Theory Graph_Genus
theory Graph_Genus
imports
"HOL-Combinatorics.Permutations"
Graph_Theory.Graph_Theory
begin
lemma nat_diff_mod_right:
fixes a b c :: nat
assumes "b < a"
shows "(a - b) mod c = (a - b mod c) mod c"
proof -
from assms have b_mod: "b mod c ≤ a"
by (metis mod_less_eq_dividend linear not_le order_trans)
have "int ((a - b) mod c) = (int a - int b mod int c) mod int c"
using assms by (simp add: zmod_int of_nat_diff mod_simps)
also have "… = int ((a - b mod c) mod c)"
using assms b_mod by (simp add: zmod_int)
finally show ?thesis by simp
qed
lemma inj_on_f_imageI:
assumes "inj_on f S" "⋀t. t ∈ T ⟹ t ⊆ S"
shows "inj_on ((`) f) T"
using assms by (auto simp: inj_on_image_eq_iff intro: inj_onI)
section ‹Combinatorial Maps›
lemma (in bidirected_digraph) has_dom_arev:
"has_dom arev (arcs G)"
using arev_dom by (auto simp: has_dom_def)
record 'b pre_map =
edge_rev :: "'b ⇒ 'b"
edge_succ :: "'b ⇒ 'b"
definition edge_pred :: "'b pre_map ⇒ 'b ⇒ 'b" where
"edge_pred M = inv (edge_succ M)"
locale pre_digraph_map = pre_digraph + fixes M :: "'b pre_map"
locale digraph_map = fin_digraph G
+ pre_digraph_map G M
+ bidirected_digraph G "edge_rev M" for G M +
assumes edge_succ_permutes: "edge_succ M permutes arcs G"
assumes edge_succ_cyclic: "⋀v. v ∈ verts G ⟹ out_arcs G v ≠ {} ⟹ cyclic_on (edge_succ M) (out_arcs G v)"
lemma (in fin_digraph) digraph_mapI:
assumes bidi: "⋀a. a ∉ arcs G ⟹ edge_rev M a = a"
"⋀a. a ∈ arcs G ⟹ edge_rev M a ≠ a"
"⋀a. a ∈ arcs G ⟹ edge_rev M (edge_rev M a) = a"
"⋀a. a ∈ arcs G ⟹ tail G (edge_rev M a) = head G a"
assumes edge_succ_permutes: "edge_succ M permutes arcs G"
assumes edge_succ_cyclic: "⋀v. v ∈ verts G ⟹ out_arcs G v ≠ {} ⟹ cyclic_on (edge_succ M) (out_arcs G v)"
shows "digraph_map G M"
using assms by unfold_locales auto
lemma (in fin_digraph) digraph_mapI_permutes:
assumes bidi: "edge_rev M permutes arcs G"
"⋀a. a ∈ arcs G ⟹ edge_rev M a ≠ a"
"⋀a. a ∈ arcs G ⟹ edge_rev M (edge_rev M a) = a"
"⋀a. a ∈ arcs G ⟹ tail G (edge_rev M a) = head G a"
assumes edge_succ_permutes: "edge_succ M permutes arcs G"
assumes edge_succ_cyclic: "⋀v. v ∈ verts G ⟹ out_arcs G v ≠ {} ⟹ cyclic_on (edge_succ M) (out_arcs G v)"
shows "digraph_map G M"
proof -
interpret bidirected_digraph G "edge_rev M" using bidi by unfold_locales (auto simp: permutes_def)
show ?thesis
using edge_succ_permutes edge_succ_cyclic by unfold_locales
qed
context digraph_map
begin
lemma digraph_map[intro]: "digraph_map G M" by unfold_locales
lemma permutation_edge_succ: "permutation (edge_succ M)"
by (metis edge_succ_permutes finite_arcs permutation_permutes)
lemma edge_pred_succ[simp]: "edge_pred M (edge_succ M a) = a"
by (metis edge_pred_def edge_succ_permutes permutes_inverses(2))
lemma edge_succ_pred[simp]: "edge_succ M (edge_pred M a) = a"
by (metis edge_pred_def edge_succ_permutes permutes_inverses(1))
lemma edge_pred_permutes: "edge_pred M permutes arcs G"
unfolding edge_pred_def using edge_succ_permutes by (rule permutes_inv)
lemma permutation_edge_pred: "permutation (edge_pred M)"
by (metis edge_pred_permutes finite_arcs permutation_permutes)
lemma edge_succ_eq_iff[simp]: "⋀x y. edge_succ M x = edge_succ M y ⟷ x = y"
by (metis edge_pred_succ)
lemma edge_rev_in_arcs[simp]: "edge_rev M a ∈ arcs G ⟷ a ∈ arcs G"
by (metis arev_arev arev_permutes_arcs permutes_not_in)
lemma edge_succ_in_arcs[simp]: "edge_succ M a ∈ arcs G ⟷ a ∈ arcs G"
by (metis edge_pred_succ edge_succ_permutes permutes_not_in)
lemma edge_pred_in_arcs[simp]: "edge_pred M a ∈ arcs G ⟷ a ∈ arcs G"
by (metis edge_succ_pred edge_pred_permutes permutes_not_in)
lemma tail_edge_succ[simp]: "tail G (edge_succ M a) = tail G a"
proof cases
assume "a ∈ arcs G"
then have "tail G a ∈ verts G" by auto
moreover
then have "out_arcs G (tail G a) ≠ {}"
using ‹a ∈ arcs G› by auto
ultimately
have "cyclic_on (edge_succ M) (out_arcs G (tail G a))"
by (rule edge_succ_cyclic)
moreover
have "a ∈ out_arcs G (tail G a)"
using ‹a ∈ arcs G› by simp
ultimately
have "edge_succ M a ∈ out_arcs G (tail G a)"
by (rule cyclic_on_inI)
then show ?thesis by simp
next
assume "a ∉ arcs G" then show ?thesis using edge_succ_permutes by (simp add: permutes_not_in)
qed
lemma tail_edge_pred[simp]: "tail G (edge_pred M a) = tail G a"
by (metis edge_succ_pred tail_edge_succ)
lemma bij_edge_succ[intro]: "bij (edge_succ M)"
using edge_succ_permutes by (simp add: permutes_conv_has_dom)
lemma edge_pred_cyclic:
assumes "v ∈ verts G" "out_arcs G v ≠ {}"
shows "cyclic_on (edge_pred M) (out_arcs G v)"
proof -
obtain a where orb_a_eq: "orbit (edge_succ M) a = out_arcs G v"
using edge_succ_cyclic[OF assms] by (auto simp: cyclic_on_def)
have "cyclic_on (edge_pred M) (orbit (edge_pred M) a)"
using permutation_edge_pred by (rule cyclic_on_orbit')
also have "orbit (edge_pred M) a = orbit (edge_succ M) a"
unfolding edge_pred_def using permutation_edge_succ by (rule orbit_inv_eq)
finally show "cyclic_on (edge_pred M) (out_arcs G v)" by (simp add: orb_a_eq)
qed
definition (in pre_digraph_map) face_cycle_succ :: "'b ⇒ 'b" where
"face_cycle_succ ≡ edge_succ M o edge_rev M"
definition (in pre_digraph_map) face_cycle_pred :: "'b ⇒ 'b" where
"face_cycle_pred ≡ edge_rev M o edge_pred M"
lemma face_cycle_pred_succ[simp]:
shows "face_cycle_pred (face_cycle_succ a) = a"
unfolding face_cycle_pred_def face_cycle_succ_def by simp
lemma face_cycle_succ_pred[simp]:
shows "face_cycle_succ (face_cycle_pred a) = a"
unfolding face_cycle_pred_def face_cycle_succ_def by simp
lemma tail_face_cycle_succ: "a ∈ arcs G ⟹ tail G (face_cycle_succ a) = head G a"
by (auto simp: face_cycle_succ_def)
lemma funpow_prop:
assumes "⋀x. P (f x) ⟷ P x"
shows "P ((f ^^ n) x) ⟷ P x"
using assms by (induct n) auto
lemma face_cycle_succ_no_arc[simp]: "a ∉ arcs G ⟹ face_cycle_succ a = a"
by (auto simp: face_cycle_succ_def permutes_not_in[OF arev_permutes_arcs]
permutes_not_in[OF edge_succ_permutes])
lemma funpow_face_cycle_succ_no_arc[simp]:
assumes "a ∉ arcs G" shows "(face_cycle_succ ^^ n) a = a"
using assms by (induct n) auto
lemma funpow_face_cycle_pred_no_arc[simp]:
assumes "a ∉ arcs G" shows "(face_cycle_pred ^^ n) a = a"
using assms
by (induct n) (auto simp: face_cycle_pred_def permutes_not_in[OF arev_permutes_arcs]
permutes_not_in[OF edge_pred_permutes])
lemma face_cycle_succ_closed[simp]:
"face_cycle_succ a ∈ arcs G ⟷ a ∈ arcs G"
by (metis comp_apply edge_rev_in_arcs edge_succ_in_arcs face_cycle_succ_def)
lemma face_cycle_pred_closed[simp]:
"face_cycle_pred a ∈ arcs G ⟷ a ∈ arcs G"
by (metis face_cycle_succ_closed face_cycle_succ_pred)
lemma face_cycle_succ_permutes:
"face_cycle_succ permutes arcs G"
unfolding face_cycle_succ_def
using arev_permutes_arcs edge_succ_permutes by (rule permutes_compose)
lemma permutation_face_cycle_succ: "permutation face_cycle_succ"
using face_cycle_succ_permutes finite_arcs by (metis permutation_permutes)
lemma bij_face_cycle_succ: "bij face_cycle_succ"
using face_cycle_succ_permutes by (simp add: permutes_conv_has_dom)
lemma face_cycle_pred_permutes:
"face_cycle_pred permutes arcs G"
unfolding face_cycle_pred_def
using edge_pred_permutes arev_permutes_arcs by (rule permutes_compose)
definition (in pre_digraph_map) face_cycle_set :: "'b ⇒ 'b set" where
"face_cycle_set a = orbit face_cycle_succ a"
definition (in pre_digraph_map) face_cycle_sets :: "'b set set" where
"face_cycle_sets = face_cycle_set ` arcs G"
lemma face_cycle_set_altdef: "face_cycle_set a = {(face_cycle_succ ^^ n) a | n. True}"
unfolding face_cycle_set_def
by (intro orbit_altdef_self_in permutation_self_in_orbit permutation_face_cycle_succ)
lemma face_cycle_set_self[simp, intro]: "a ∈ face_cycle_set a"
unfolding face_cycle_set_def using permutation_face_cycle_succ by (rule permutation_self_in_orbit)
lemma empty_not_in_face_cycle_sets: "{} ∉ face_cycle_sets"
by (auto simp: face_cycle_sets_def)
lemma finite_face_cycle_set[simp, intro]: "finite (face_cycle_set a)"
using face_cycle_set_self unfolding face_cycle_set_def by (simp add: finite_orbit)
lemma finite_face_cycle_sets[simp, intro]: "finite face_cycle_sets"
by (auto simp: face_cycle_sets_def)
lemma face_cycle_set_induct[case_names base step, induct set: face_cycle_set]:
assumes consume: "a ∈ face_cycle_set x"
and ih_base: "P x"
and ih_step: "⋀y. y ∈ face_cycle_set x ⟹ P y ⟹ P (face_cycle_succ y)"
shows "P a"
using consume unfolding face_cycle_set_def
by induct (auto simp: ih_step face_cycle_set_def[symmetric] ih_base )
lemma face_cycle_succ_cyclic:
"cyclic_on face_cycle_succ (face_cycle_set a)"
unfolding face_cycle_set_def using permutation_face_cycle_succ by (rule cyclic_on_orbit')
lemma face_cycle_eq:
assumes "b ∈ face_cycle_set a" shows "face_cycle_set b = face_cycle_set a"
using assms unfolding face_cycle_set_def
by (auto intro: orbit_swap orbit_trans permutation_face_cycle_succ permutation_self_in_orbit)
lemma face_cycle_succ_in_arcsI: "⋀a. a ∈ arcs G ⟹ face_cycle_succ a ∈ arcs G"
by (auto simp: face_cycle_succ_def)
lemma face_cycle_succ_inI: "⋀x y. x ∈ face_cycle_set y ⟹ face_cycle_succ x ∈ face_cycle_set y"
by (metis face_cycle_succ_cyclic cyclic_on_inI)
lemma face_cycle_succ_inD: "⋀x y. face_cycle_succ x ∈ face_cycle_set y ⟹ x ∈ face_cycle_set y"
by (metis face_cycle_eq face_cycle_set_self face_cycle_succ_inI)
lemma face_cycle_set_parts:
"face_cycle_set a = face_cycle_set b ∨ face_cycle_set a ∩ face_cycle_set b = {}"
by (metis disjoint_iff_not_equal face_cycle_eq)
definition fc_equiv :: "'b ⇒ 'b ⇒ bool" where
"fc_equiv a b ≡ a ∈ face_cycle_set b"
lemma reflp_fc_equiv: "reflp fc_equiv"
by (rule reflpI) (simp add: fc_equiv_def)
lemma symp_fc_equiv: "symp fc_equiv"
using face_cycle_set_parts
by (intro sympI) (auto simp: fc_equiv_def)
lemma transp_fc_equiv: "transp fc_equiv"
using face_cycle_set_parts
by (intro transpI) (auto simp: fc_equiv_def)
lemma "equivp fc_equiv"
by (intro equivpI reflp_fc_equiv symp_fc_equiv transp_fc_equiv)
lemma in_face_cycle_setD:
assumes "y ∈ face_cycle_set x" "x ∈ arcs G" shows "y ∈ arcs G"
using assms
by (auto simp: face_cycle_set_def dest: permutes_orbit_subset[OF face_cycle_succ_permutes])
lemma in_face_cycle_setsD:
assumes "x ∈ face_cycle_sets" shows "x ⊆ arcs G"
using assms by (auto simp: face_cycle_sets_def dest: in_face_cycle_setD)
end
definition (in pre_digraph) isolated_verts :: "'a set" where
"isolated_verts ≡ {v ∈ verts G. out_arcs G v = {}}"
definition (in pre_digraph_map) euler_char :: int where
"euler_char ≡ int (card (verts G)) - int (card (arcs G) div 2) + int (card face_cycle_sets)"
definition (in pre_digraph_map) euler_genus :: int where
"euler_genus ≡ (int (2 * card sccs) - int (card isolated_verts) - euler_char) div 2"
definition comb_planar :: "('a,'b) pre_digraph ⇒ bool" where
"comb_planar G ≡ ∃M. digraph_map G M ∧ pre_digraph_map.euler_genus G M = 0"
text ‹Number of isolated vertices is a graph invariant›
context
fixes G hom assumes hom: "pre_digraph.digraph_isomorphism G hom"
begin
interpretation wf_digraph G using hom by (auto simp: pre_digraph.digraph_isomorphism_def)
lemma isolated_verts_app_iso[simp]:
"pre_digraph.isolated_verts (app_iso hom G) = iso_verts hom ` isolated_verts"
using hom
by (auto simp: pre_digraph.isolated_verts_def iso_verts_tail inj_image_mem_iff out_arcs_app_iso_eq)
lemma card_isolated_verts_iso[simp]:
"card (iso_verts hom ` pre_digraph.isolated_verts G) = card isolated_verts"
apply (rule card_image)
using hom apply (rule digraph_isomorphism_inj_on_verts[THEN subset_inj_on])
apply (auto simp: isolated_verts_def)
done
end
context digraph_map begin
lemma face_cycle_succ_neq:
assumes "a ∈ arcs G" "tail G a ≠ head G a" shows "face_cycle_succ a ≠ a "
proof -
from assms have "edge_rev M a ∈ arcs G"
by (subst edge_rev_in_arcs) simp
then have "cyclic_on (edge_succ M) (out_arcs G (tail G (edge_rev M a)))"
by (intro edge_succ_cyclic) (auto dest: tail_in_verts simp: out_arcs_def intro: exI[where x="edge_rev M a"])
then have "edge_succ M (edge_rev M a) ∈ (out_arcs G (tail G (edge_rev M a)))"
by (rule cyclic_on_inI) (auto simp: ‹edge_rev M a ∈ _›[simplified])
moreover have "tail G (edge_succ M (edge_rev M a)) = head G a"
using assms by auto
then have "edge_succ M (edge_rev M a) ≠ a" using assms by metis
ultimately show ?thesis
using assms by (auto simp: face_cycle_succ_def)
qed
end
section ‹Maps and Isomorphism›
definition (in pre_digraph)
"wrap_iso_arcs hom f = perm_restrict (iso_arcs hom o f o iso_arcs (inv_iso hom)) (arcs (app_iso hom G))"
definition (in pre_digraph_map) map_iso :: "('a,'b,'a2,'b2) digraph_isomorphism ⇒ 'b2 pre_map" where
"map_iso f ≡
⦇ edge_rev = wrap_iso_arcs f (edge_rev M)
, edge_succ = wrap_iso_arcs f (edge_succ M)
⦈"
lemma funcsetI_permutes:
assumes "f permutes S" shows "f ∈ S → S"
by (metis assms funcsetI permutes_in_image)
context
fixes G hom assumes hom: "pre_digraph.digraph_isomorphism G hom"
begin
interpretation wf_digraph G using hom by (auto simp: pre_digraph.digraph_isomorphism_def)
lemma wrap_iso_arcs_iso_arcs[simp]:
assumes "x ∈ arcs G"
shows "wrap_iso_arcs hom f (iso_arcs hom x) = iso_arcs hom (f x)"
using assms hom by (auto simp: wrap_iso_arcs_def perm_restrict_def)
lemma inj_on_wrap_iso_arcs:
assumes dom: "⋀f. f ∈ F ⟹ has_dom f (arcs G)"
assumes funcset: "F ⊆ arcs G → arcs G"
shows "inj_on (wrap_iso_arcs hom) F"
proof (rule inj_onI)
fix f g assume F: "f ∈ F" "g ∈ F" and eq: "wrap_iso_arcs hom f = wrap_iso_arcs hom g"
{ fix x assume "x ∉ arcs G"
then have "f x = x" "g x = x" using F dom by (auto simp: has_dom_def)
then have "f x = g x" by simp
}
moreover
{ fix x assume "x ∈ arcs G"
then have "f x ∈ arcs G" "g x ∈ arcs G" using F funcset by auto
with digraph_isomorphism_inj_on_arcs[OF hom] _
have "iso_arcs hom (f x) = iso_arcs hom (g x) ⟹ f x = g x"
by (rule inj_onD)
then have "f x = g x"
using assms hom ‹x ∈ arcs G› eq
by (auto simp: wrap_iso_arcs_def fun_eq_iff perm_restrict_def split: if_splits)
}
ultimately show "f = g" by auto
qed
lemma inj_on_wrap_iso_arcs_f:
assumes "A ⊆ arcs G" "f ∈ A → A" "B = iso_arcs hom ` A"
assumes "inj_on f A" shows "inj_on (wrap_iso_arcs hom f) B"
proof (rule inj_onI)
fix x y
assume in_hom_A: "x ∈ B" "y ∈ B"
and wia_eq: "wrap_iso_arcs hom f x = wrap_iso_arcs hom f y"
from in_hom_A ‹B = _› obtain x0 where x0: "x = iso_arcs hom x0" "x0 ∈ A" by auto
from in_hom_A ‹B = _› obtain y0 where y0: "y = iso_arcs hom y0" "y0 ∈ A" by auto
have arcs_0: "x0 ∈ arcs G" "y0 ∈ arcs G" "f x0 ∈ arcs G" "f y0 ∈ arcs G"
using x0 y0 ‹A ⊆ _› ‹f ∈ _› by auto
have "(iso_arcs hom o f o iso_arcs (inv_iso hom)) x = (iso_arcs hom o f o iso_arcs (inv_iso hom)) y"
using in_hom_A wia_eq assms(1) ‹B = _› by (auto simp: wrap_iso_arcs_def perm_restrict_def split: if_splits)
then show "x = y"
using hom assms digraph_isomorphism_inj_on_arcs[OF hom] x0 y0 arcs_0 ‹inj_on f A› ‹A ⊆ _›
by (auto dest!: inj_onD)
qed
lemma wrap_iso_arcs_in_funcsetI:
assumes "A ⊆ arcs G" "f ∈ A → A"
shows "wrap_iso_arcs hom f ∈ iso_arcs hom ` A → iso_arcs hom ` A"
proof
fix x assume "x ∈ iso_arcs hom ` A"
then obtain x0 where "x = iso_arcs hom x0" "x0 ∈ A" by blast
then have "f x0 ∈ A" using ‹f ∈ _› by auto
then show "wrap_iso_arcs hom f x ∈ iso_arcs hom ` A"
unfolding ‹x = _› using ‹x0 ∈ A› assms hom by (auto simp: wrap_iso_arcs_def perm_restrict_def)
qed
lemma wrap_iso_arcs_permutes:
assumes "A ⊆ arcs G" "f permutes A"
shows "wrap_iso_arcs hom f permutes (iso_arcs hom ` A)"
proof -
{ fix x assume A: "x ∉ iso_arcs hom ` A"
have "wrap_iso_arcs hom f x = x"
proof cases
assume "x ∈ iso_arcs hom ` arcs G"
then have "iso_arcs (inv_iso hom) x ∉ A" "x ∈ arcs (app_iso hom G)"
using A hom by (metis arcs_app_iso image_eqI pre_digraph.iso_arcs_iso_inv, simp)
then have "f (iso_arcs (inv_iso hom) x) = (iso_arcs (inv_iso hom) x)"
using ‹f permutes A› by (simp add: permutes_not_in)
then show ?thesis using hom assms ‹x ∈ arcs _›
by (simp add: wrap_iso_arcs_def perm_restrict_def)
next
assume "x ∉ iso_arcs hom ` arcs G"
then show ?thesis
by (simp add: wrap_iso_arcs_def perm_restrict_def)
qed
} note not_in_id = this
have "f ∈ A → A" using assms by (intro funcsetI_permutes)
have inj_on_wrap: "inj_on (wrap_iso_arcs hom f) (iso_arcs hom ` A)"
using assms ‹f ∈ A → A› by (intro inj_on_wrap_iso_arcs_f) (auto intro: subset_inj_on permutes_inj)
have woa_in_fs: "wrap_iso_arcs hom f ∈ iso_arcs hom ` A → iso_arcs hom ` A"
using assms ‹f ∈ A → A› by (intro wrap_iso_arcs_in_funcsetI)
{ fix x y assume "wrap_iso_arcs hom f x = wrap_iso_arcs hom f y"
then have "x = y"
apply (cases "x ∈ iso_arcs hom ` A"; cases "y ∈ iso_arcs hom ` A")
using woa_in_fs inj_on_wrap by (auto dest: inj_onD simp: not_in_id)
} note uniqueD = this
note ‹f permutes A›
moreover
note not_in_id
moreover
{ fix y have "∃x. wrap_iso_arcs hom f x = y"
proof cases
assume "y ∈ iso_arcs hom ` A"
then obtain y0 where "y0 ∈ A" "iso_arcs hom y0 = y" by blast
with ‹f permutes A› obtain x0 where "x0 ∈ A" "f x0 = y0" unfolding permutes_def by metis
moreover
then have "⋀x. x ∈ arcs G ⟹ iso_arcs hom x0 = iso_arcs hom x ⟹ x0 = x"
using assms hom by (auto simp: digraph_isomorphism_def dest: inj_onD)
ultimately
have "wrap_iso_arcs hom f (iso_arcs hom x0) = y"
using ‹_ = y› assms hom by (auto simp: wrap_iso_arcs_def perm_restrict_def)
then show ?thesis ..
qed (metis not_in_id)
}
ultimately
show ?thesis unfolding permutes_def by (auto simp: dest: uniqueD)
qed
end
lemma (in digraph_map) digraph_map_isoI:
assumes "digraph_isomorphism hom" shows "digraph_map (app_iso hom G) (map_iso hom)"
proof -
interpret iG: fin_digraph "app_iso hom G" using assms by (rule fin_digraphI_app_iso)
show ?thesis
proof (rule iG.digraph_mapI_permutes)
show "edge_rev (map_iso hom) permutes arcs (app_iso hom G)"
using assms unfolding map_iso_def by (simp add: wrap_iso_arcs_permutes arev_permutes_arcs)
next
show "edge_succ (map_iso hom) permutes arcs (app_iso hom G)"
using assms unfolding map_iso_def by (simp add: wrap_iso_arcs_permutes edge_succ_permutes)
next
fix a assume A: "a ∈ arcs (app_iso hom G)"
show "tail (app_iso hom G) (edge_rev (map_iso hom) a) = head (app_iso hom G) a"
using A assms
by (cases rule: in_arcs_app_iso_cases) (auto simp: map_iso_def iso_verts_tail iso_verts_head)
show "edge_rev (map_iso hom) (edge_rev (map_iso hom) a) = a"
using A assms by (cases rule: in_arcs_app_iso_cases) (auto simp: map_iso_def)
show "edge_rev (map_iso hom) a ≠ a"
using A assms by (auto simp: map_iso_def arev_neq)
next
fix v assume "v ∈ verts (app_iso hom G)" and oa_hom: "out_arcs (app_iso hom G) v ≠ {}"
then obtain v0 where "v0 ∈ verts G" "v = iso_verts hom v0" by auto
moreover
then have oa: "out_arcs G v0 ≠ {}"
using assms oa_hom by (auto simp: out_arcs_def iso_verts_tail)
ultimately
have cyclic_on_v0: "cyclic_on (edge_succ M) (out_arcs G v0)"
by (intro edge_succ_cyclic)
from oa_hom obtain a where "a ∈ out_arcs (app_iso hom G) v" by blast
then obtain a0 where "a0 ∈ arcs G" "a = iso_arcs hom a0" by auto
then have "a0 ∈ out_arcs G v0"
using ‹v = _› ‹v0 ∈ _› ‹a ∈ _› assms by (simp add: iso_verts_tail)
show "cyclic_on (edge_succ (map_iso hom)) (out_arcs (app_iso hom G) v)"
proof (rule cyclic_on_singleI)
show "a ∈ out_arcs (app_iso hom G) v" by fact
next
have "out_arcs (app_iso hom G) v = iso_arcs hom ` out_arcs G v0"
unfolding ‹v = _› by (rule out_arcs_app_iso_eq) fact+
also have "out_arcs G v0 = orbit (edge_succ M) a0"
using cyclic_on_v0 ‹a0 ∈ out_arcs G v0› unfolding cyclic_on_alldef by simp
also have "iso_arcs hom ` … = orbit (edge_succ (map_iso hom)) a"
proof -
have "⋀x. x ∈ orbit (edge_succ M) a0 ⟹ x ∈ arcs G"
using ‹out_arcs G v0 = _› by auto
then show ?thesis using ‹out_arcs G v0 = _›
unfolding ‹a = _› using ‹a0 ∈ out_arcs G v0› assms
by (intro orbit_inverse) (auto simp: map_iso_def)
qed
finally show "out_arcs (app_iso hom G) v = orbit (edge_succ (map_iso hom)) a" .
qed
qed
qed
end