Theory Weak_Late_Bisim_Subst
theory Weak_Late_Bisim_Subst
imports Weak_Late_Bisim Strong_Late_Bisim_Subst
begin
consts weakBisimSubst :: "(pi × pi) set"
abbreviation
weakBisimSubstJudge (infixr ‹≈⇧s› 65) where "P ≈⇧s Q ≡ (P, Q) ∈ (substClosed weakBisim)"
lemma congBisim:
fixes P :: pi
and Q :: pi
assumes "P ≈⇧s Q"
shows "P ≈ Q"
proof -
from assms substClosedSubset show ?thesis
by blast
qed
lemma strongBisimWeakBisim:
fixes P :: pi
and Q :: pi
assumes "P ∼⇧s Q"
shows "P ≈⇧s Q"
using assms
by(auto simp add: substClosed_def intro: strongBisimWeakBisim)
lemma eqvt:
shows "eqvt (substClosed weakBisim)"
by(rule eqvtSubstClosed[OF Weak_Late_Bisim.eqvt])
lemma eqvtI:
fixes P :: pi
and Q :: pi
and perm :: "name prm"
assumes "P ≈⇧s Q"
shows "(perm ∙ P) ≈⇧s (perm ∙ Q)"
using assms
by(rule_tac eqvtRelI[OF eqvt])
lemma reflexive:
fixes P :: pi
shows "P ≈⇧s P"
by(force simp add: substClosed_def intro: Weak_Late_Bisim.reflexive)
lemma symetric:
fixes P :: pi
and Q :: pi
assumes "P ≈⇧s Q"
shows "Q ≈⇧s P"
using assms
by(force simp add: substClosed_def intro: Weak_Late_Bisim.symmetric)
lemma transitive:
fixes P :: pi
and Q :: pi
and R :: pi
assumes "P ≈⇧s Q"
and "Q ≈⇧s R"
shows "P ≈⇧s R"
using assms
by(force simp add: substClosed_def intro: Weak_Late_Bisim.transitive)
lemma partUnfold:
fixes P :: pi
and Q :: pi
and s :: "(name × name) list"
assumes "P ≈⇧s Q"
shows "P[<s>] ≈⇧s Q[<s>]"
using assms
proof(auto simp add: substClosed_def)
fix s'
assume "∀s. P[<s>] ≈ Q[<s>]"
hence "P[<(s@s')>] ≈ Q[<(s@s')>]" by blast
moreover have "P[<(s@s')>] = (P[<s>])[<s'>]"
by(induct s', auto)
moreover have "Q[<(s@s')>] = (Q[<s>])[<s'>]"
by(induct s', auto)
ultimately show "(P[<s>])[<s'>] ≈ (Q[<s>])[<s'>]"
by simp
qed
end