = base: inj_zero_hom
begin
sublocale inj_zero_hom "map_poly hom"
proof (unfold_locales)
fix p q :: "'a poly" assume "map_poly hom p = map_poly hom q"
from cong[of "λp. coeff p _", OF refl this] show "p = q" by (auto intro: poly_eqI)
qed simp
end
locale map_poly_inj_comm_monoid_add_hom = base: inj_comm_monoid_add_hom
begin
sublocale map_poly_comm_monoid_add_hom..
sublocale map_poly_inj_zero_hom..
sublocale inj_comm_monoid_add_hom "map_poly hom"..
end
locale map_poly_inj_comm_semiring_hom = base: inj_comm_semiring_hom
begin
sublocale map_poly_comm_semiring_hom..
sublocale map_poly_inj_zero_hom..
sublocale inj_comm_semiring_hom "map_poly hom"..
end
locale map_poly_inj_comm_ring_hom = base: inj_comm_ring_hom
begin
sublocale map_poly_inj_comm_semiring_hom..
sublocale inj_comm_ring_hom "map_poly hom"..
end
locale map_poly_inj_idom_hom = base: inj_idom_hom
begin
sublocale map_poly_inj_comm_ring_hom..
sublocale inj_idom_hom "map_poly hom"..
end
lemma degree_map_poly_le: "degree (map_poly f p) ≤ degree p"
by(induct p;auto)
lemma coeffs_map_poly:
assumes "f (lead_coeff p) = 0 ⟷ p = 0"
shows "coeffs (map_poly f p) = map f (coeffs p)"
unfolding coeffs_map_poly using assms by (simp add:coeffs_def)
lemma degree_map_poly:
assumes "f (lead_coeff p) = 0 ⟷ p = 0"
shows "degree (map_poly f p) = degree p"
unfolding degree_eq_length_coeffs unfolding coeffs_map_poly[of f, OF assms] by simp
context zero_hom_0 begin
lemma degree_map_poly_hom[simp]: "degree (map_poly hom p) = degree p"
by (rule degree_map_poly, auto)
lemma coeffs_map_poly_hom[simp]: "coeffs (map_poly hom p) = map hom (coeffs p)"
by (rule coeffs_map_poly, auto)
lemma hom_lead_coeff[simp]: "lead_coeff (map_poly hom p) = hom (lead_coeff p)"
by simp
end
context comm_semiring_hom begin
interpretation map_poly_hom: map_poly_comm_semiring_hom..
lemma poly_map_poly_0[simp]:
"poly (map_poly hom p) 0 = hom (poly p 0)" (is "?l = ?r")
proof-
have "?l = poly (map_poly hom p) (hom 0)" by auto
then show ?thesis unfolding poly_map_poly.
qed
lemma poly_map_poly_1[simp]:
"poly (map_poly hom p) 1 = hom (poly p 1)" (is "?l = ?r")
proof-
have "?l = poly (map_poly hom p) (hom 1)" by auto
then show ?thesis unfolding poly_map_poly.
qed
lemma map_poly_hom_as_monom_sum:
"(∑j≤degree p. monom (hom (coeff p j)) j) = map_poly hom p"
proof -
show ?thesis
by (subst(6) poly_as_sum_of_monoms'[OF le_refl, symmetric], simp add: hom_distribs)
qed
lemma map_poly_pcompose[hom_distribs]:
"map_poly hom (f ∘⇩p g) = map_poly hom f ∘⇩p map_poly hom g"
by (induct f arbitrary: g; auto simp: hom_distribs)
end
context comm_semiring_hom begin
lemma eval_poly_0[simp]: "eval_poly hom 0 x = 0" unfolding eval_poly_def by simp
lemma eval_poly_monom: "eval_poly hom (monom a n) x = hom a * x ^ n"
unfolding eval_poly_def
unfolding map_poly_monom[of hom, OF hom_zero] using poly_monom.
lemma poly_map_poly_eval_poly: "poly (map_poly hom p) = eval_poly hom p"
unfolding eval_poly_def..
lemma map_poly_eval_poly:
"map_poly hom p = eval_poly (λ a. [: hom a :]) p [:0,1:]"
by (rule map_poly_eval_poly, simp)
lemma degree_extension: assumes "degree p ≤ n"
shows "(∑i≤degree p. x ^ i * hom (coeff p i))
= (∑i≤n. x ^ i * hom (coeff p i))" (is "?l = ?r")
proof -
let ?f = "λ i. x ^ i * hom (coeff p i)"
define m where "m = n - degree p"
have n: "n = degree p + m" unfolding m_def using assms by auto
have "?r = (∑ i ≤ degree p + m. ?f i)" unfolding n ..
also have "… = ?l + sum ?f {Suc (degree p) .. degree p + m}"
by (subst sum.union_disjoint[symmetric], auto intro: sum.cong)
also have "sum ?f {Suc (degree p) .. degree p + m} = 0"
by (rule sum.neutral, auto simp: coeff_eq_0)
finally show ?thesis by simp
qed
lemma eval_poly_add[simp]: "eval_poly hom (p + q) x = eval_poly hom p x + eval_poly hom q x"
unfolding eval_poly_def hom_distribs..
lemma eval_poly_sum: "eval_poly hom (∑k∈A. p k) x = (∑k∈A. eval_poly hom (p k) x)"
proof (induct A rule: infinite_finite_induct)
case (insert a A)
show ?case
unfolding sum.insert[OF insert(1-2)] insert(3)[symmetric] by simp
qed (auto simp: eval_poly_def)
lemma eval_poly_poly: "eval_poly hom p (hom x) = hom (poly p x)"
unfolding eval_poly_def by auto
end
context comm_ring_hom begin
interpretation map_poly_hom: map_poly_comm_ring_hom..
lemma pseudo_divmod_main_hom:
"pseudo_divmod_main (hom lc) (map_poly hom q) (map_poly hom r) (map_poly hom d) dr i =
map_prod (map_poly hom) (map_poly hom) (pseudo_divmod_main lc q r d dr i)"
proof-
show ?thesis by (induct lc q r d dr i rule:pseudo_divmod_main.induct, auto simp: Let_def hom_distribs)
qed
end
lemma(in inj_comm_ring_hom) pseudo_divmod_hom:
"pseudo_divmod (map_poly hom p) (map_poly hom q) =
map_prod (map_poly hom) (map_poly hom) (pseudo_divmod p q)"
unfolding pseudo_divmod_def using pseudo_divmod_main_hom[of _ 0] by (cases "q = 0",auto)
lemma(in inj_idom_hom) pseudo_mod_hom:
"pseudo_mod (map_poly hom p) (map_poly hom q) = map_poly hom (pseudo_mod p q)"
using pseudo_divmod_hom unfolding pseudo_mod_def by auto
lemma(in idom_hom) map_poly_pderiv[hom_distribs]:
"map_poly hom (pderiv p) = pderiv (map_poly hom p)"
proof (induct p rule: pderiv.induct)
case (1 a p)
then show ?case unfolding pderiv.simps map_poly_pCons_hom by (cases "p = 0", auto simp: hom_distribs)
qed
lemma(in idom_hom) map_poly_higher_pderiv[hom_distribs]:
"map_poly hom ((pderiv ^^ n) p) = (pderiv ^^ n) (map_poly hom p)"
by (induction n) (auto simp: hom_distribs)
context field_hom
begin
lemma dvd_map_poly_hom_imp_dvd: ‹map_poly hom x dvd map_poly hom y ⟹ x dvd y›
by (smt (verit, del_insts) degree_map_poly_hom hom_0 hom_div hom_lead_coeff hom_one hom_power map_poly_hom_smult map_poly_zero mod_eq_0_iff_dvd mod_poly_def pseudo_mod_hom)
lemma map_poly_pdivmod [hom_distribs]:
‹map_prod (map_poly hom) (map_poly hom) (p div q, p mod q) =
(map_poly hom p div map_poly hom q, map_poly hom p mod map_poly hom q)›
proof -
let ?mp = ‹map_poly hom›
interpret map_poly_hom: map_poly_idom_hom ..
have ‹(?mp p div ?mp q, ?mp p mod ?mp q) = (?mp (p div q), ?mp (p mod q))›
proof (induction rule: euclidean_relation_polyI)
case by0
then show ?case
by simp
next
case divides
then have ‹q ≠ 0› ‹q dvd p›
by (auto dest: dvd_map_poly_hom_imp_dvd)
from ‹q dvd p› obtain r where ‹p = q * r› ..
with ‹q ≠ 0› show ?case
by (simp add: map_poly_hom.hom_mult)
next
case euclidean_relation
with degree_mod_less_degree [of q p] show ?case
by (auto simp flip: map_poly_hom.hom_mult map_poly_hom_add)
qed
then show ?thesis
by simp
qed
lemma map_poly_div[hom_distribs]: "map_poly hom (p div q) = map_poly hom p div map_poly hom q"
using map_poly_pdivmod[of p q] by simp
lemma map_poly_mod[hom_distribs]: "map_poly hom (p mod q) = map_poly hom p mod map_poly hom q"
using map_poly_pdivmod[of p q] by simp
end
locale field_hom' = field_hom hom
for hom :: "'a :: {field_gcd} ⇒ 'b :: {field_gcd}"
begin
lemma map_poly_normalize[hom_distribs]: "map_poly hom (normalize p) = normalize (map_poly hom p)"
by (simp add: normalize_poly_def hom_distribs)
lemma map_poly_gcd[hom_distribs]: "map_poly hom (gcd p q) = gcd (map_poly hom p) (map_poly hom q)"
by (induct p q rule: eucl_induct)
(simp_all add: map_poly_normalize ac_simps hom_distribs)
end
definition div_poly :: "'a :: euclidean_semiring ⇒ 'a poly ⇒ 'a poly" where
"div_poly a p = map_poly (λ c. c div a) p"
lemma smult_div_poly: assumes "⋀ c. c ∈ set (coeffs p) ⟹ a dvd c"
shows "smult a (div_poly a p) = p"
unfolding smult_as_map_poly div_poly_def
by (subst map_poly_map_poly, force, subst map_poly_idI, insert assms, auto)
lemma coeff_div_poly: "coeff (div_poly a f) n = coeff f n div a"
unfolding div_poly_def
by (rule coeff_map_poly, auto)
locale map_poly_inj_idom_divide_hom = base: inj_idom_divide_hom
begin
sublocale map_poly_idom_hom ..
sublocale map_poly_inj_zero_hom ..
sublocale inj_idom_hom "map_poly hom" ..
lemma divide_poly_main_hom: defines "hh ≡ map_poly hom"
shows "hh (divide_poly_main lc f g h i j) = divide_poly_main (hom lc) (hh f) (hh g) (hh h) i j"
unfolding hh_def
proof (induct j arbitrary: lc f g h i)
case (Suc j lc f g h i)
let ?h = "map_poly hom"
show ?case unfolding divide_poly_main.simps Let_def
unfolding base.coeff_map_poly_hom base.hom_div[symmetric] base.hom_mult[symmetric] base.eq_iff
if_distrib[of ?h] hom_zero
by (rule if_cong[OF refl _ refl], subst Suc, simp add: hom_minus hom_add hom_mult)
qed simp
sublocale inj_idom_divide_hom "map_poly hom"
proof
fix f g :: "'a poly"
let ?h = "map_poly hom"
show "?h (f div g) = (?h f) div (?h g)" unfolding divide_poly_def if_distrib[of ?h]
divide_poly_main_hom by simp
qed
lemma order_hom: "order (hom x) (map_poly hom f) = order x f"
unfolding Polynomial.order_def unfolding hom_dvd_iff[symmetric]
unfolding hom_power by (simp add: base.hom_uminus)
end
subsection ‹Example Interpretations›
abbreviation "of_int_poly ≡ map_poly of_int"
interpretation of_int_poly_hom: map_poly_comm_semiring_hom of_int..
interpretation of_int_poly_hom: map_poly_comm_ring_hom of_int..
interpretation of_int_poly_hom: map_poly_idom_hom of_int..
interpretation of_int_poly_hom:
map_poly_inj_comm_ring_hom "of_int :: int ⇒ 'a :: {comm_ring_1,ring_char_0}" ..
interpretation of_int_poly_hom:
map_poly_inj_idom_hom "of_int :: int ⇒ 'a :: {idom,ring_char_0}" ..
text ‹The following operations are homomorphic w.r.t. only @{class monoid_add}.›
interpretation pCons_0_hom: injective "pCons 0" by (unfold_locales, auto)
interpretation pCons_0_hom: zero_hom_0 "pCons 0" by (unfold_locales, auto)
interpretation pCons_0_hom: inj_comm_monoid_add_hom "pCons 0" by (unfold_locales, auto)
interpretation pCons_0_hom: inj_ab_group_add_hom "pCons 0" by (unfold_locales, auto)
interpretation monom_hom: injective "λx. monom x d" by (unfold_locales, auto)
interpretation monom_hom: inj_monoid_add_hom "λx. monom x d" by (unfold_locales, auto simp: add_monom)
interpretation monom_hom: inj_comm_monoid_add_hom "λx. monom x d"..
end