Theory Weak_Late_Cong_Subst
theory Weak_Late_Cong_Subst
imports Weak_Late_Cong Weak_Late_Bisim_Subst Strong_Late_Bisim_Subst
begin
definition congruenceSubst :: "pi ⇒ pi⇒ bool" (infixr ‹≃⇧s› 65) where
"P ≃⇧s Q ≡ (P, Q) ∈ (substClosed congruence)"
lemmas congruenceSubstDef = congruenceSubst_def congruence_def substClosed_def
lemma unfoldE:
fixes P :: pi
and Q :: pi
and s :: "(name × name) list"
assumes "P ≃⇧s Q"
shows "P[<s>] ↝<weakBisim> Q[<s>]"
and "Q[<s>] ↝<weakBisim> P[<s>]"
proof -
from assms show "P[<s>] ↝<weakBisim> Q[<s>]" by(force simp add: congruenceSubstDef)
next
from assms show "Q[<s>] ↝<weakBisim> P[<s>]" by(force simp add: congruenceSubstDef)
qed
lemma unfoldI:
fixes P :: pi
and Q :: pi
assumes "∀s. P[<s>] ↝<weakBisim> Q[<s>] ∧ Q[<s>] ↝<weakBisim> P[<s>]"
shows "P ≃⇧s Q"
proof -
from assms show ?thesis by(force simp add: congruenceSubstDef)
qed
lemma weakEqSubset:
shows "substClosed congruence ⊆ weakBisim"
proof(auto simp add: substClosed_def)
fix P Q
assume "∀s. P[<s>] ≃ Q[<s>]"
hence "P[<[]>] ≃ Q[<[]>]" by blast
thus "P ≈ Q"
by(force dest: congruenceWeakBisim intro: Weak_Late_Bisim.unfoldI)
qed
lemma weakCongWeakEq:
fixes P :: pi
and Q :: pi
assumes "P ≃⇧s Q"
shows "P ≃ Q"
using assms
apply(auto simp add: substClosed_def congruenceSubst_def)
apply(erule_tac x="[]" in allE)
by auto
lemma eqvt:
shows "eqvt (substClosed congruence)"
by(rule eqvtSubstClosed[OF Weak_Late_Cong.eqvt])
lemma eqvtI:
fixes P :: pi
and Q :: pi
and perm :: "name prm"
assumes "P ≃⇧s Q"
shows "(perm ∙ P) ≃⇧s (perm ∙ Q)"
using assms
by(simp add: congruenceSubst_def) (rule eqvtRelI[OF eqvt])
lemma strongEqWeakCong:
fixes P :: pi
and Q :: pi
assumes "P ∼⇧s Q"
shows "P ≃⇧s Q"
using assms
by(force intro: strongBisimWeakEq simp add: substClosed_def congruenceSubst_def)
lemma congSubstBisimSubst:
fixes P :: pi
and Q :: pi
assumes "P ≃⇧s Q"
shows "P ≈⇧s Q"
using assms
by(force simp add: congruenceSubst_def substClosed_def intro: congruenceWeakBisim)
lemma reflexive:
fixes P :: pi
shows "P ≃⇧s P"
proof -
from Weak_Late_Bisim.reflexive have "⋀P. P ↝<weakBisim> P"
by(blast intro: Weak_Late_Step_Sim.reflexive)
thus ?thesis
by(force simp add: congruenceSubstDef)
qed
lemma symetric:
fixes P :: pi
and Q :: pi
assumes "P ≃⇧s Q"
shows "Q ≃⇧s P"
using assms
by(force simp add: congruenceSubstDef)
lemma transitive:
fixes P :: pi
and Q :: pi
and R :: pi
assumes "P ≃⇧s Q"
and "Q ≃⇧s R"
shows "P ≃⇧s R"
using assms
by(force simp add: congruenceSubst_def substClosed_def intro: Weak_Late_Cong.transitive)
lemma partUnfold:
fixes P :: pi
and Q :: pi
and s :: "(name × name) list"
assumes "P ≃⇧s Q"
shows "P[<s>] ≃⇧s Q[<s>]"
using assms
proof(auto simp add: congruenceSubst_def substClosed_def)
fix s'
assume "∀s. (P[<s>], Q[<s>]) ∈ congruence"
hence "(P[<(s@s')>], Q[<(s@s')>]) ∈ congruence" by blast
moreover have "P[<(s@s')>] = (P[<s>])[<s'>]"
by(induct s', auto)
moreover have "Q[<(s@s')>] = (Q[<s>])[<s'>]"
by(induct s', auto)
ultimately show "((P[<s>])[<s'>], (Q[<s>])[<s'>]) ∈ congruence"
by simp
qed
end