Theory OptionMonad
theory OptionMonad
imports Lib
begin
type_synonym ('s,'a) lookup = "'s ⇒ 'a option"
text ‹Similar to map_option but the second function returns option as well›
definition
opt_map :: "('s,'a) lookup ⇒ ('a ⇒ 'b option) ⇒ ('s,'b) lookup" (infixl ‹|>› 54)
where
"f |> g ≡ λs. case f s of None ⇒ None | Some x ⇒ g x"
lemma opt_map_cong [fundef_cong]:
"⟦ f = f'; ⋀v s. f s = Some v ⟹ g v = g' v⟧ ⟹ f |> g = f' |> g'"
by (rule ext) (simp add: opt_map_def split: option.splits)
lemma in_opt_map_eq:
"((f |> g) s = Some v) = (∃v'. f s = Some v' ∧ g v' = Some v)"
by (simp add: opt_map_def split: option.splits)
lemma opt_mapE:
"⟦ (f |> g) s = Some v; ⋀v'. ⟦f s = Some v'; g v' = Some v ⟧ ⟹ P ⟧ ⟹ P"
by (auto simp: in_opt_map_eq)
definition
obind :: "('s,'a) lookup ⇒ ('a ⇒ ('s,'b) lookup) ⇒ ('s,'b) lookup" (infixl ‹|>>› 53)
where
"f |>> g ≡ λs. case f s of None ⇒ None | Some x ⇒ g x s"
definition
"ofail = K None"
definition
"oreturn = K o Some"
definition
"oassert P ≡ if P then oreturn () else ofail"
text ‹
If the result can be an exception.
Corresponding bindE would be analogous to lifting in NonDetMonad.
›
definition
"oreturnOk x = K (Some (Inr x))"
definition
"othrow e = K (Some (Inl e))"
definition
"oguard G ≡ (λs. if G s then Some () else None)"
definition
"ocondition c L R ≡ (λs. if c s then L s else R s)"
definition
"oskip ≡ oreturn ()"
text ‹Monad laws›
lemma oreturn_bind [simp]: "(oreturn x |>> f) = f x"
by (auto simp add: oreturn_def obind_def K_def intro!: ext)
lemma obind_return [simp]: "(m |>> oreturn) = m"
by (auto simp add: oreturn_def obind_def K_def intro!: ext split: option.splits)
lemma obind_assoc:
"(m |>> f) |>> g = m |>> (λx. f x |>> g)"
by (auto simp add: oreturn_def obind_def K_def intro!: ext split: option.splits)
text ‹Binding fail›
lemma obind_fail [simp]:
"f |>> (λ_. ofail) = ofail"
by (auto simp add: ofail_def obind_def K_def intro!: ext split: option.splits)
lemma ofail_bind [simp]:
"ofail |>> m = ofail"
by (auto simp add: ofail_def obind_def K_def intro!: ext split: option.splits)
text ‹Function package setup›
lemma opt_bind_cong [fundef_cong]:
"⟦ f = f'; ⋀v s. f' s = Some v ⟹ g v s = g' v s ⟧ ⟹ f |>> g = f' |>> g'"
by (rule ext) (simp add: obind_def split: option.splits)
lemma opt_bind_cong_apply [fundef_cong]:
"⟦ f s = f' s; ⋀v. f' s = Some v ⟹ g v s = g' v s ⟧ ⟹ (f |>> g) s = (f' |>> g') s"
by (simp add: obind_def split: option.splits)
lemma oassert_bind_cong [fundef_cong]:
"⟦ P = P'; P' ⟹ m = m' ⟧ ⟹ oassert P |>> m = oassert P' |>> m'"
by (auto simp: oassert_def)
lemma oassert_bind_cong_apply [fundef_cong]:
"⟦ P = P'; P' ⟹ m () s = m' () s ⟧ ⟹ (oassert P |>> m) s = (oassert P' |>> m') s"
by (auto simp: oassert_def)
lemma oreturn_bind_cong [fundef_cong]:
"⟦ x = x'; m x' = m' x' ⟧ ⟹ oreturn x |>> m = oreturn x' |>> m'"
by simp
lemma oreturn_bind_cong_apply [fundef_cong]:
"⟦ x = x'; m x' s = m' x' s ⟧ ⟹ (oreturn x |>> m) s = (oreturn x' |>> m') s"
by simp
lemma oreturn_bind_cong2 [fundef_cong]:
"⟦ x = x'; m x' = m' x' ⟧ ⟹ (oreturn $ x) |>> m = (oreturn $ x') |>> m'"
by simp
lemma oreturn_bind_cong2_apply [fundef_cong]:
"⟦ x = x'; m x' s = m' x' s ⟧ ⟹ ((oreturn $ x) |>> m) s = ((oreturn $ x') |>> m') s"
by simp
lemma ocondition_cong [fundef_cong]:
"⟦c = c'; ⋀s. c' s ⟹ l s = l' s; ⋀s. ¬c' s ⟹ r s = r' s⟧
⟹ ocondition c l r = ocondition c' l' r'"
by (auto simp: ocondition_def)
text ‹Decomposition›
lemma ocondition_K_true [simp]:
"ocondition (λ_. True) T F = T"
by (simp add: ocondition_def)
lemma ocondition_K_false [simp]:
"ocondition (λ_. False) T F = F"
by (simp add: ocondition_def)
lemma ocondition_False:
"⟦ ⋀s. ¬ P s ⟧ ⟹ ocondition P L R = R"
by (rule ext, clarsimp simp: ocondition_def)
lemma ocondition_True:
"⟦ ⋀s. P s ⟧ ⟹ ocondition P L R = L"
by (rule ext, clarsimp simp: ocondition_def)
lemma in_oreturn [simp]:
"(oreturn x s = Some v) = (v = x)"
by (auto simp: oreturn_def K_def)
lemma oreturnE:
"⟦oreturn x s = Some v; v = x ⟹ P x⟧ ⟹ P v"
by simp
lemma in_ofail [simp]:
"ofail s ≠ Some v"
by (auto simp: ofail_def K_def)
lemma ofailE:
"ofail s = Some v ⟹ P"
by simp
lemma in_oassert_eq [simp]:
"(oassert P s = Some v) = P"
by (simp add: oassert_def)
lemma oassertE:
"⟦ oassert P s = Some v; P ⟹ Q ⟧ ⟹ Q"
by simp
lemma in_obind_eq:
"((f |>> g) s = Some v) = (∃v'. f s = Some v' ∧ g v' s = Some v)"
by (simp add: obind_def split: option.splits)
lemma obindE:
"⟦ (f |>> g) s = Some v;
⋀v'. ⟦f s = Some v'; g v' s = Some v⟧ ⟹ P⟧ ⟹ P"
by (auto simp: in_obind_eq)
lemma in_othrow_eq [simp]:
"(othrow e s = Some v) = (v = Inl e)"
by (auto simp: othrow_def K_def)
lemma othrowE:
"⟦othrow e s = Some v; v = Inl e ⟹ P (Inl e)⟧ ⟹ P v"
by simp
lemma in_oreturnOk_eq [simp]:
"(oreturnOk x s = Some v) = (v = Inr x)"
by (auto simp: oreturnOk_def K_def)
lemma oreturnOkE:
"⟦oreturnOk x s = Some v; v = Inr x ⟹ P (Inr x)⟧ ⟹ P v"
by simp
lemmas omonadE [elim!] =
opt_mapE obindE oreturnE ofailE othrowE oreturnOkE oassertE
section ‹"While" loops over option monad.›
text ‹
This is an inductive definition of a while loop over the plain option monad
(without passing through a state)
›
inductive_set
option_while' :: "('a ⇒ bool) ⇒ ('a ⇒ 'a option) ⇒ 'a option rel"
for C B
where
final: "¬ C r ⟹ (Some r, Some r) ∈ option_while' C B"
| fail: "⟦ C r; B r = None ⟧ ⟹ (Some r, None) ∈ option_while' C B"
| step: "⟦ C r; B r = Some r'; (Some r', sr'') ∈ option_while' C B ⟧
⟹ (Some r, sr'') ∈ option_while' C B"
definition
"option_while C B r ≡
(if (∃s. (Some r, s) ∈ option_while' C B) then
(THE s. (Some r, s) ∈ option_while' C B) else None)"
lemma option_while'_inj:
assumes "(s,s') ∈ option_while' C B" "(s, s'') ∈ option_while' C B"
shows "s' = s''"
using assms by (induct rule: option_while'.induct) (auto elim: option_while'.cases)
lemma option_while'_inj_step:
"⟦ C s; B s = Some s'; (Some s, t) ∈ option_while' C B ; (Some s', t') ∈ option_while' C B ⟧ ⟹ t = t'"
by (metis option_while'.step option_while'_inj)
lemma option_while'_THE:
assumes "(Some r, sr') ∈ option_while' C B"
shows "(THE s. (Some r, s) ∈ option_while' C B) = sr'"
using assms by (blast dest: option_while'_inj)
lemma option_while_simps:
"¬ C s ⟹ option_while C B s = Some s"
"C s ⟹ B s = None ⟹ option_while C B s = None"
"C s ⟹ B s = Some s' ⟹ option_while C B s = option_while C B s'"
"(Some s, ss') ∈ option_while' C B ⟹ option_while C B s = ss'"
using option_while'_inj_step[of C s B s']
by (auto simp: option_while_def option_while'_THE
intro: option_while'.intros
dest: option_while'_inj
elim: option_while'.cases)
lemma option_while_rule:
assumes "option_while C B s = Some s'"
assumes "I s"
assumes istep: "⋀s s'. C s ⟹ I s ⟹ B s = Some s' ⟹ I s'"
shows "I s' ∧ ¬ C s'"
proof -
{ fix ss ss' assume "(ss, ss') ∈ option_while' C B" "ss = Some s" "ss' = Some s'"
then have ?thesis using ‹I s›
by (induct arbitrary: s) (auto intro: istep) }
then show ?thesis using assms(1)
by (auto simp: option_while_def option_while'_THE split: if_split_asm)
qed
lemma option_while'_term:
assumes "I r"
assumes "wf M"
assumes step_less: "⋀r r'. ⟦I r; C r; B r = Some r'⟧ ⟹ (r',r) ∈ M"
assumes step_I: "⋀r r'. ⟦I r; C r; B r = Some r'⟧ ⟹ I r'"
obtains sr' where "(Some r, sr') ∈ option_while' C B"
apply atomize_elim
using assms(2,1)
proof induct
case (less r)
show ?case
proof (cases "C r" "B r" rule: bool.exhaust[case_product option.exhaust])
case (True_Some r')
then have "(r',r) ∈ M" "I r'"
by (auto intro: less step_less step_I)
then obtain sr' where "(Some r', sr') ∈ option_while' C B"
by atomize_elim (rule less)
then have "(Some r, sr') ∈ option_while' C B"
using True_Some by (auto intro: option_while'.intros)
then show ?thesis ..
qed (auto intro: option_while'.intros)
qed
lemma option_while_rule':
assumes "option_while C B s = ss'"
assumes "wf M"
assumes "I (Some s)"
assumes less: "⋀s s'. C s ⟹ I (Some s) ⟹ B s = Some s' ⟹ (s', s) ∈ M"
assumes step: "⋀s s'. C s ⟹ I (Some s) ⟹ B s = Some s' ⟹ I (Some s')"
assumes final: "⋀s. C s ⟹ I (Some s) ⟹ B s = None ⟹ I None"
shows "I ss' ∧ (case ss' of Some s' ⇒ ¬ C s' | _ ⇒ True)"
proof -
define ss where "ss = Some s"
obtain ss1' where "(Some s, ss1') ∈ option_while' C B"
using assms(3,2,4,5) by (rule option_while'_term)
then have *: "(ss, ss') ∈ option_while' C B" using ‹option_while C B s = ss'›
by (auto simp: option_while_simps ss_def)
show ?thesis
proof (cases ss')
case (Some s') with * ss_def show ?thesis using ‹I _›
by (induct arbitrary:s) (auto intro: step)
next
case None with * ss_def show ?thesis using ‹I _›
by (induct arbitrary:s) (auto intro: step final)
qed
qed
section ‹Lift @{term option_while} to the @{typ "('a,'s) lookup"} monad›
definition
owhile :: "('a ⇒ 's ⇒ bool) ⇒ ('a ⇒ ('s,'a) lookup) ⇒ 'a ⇒ ('s,'a) lookup"
where
"owhile c b a ≡ λs. option_while (λa. c a s) (λa. b a s) a"
lemma owhile_unroll:
"owhile C B r = ocondition (C r) (B r |>> owhile C B) (oreturn r)"
by (auto simp: ocondition_def obind_def oreturn_def owhile_def
option_while_simps K_def split: option.split)
text ‹rule for terminating loops›
lemma owhile_rule:
assumes "I r s"
assumes "wf M"
assumes less: "⋀r r'. ⟦I r s; C r s; B r s = Some r'⟧ ⟹ (r',r) ∈ M"
assumes step: "⋀r r'. ⟦I r s; C r s; B r s = Some r'⟧ ⟹ I r' s"
assumes fail: "⋀r r'. ⟦I r s; C r s; B r s = None⟧ ⟹ Q None"
assumes final: "⋀r. ⟦I r s; ¬C r s⟧ ⟹ Q (Some r)"
shows "Q (owhile C B r s)"
proof -
let ?rs' = "owhile C B r s"
have "(case ?rs' of Some r ⇒ I r s | _ ⇒ Q None)
∧ (case ?rs' of Some r' ⇒ ¬ C r' s | _ ⇒ True)"
by (rule option_while_rule'[where B="λr. B r s" and s=r, OF _ ‹wf _›])
(auto simp: owhile_def intro: assms)
then show ?thesis by (auto intro: final split: option.split_asm)
qed
end