Theory HOL-Library.Finite_Map
section ‹Type of finite maps defined as a subtype of maps›
theory Finite_Map
imports FSet AList Conditional_Parametricity
abbrevs "(=" = "⊆⇩f"
begin
subsection ‹Auxiliary constants and lemmas over \<^type>‹map››
parametric_constant map_add_transfer[transfer_rule]: map_add_def
parametric_constant map_of_transfer[transfer_rule]: map_of_def
context includes lifting_syntax begin
abbreviation rel_map :: "('b ⇒ 'c ⇒ bool) ⇒ ('a ⇀ 'b) ⇒ ('a ⇀ 'c) ⇒ bool" where
"rel_map f ≡ (=) ===> rel_option f"
lemma ran_transfer[transfer_rule]: "(rel_map A ===> rel_set A) ran ran"
proof
fix m n
assume "rel_map A m n"
show "rel_set A (ran m) (ran n)"
proof (rule rel_setI)
fix x
assume "x ∈ ran m"
then obtain a where "m a = Some x"
unfolding ran_def by auto
have "rel_option A (m a) (n a)"
using ‹rel_map A m n›
by (auto dest: rel_funD)
then obtain y where "n a = Some y" "A x y"
unfolding ‹m a = _›
by cases auto
then show "∃y ∈ ran n. A x y"
unfolding ran_def by blast
next
fix y
assume "y ∈ ran n"
then obtain a where "n a = Some y"
unfolding ran_def by auto
have "rel_option A (m a) (n a)"
using ‹rel_map A m n›
by (auto dest: rel_funD)
then obtain x where "m a = Some x" "A x y"
unfolding ‹n a = _›
by cases auto
then show "∃x ∈ ran m. A x y"
unfolding ran_def by blast
qed
qed
lemma ran_alt_def: "ran m = (the ∘ m) ` dom m"
unfolding ran_def dom_def by force
parametric_constant dom_transfer[transfer_rule]: dom_def
definition map_upd :: "'a ⇒ 'b ⇒ ('a ⇀ 'b) ⇒ ('a ⇀ 'b)" where
"map_upd k v m = m(k ↦ v)"
parametric_constant map_upd_transfer[transfer_rule]: map_upd_def
definition map_filter :: "('a ⇒ bool) ⇒ ('a ⇀ 'b) ⇒ ('a ⇀ 'b)" where
"map_filter P m = (λx. if P x then m x else None)"
parametric_constant map_filter_transfer[transfer_rule]: map_filter_def
lemma map_filter_map_of[simp]: "map_filter P (map_of m) = map_of [(k, _) ← m. P k]"
proof
fix x
show "map_filter P (map_of m) x = map_of [(k, _) ← m. P k] x"
by (induct m) (auto simp: map_filter_def)
qed
lemma map_filter_finite[intro]:
assumes "finite (dom m)"
shows "finite (dom (map_filter P m))"
proof -
have "dom (map_filter P m) = Set.filter P (dom m)"
unfolding map_filter_def Set.filter_def dom_def
by auto
then show ?thesis
using assms
by (simp add: Set.filter_def)
qed
definition map_drop :: "'a ⇒ ('a ⇀ 'b) ⇒ ('a ⇀ 'b)" where
"map_drop a = map_filter (λa'. a' ≠ a)"
parametric_constant map_drop_transfer[transfer_rule]: map_drop_def
definition map_drop_set :: "'a set ⇒ ('a ⇀ 'b) ⇒ ('a ⇀ 'b)" where
"map_drop_set A = map_filter (λa. a ∉ A)"
parametric_constant map_drop_set_transfer[transfer_rule]: map_drop_set_def
definition map_restrict_set :: "'a set ⇒ ('a ⇀ 'b) ⇒ ('a ⇀ 'b)" where
"map_restrict_set A = map_filter (λa. a ∈ A)"
parametric_constant map_restrict_set_transfer[transfer_rule]: map_restrict_set_def
definition map_pred :: "('a ⇒ 'b ⇒ bool) ⇒ ('a ⇀ 'b) ⇒ bool" where
"map_pred P m ⟷ (∀x. case m x of None ⇒ True | Some y ⇒ P x y)"
parametric_constant map_pred_transfer[transfer_rule]: map_pred_def
definition rel_map_on_set :: "'a set ⇒ ('b ⇒ 'c ⇒ bool) ⇒ ('a ⇀ 'b) ⇒ ('a ⇀ 'c) ⇒ bool" where
"rel_map_on_set S P = eq_onp (λx. x ∈ S) ===> rel_option P"
definition set_of_map :: "('a ⇀ 'b) ⇒ ('a × 'b) set" where
"set_of_map m = {(k, v)|k v. m k = Some v}"
lemma set_of_map_alt_def: "set_of_map m = (λk. (k, the (m k))) ` dom m"
unfolding set_of_map_def dom_def
by auto
lemma set_of_map_finite: "finite (dom m) ⟹ finite (set_of_map m)"
unfolding set_of_map_alt_def
by auto
lemma set_of_map_inj: "inj set_of_map"
proof
fix x y
assume "set_of_map x = set_of_map y"
hence "(x a = Some b) = (y a = Some b)" for a b
unfolding set_of_map_def by auto
hence "x k = y k" for k
by (metis not_None_eq)
thus "x = y" ..
qed
lemma dom_comp: "dom (m ∘⇩m n) ⊆ dom n"
unfolding map_comp_def dom_def
by (auto split: option.splits)
lemma dom_comp_finite: "finite (dom n) ⟹ finite (dom (map_comp m n))"
by (metis finite_subset dom_comp)
parametric_constant map_comp_transfer[transfer_rule]: map_comp_def
end
subsection ‹Abstract characterisation›
typedef ('a, 'b) fmap = "{m. finite (dom m)} :: ('a ⇀ 'b) set"
morphisms fmlookup Abs_fmap
proof
show "Map.empty ∈ {m. finite (dom m)}"
by auto
qed
setup_lifting type_definition_fmap
lemma dom_fmlookup_finite[intro, simp]: "finite (dom (fmlookup m))"
using fmap.fmlookup by auto
lemma fmap_ext:
assumes "⋀x. fmlookup m x = fmlookup n x"
shows "m = n"
using assms
by transfer' auto
subsection ‹Operations›
context
includes fset.lifting
begin
lift_definition fmran :: "('a, 'b) fmap ⇒ 'b fset"
is ran
parametric ran_transfer
by (rule finite_ran)
lemma fmlookup_ran_iff: "y |∈| fmran m ⟷ (∃x. fmlookup m x = Some y)"
by transfer' (auto simp: ran_def)
lemma fmranI: "fmlookup m x = Some y ⟹ y |∈| fmran m" by (auto simp: fmlookup_ran_iff)
lemma fmranE[elim]:
assumes "y |∈| fmran m"
obtains x where "fmlookup m x = Some y"
using assms by (auto simp: fmlookup_ran_iff)
lift_definition fmdom :: "('a, 'b) fmap ⇒ 'a fset"
is dom
parametric dom_transfer
.
lemma fmlookup_dom_iff: "x |∈| fmdom m ⟷ (∃a. fmlookup m x = Some a)"
by transfer' auto
lemma fmdom_notI: "fmlookup m x = None ⟹ x |∉| fmdom m" by (simp add: fmlookup_dom_iff)
lemma fmdomI: "fmlookup m x = Some y ⟹ x |∈| fmdom m" by (simp add: fmlookup_dom_iff)
lemma fmdom_notD[dest]: "x |∉| fmdom m ⟹ fmlookup m x = None" by (simp add: fmlookup_dom_iff)
lemma fmdomE[elim]:
assumes "x |∈| fmdom m"
obtains y where "fmlookup m x = Some y"
using assms by (auto simp: fmlookup_dom_iff)
lift_definition fmdom' :: "('a, 'b) fmap ⇒ 'a set"
is dom
parametric dom_transfer
.
lemma fmlookup_dom'_iff: "x ∈ fmdom' m ⟷ (∃a. fmlookup m x = Some a)"
by transfer' auto
lemma fmdom'_notI: "fmlookup m x = None ⟹ x ∉ fmdom' m" by (simp add: fmlookup_dom'_iff)
lemma fmdom'I: "fmlookup m x = Some y ⟹ x ∈ fmdom' m" by (simp add: fmlookup_dom'_iff)
lemma fmdom'_notD[dest]: "x ∉ fmdom' m ⟹ fmlookup m x = None" by (simp add: fmlookup_dom'_iff)
lemma fmdom'E[elim]:
assumes "x ∈ fmdom' m"
obtains x y where "fmlookup m x = Some y"
using assms by (auto simp: fmlookup_dom'_iff)
lemma fmdom'_alt_def: "fmdom' m = fset (fmdom m)"
by transfer' force
lemma finite_fmdom'[simp]: "finite (fmdom' m)"
unfolding fmdom'_alt_def by simp
lemma dom_fmlookup[simp]: "dom (fmlookup m) = fmdom' m"
by transfer' simp
lift_definition fmempty :: "('a, 'b) fmap"
is Map.empty
by simp
lemma fmempty_lookup[simp]: "fmlookup fmempty x = None"
by transfer' simp
lemma fmdom_empty[simp]: "fmdom fmempty = {||}" by transfer' simp
lemma fmdom'_empty[simp]: "fmdom' fmempty = {}" by transfer' simp
lemma fmran_empty[simp]: "fmran fmempty = fempty" by transfer' (auto simp: ran_def map_filter_def)
lift_definition fmupd :: "'a ⇒ 'b ⇒ ('a, 'b) fmap ⇒ ('a, 'b) fmap"
is map_upd
parametric map_upd_transfer
unfolding map_upd_def[abs_def]
by simp
lemma fmupd_lookup[simp]: "fmlookup (fmupd a b m) a' = (if a = a' then Some b else fmlookup m a')"
by transfer' (auto simp: map_upd_def)
lemma fmdom_fmupd[simp]: "fmdom (fmupd a b m) = finsert a (fmdom m)" by transfer (simp add: map_upd_def)
lemma fmdom'_fmupd[simp]: "fmdom' (fmupd a b m) = insert a (fmdom' m)" by transfer (simp add: map_upd_def)
lemma fmupd_reorder_neq:
assumes "a ≠ b"
shows "fmupd a x (fmupd b y m) = fmupd b y (fmupd a x m)"
using assms
by transfer' (auto simp: map_upd_def)
lemma fmupd_idem[simp]: "fmupd a x (fmupd a y m) = fmupd a x m"
by transfer' (auto simp: map_upd_def)
lift_definition fmfilter :: "('a ⇒ bool) ⇒ ('a, 'b) fmap ⇒ ('a, 'b) fmap"
is map_filter
parametric map_filter_transfer
by auto
lemma fmdom_filter[simp]: "fmdom (fmfilter P m) = ffilter P (fmdom m)"
by transfer' (auto simp: map_filter_def Set.filter_def split: if_splits)
lemma fmdom'_filter[simp]: "fmdom' (fmfilter P m) = Set.filter P (fmdom' m)"
by transfer' (auto simp: map_filter_def Set.filter_def split: if_splits)
lemma fmlookup_filter[simp]: "fmlookup (fmfilter P m) x = (if P x then fmlookup m x else None)"
by transfer' (auto simp: map_filter_def)
lemma fmfilter_empty[simp]: "fmfilter P fmempty = fmempty"
by transfer' (auto simp: map_filter_def)
lemma fmfilter_true[simp]:
assumes "⋀x y. fmlookup m x = Some y ⟹ P x"
shows "fmfilter P m = m"
proof (rule fmap_ext)
fix x
have "fmlookup m x = None" if "¬ P x"
using that assms by fastforce
then show "fmlookup (fmfilter P m) x = fmlookup m x"
by simp
qed
lemma fmfilter_false[simp]:
assumes "⋀x y. fmlookup m x = Some y ⟹ ¬ P x"
shows "fmfilter P m = fmempty"
using assms by transfer' (fastforce simp: map_filter_def)
lemma fmfilter_comp[simp]: "fmfilter P (fmfilter Q m) = fmfilter (λx. P x ∧ Q x) m"
by transfer' (auto simp: map_filter_def)
lemma fmfilter_comm: "fmfilter P (fmfilter Q m) = fmfilter Q (fmfilter P m)"
unfolding fmfilter_comp by meson
lemma fmfilter_cong[cong]:
assumes "⋀x y. fmlookup m x = Some y ⟹ P x = Q x"
shows "fmfilter P m = fmfilter Q m"
proof (rule fmap_ext)
fix x
have "fmlookup m x = None" if "P x ≠ Q x"
using that assms by fastforce
then show "fmlookup (fmfilter P m) x = fmlookup (fmfilter Q m) x"
by auto
qed
lemma fmfilter_cong'[fundef_cong]:
assumes "m = n" "⋀x. x ∈ fmdom' m ⟹ P x = Q x"
shows "fmfilter P m = fmfilter Q n"
using assms(2) unfolding assms(1)
by (rule fmfilter_cong) (metis fmdom'I)
lemma fmfilter_upd[simp]:
"fmfilter P (fmupd x y m) = (if P x then fmupd x y (fmfilter P m) else fmfilter P m)"
by transfer' (auto simp: map_upd_def map_filter_def)
lift_definition fmdrop :: "'a ⇒ ('a, 'b) fmap ⇒ ('a, 'b) fmap"
is map_drop
parametric map_drop_transfer
unfolding map_drop_def by auto
lemma fmdrop_lookup[simp]: "fmlookup (fmdrop a m) a = None"
by transfer' (auto simp: map_drop_def map_filter_def)
lift_definition fmdrop_set :: "'a set ⇒ ('a, 'b) fmap ⇒ ('a, 'b) fmap"
is map_drop_set
parametric map_drop_set_transfer
unfolding map_drop_set_def by auto
lift_definition fmdrop_fset :: "'a fset ⇒ ('a, 'b) fmap ⇒ ('a, 'b) fmap"
is map_drop_set
parametric map_drop_set_transfer
unfolding map_drop_set_def by auto
lift_definition fmrestrict_set :: "'a set ⇒ ('a, 'b) fmap ⇒ ('a, 'b) fmap"
is map_restrict_set
parametric map_restrict_set_transfer
unfolding map_restrict_set_def by auto
lift_definition fmrestrict_fset :: "'a fset ⇒ ('a, 'b) fmap ⇒ ('a, 'b) fmap"
is map_restrict_set
parametric map_restrict_set_transfer
unfolding map_restrict_set_def by auto
lemma fmfilter_alt_defs:
"fmdrop a = fmfilter (λa'. a' ≠ a)"
"fmdrop_set A = fmfilter (λa. a ∉ A)"
"fmdrop_fset B = fmfilter (λa. a |∉| B)"
"fmrestrict_set A = fmfilter (λa. a ∈ A)"
"fmrestrict_fset B = fmfilter (λa. a |∈| B)"
by (transfer'; simp add: map_drop_def map_drop_set_def map_restrict_set_def)+
lemma fmdom_drop[simp]: "fmdom (fmdrop a m) = fmdom m - {|a|}" unfolding fmfilter_alt_defs by auto
lemma fmdom'_drop[simp]: "fmdom' (fmdrop a m) = fmdom' m - {a}" unfolding fmfilter_alt_defs by auto
lemma fmdom'_drop_set[simp]: "fmdom' (fmdrop_set A m) = fmdom' m - A" unfolding fmfilter_alt_defs by auto
lemma fmdom_drop_fset[simp]: "fmdom (fmdrop_fset A m) = fmdom m - A" unfolding fmfilter_alt_defs by auto
lemma fmdom'_restrict_set: "fmdom' (fmrestrict_set A m) ⊆ A" unfolding fmfilter_alt_defs by auto
lemma fmdom_restrict_fset: "fmdom (fmrestrict_fset A m) |⊆| A" unfolding fmfilter_alt_defs by auto
lemma fmdrop_fmupd: "fmdrop x (fmupd y z m) = (if x = y then fmdrop x m else fmupd y z (fmdrop x m))"
by transfer' (auto simp: map_drop_def map_filter_def map_upd_def)
lemma fmdrop_idle: "x |∉| fmdom B ⟹ fmdrop x B = B"
by transfer' (auto simp: map_drop_def map_filter_def)
lemma fmdrop_idle': "x ∉ fmdom' B ⟹ fmdrop x B = B"
by transfer' (auto simp: map_drop_def map_filter_def)
lemma fmdrop_fmupd_same: "fmdrop x (fmupd x y m) = fmdrop x m"
by transfer' (auto simp: map_drop_def map_filter_def map_upd_def)
lemma fmdom'_restrict_set_precise: "fmdom' (fmrestrict_set A m) = fmdom' m ∩ A"
unfolding fmfilter_alt_defs by auto
lemma fmdom'_restrict_fset_precise: "fmdom (fmrestrict_fset A m) = fmdom m |∩| A"
unfolding fmfilter_alt_defs by auto
lemma fmdom'_drop_fset[simp]: "fmdom' (fmdrop_fset A m) = fmdom' m - fset A"
unfolding fmfilter_alt_defs by transfer' (auto simp: map_filter_def split: if_splits)
lemma fmdom'_restrict_fset: "fmdom' (fmrestrict_fset A m) ⊆ fset A"
unfolding fmfilter_alt_defs by transfer' (auto simp: map_filter_def)
lemma fmlookup_drop[simp]:
"fmlookup (fmdrop a m) x = (if x ≠ a then fmlookup m x else None)"
unfolding fmfilter_alt_defs by simp
lemma fmlookup_drop_set[simp]:
"fmlookup (fmdrop_set A m) x = (if x ∉ A then fmlookup m x else None)"
unfolding fmfilter_alt_defs by simp
lemma fmlookup_drop_fset[simp]:
"fmlookup (fmdrop_fset A m) x = (if x |∉| A then fmlookup m x else None)"
unfolding fmfilter_alt_defs by simp
lemma fmlookup_restrict_set[simp]:
"fmlookup (fmrestrict_set A m) x = (if x ∈ A then fmlookup m x else None)"
unfolding fmfilter_alt_defs by simp
lemma fmlookup_restrict_fset[simp]:
"fmlookup (fmrestrict_fset A m) x = (if x |∈| A then fmlookup m x else None)"
unfolding fmfilter_alt_defs by simp
lemma fmrestrict_set_dom[simp]: "fmrestrict_set (fmdom' m) m = m"
by (rule fmap_ext) auto
lemma fmrestrict_fset_dom[simp]: "fmrestrict_fset (fmdom m) m = m"
by (rule fmap_ext) auto
lemma fmdrop_empty[simp]: "fmdrop a fmempty = fmempty"
unfolding fmfilter_alt_defs by simp
lemma fmdrop_set_empty[simp]: "fmdrop_set A fmempty = fmempty"
unfolding fmfilter_alt_defs by simp
lemma fmdrop_fset_empty[simp]: "fmdrop_fset A fmempty = fmempty"
unfolding fmfilter_alt_defs by simp
lemma fmdrop_fset_fmdom[simp]: "fmdrop_fset (fmdom A) A = fmempty"
by transfer' (auto simp: map_drop_set_def map_filter_def)
lemma fmdrop_set_fmdom[simp]: "fmdrop_set (fmdom' A) A = fmempty"
by transfer' (auto simp: map_drop_set_def map_filter_def)
lemma fmrestrict_set_empty[simp]: "fmrestrict_set A fmempty = fmempty"
unfolding fmfilter_alt_defs by simp
lemma fmrestrict_fset_empty[simp]: "fmrestrict_fset A fmempty = fmempty"
unfolding fmfilter_alt_defs by simp
lemma fmdrop_set_null[simp]: "fmdrop_set {} m = m"
by (rule fmap_ext) auto
lemma fmdrop_fset_null[simp]: "fmdrop_fset {||} m = m"
by (rule fmap_ext) auto
lemma fmdrop_set_single[simp]: "fmdrop_set {a} m = fmdrop a m"
unfolding fmfilter_alt_defs by simp
lemma fmdrop_fset_single[simp]: "fmdrop_fset {|a|} m = fmdrop a m"
unfolding fmfilter_alt_defs by simp
lemma fmrestrict_set_null[simp]: "fmrestrict_set {} m = fmempty"
unfolding fmfilter_alt_defs by simp
lemma fmrestrict_fset_null[simp]: "fmrestrict_fset {||} m = fmempty"
unfolding fmfilter_alt_defs by simp
lemma fmdrop_comm: "fmdrop a (fmdrop b m) = fmdrop b (fmdrop a m)"
unfolding fmfilter_alt_defs by (rule fmfilter_comm)
lemma fmdrop_set_insert[simp]: "fmdrop_set (insert x S) m = fmdrop x (fmdrop_set S m)"
by (rule fmap_ext) auto
lemma fmdrop_fset_insert[simp]: "fmdrop_fset (finsert x S) m = fmdrop x (fmdrop_fset S m)"
by (rule fmap_ext) auto
lemma fmrestrict_set_twice[simp]: "fmrestrict_set S (fmrestrict_set T m) = fmrestrict_set (S ∩ T) m"
unfolding fmfilter_alt_defs by auto
lemma fmrestrict_fset_twice[simp]: "fmrestrict_fset S (fmrestrict_fset T m) = fmrestrict_fset (S |∩| T) m"
unfolding fmfilter_alt_defs by auto
lemma fmrestrict_set_drop[simp]: "fmrestrict_set S (fmdrop b m) = fmrestrict_set (S - {b}) m"
unfolding fmfilter_alt_defs by auto
lemma fmrestrict_fset_drop[simp]: "fmrestrict_fset S (fmdrop b m) = fmrestrict_fset (S - {| b |}) m"
unfolding fmfilter_alt_defs by auto
lemma fmdrop_fmrestrict_set[simp]: "fmdrop b (fmrestrict_set S m) = fmrestrict_set (S - {b}) m"
by (rule fmap_ext) auto
lemma fmdrop_fmrestrict_fset[simp]: "fmdrop b (fmrestrict_fset S m) = fmrestrict_fset (S - {| b |}) m"
by (rule fmap_ext) auto
lemma fmdrop_idem[simp]: "fmdrop a (fmdrop a m) = fmdrop a m"
unfolding fmfilter_alt_defs by auto
lemma fmdrop_set_twice[simp]: "fmdrop_set S (fmdrop_set T m) = fmdrop_set (S ∪ T) m"
unfolding fmfilter_alt_defs by auto
lemma fmdrop_fset_twice[simp]: "fmdrop_fset S (fmdrop_fset T m) = fmdrop_fset (S |∪| T) m"
unfolding fmfilter_alt_defs by auto
lemma fmdrop_set_fmdrop[simp]: "fmdrop_set S (fmdrop b m) = fmdrop_set (insert b S) m"
by (rule fmap_ext) auto
lemma fmdrop_fset_fmdrop[simp]: "fmdrop_fset S (fmdrop b m) = fmdrop_fset (finsert b S) m"
by (rule fmap_ext) auto
lift_definition fmadd :: "('a, 'b) fmap ⇒ ('a, 'b) fmap ⇒ ('a, 'b) fmap" (infixl "++⇩f" 100)
is map_add
parametric map_add_transfer
by simp
lemma fmlookup_add[simp]:
"fmlookup (m ++⇩f n) x = (if x |∈| fmdom n then fmlookup n x else fmlookup m x)"
by transfer' (auto simp: map_add_def split: option.splits)
lemma fmdom_add[simp]: "fmdom (m ++⇩f n) = fmdom m |∪| fmdom n" by transfer' auto
lemma fmdom'_add[simp]: "fmdom' (m ++⇩f n) = fmdom' m ∪ fmdom' n" by transfer' auto
lemma fmadd_drop_left_dom: "fmdrop_fset (fmdom n) m ++⇩f n = m ++⇩f n"
by (rule fmap_ext) auto
lemma fmadd_restrict_right_dom: "fmrestrict_fset (fmdom n) (m ++⇩f n) = n"
by (rule fmap_ext) auto
lemma fmfilter_add_distrib[simp]: "fmfilter P (m ++⇩f n) = fmfilter P m ++⇩f fmfilter P n"
by transfer' (auto simp: map_filter_def map_add_def)
lemma fmdrop_add_distrib[simp]: "fmdrop a (m ++⇩f n) = fmdrop a m ++⇩f fmdrop a n"
unfolding fmfilter_alt_defs by simp
lemma fmdrop_set_add_distrib[simp]: "fmdrop_set A (m ++⇩f n) = fmdrop_set A m ++⇩f fmdrop_set A n"
unfolding fmfilter_alt_defs by simp
lemma fmdrop_fset_add_distrib[simp]: "fmdrop_fset A (m ++⇩f n) = fmdrop_fset A m ++⇩f fmdrop_fset A n"
unfolding fmfilter_alt_defs by simp
lemma fmrestrict_set_add_distrib[simp]:
"fmrestrict_set A (m ++⇩f n) = fmrestrict_set A m ++⇩f fmrestrict_set A n"
unfolding fmfilter_alt_defs by simp
lemma fmrestrict_fset_add_distrib[simp]:
"fmrestrict_fset A (m ++⇩f n) = fmrestrict_fset A m ++⇩f fmrestrict_fset A n"
unfolding fmfilter_alt_defs by simp
lemma fmadd_empty[simp]: "fmempty ++⇩f m = m" "m ++⇩f fmempty = m"
by (transfer'; auto)+
lemma fmadd_idempotent[simp]: "m ++⇩f m = m"
by transfer' (auto simp: map_add_def split: option.splits)
lemma fmadd_assoc[simp]: "m ++⇩f (n ++⇩f p) = m ++⇩f n ++⇩f p"
by transfer' simp
lemma fmadd_fmupd[simp]: "m ++⇩f fmupd a b n = fmupd a b (m ++⇩f n)"
by (rule fmap_ext) simp
lift_definition fmpred :: "('a ⇒ 'b ⇒ bool) ⇒ ('a, 'b) fmap ⇒ bool"
is map_pred
parametric map_pred_transfer
.
lemma fmpredI[intro]:
assumes "⋀x y. fmlookup m x = Some y ⟹ P x y"
shows "fmpred P m"
using assms
by transfer' (auto simp: map_pred_def split: option.splits)
lemma fmpredD[dest]: "fmpred P m ⟹ fmlookup m x = Some y ⟹ P x y"
by transfer' (auto simp: map_pred_def split: option.split_asm)
lemma fmpred_iff: "fmpred P m ⟷ (∀x y. fmlookup m x = Some y ⟶ P x y)"
by auto
lemma fmpred_alt_def: "fmpred P m ⟷ fBall (fmdom m) (λx. P x (the (fmlookup m x)))"
unfolding fmpred_iff
using fmdomI by fastforce
lemma fmpred_mono_strong:
assumes "⋀x y. fmlookup m x = Some y ⟹ P x y ⟹ Q x y"
shows "fmpred P m ⟹ fmpred Q m"
using assms unfolding fmpred_iff by auto
lemma fmpred_mono[mono]: "P ≤ Q ⟹ fmpred P ≤ fmpred Q"
by auto
lemma fmpred_empty[intro!, simp]: "fmpred P fmempty"
by auto
lemma fmpred_upd[intro]: "fmpred P m ⟹ P x y ⟹ fmpred P (fmupd x y m)"
by transfer' (auto simp: map_pred_def map_upd_def)
lemma fmpred_updD[dest]: "fmpred P (fmupd x y m) ⟹ P x y"
by auto
lemma fmpred_add[intro]: "fmpred P m ⟹ fmpred P n ⟹ fmpred P (m ++⇩f n)"
by transfer' (auto simp: map_pred_def map_add_def split: option.splits)
lemma fmpred_filter[intro]: "fmpred P m ⟹ fmpred P (fmfilter Q m)"
by transfer' (auto simp: map_pred_def map_filter_def)
lemma fmpred_drop[intro]: "fmpred P m ⟹ fmpred P (fmdrop a m)"
by (auto simp: fmfilter_alt_defs)
lemma fmpred_drop_set[intro]: "fmpred P m ⟹ fmpred P (fmdrop_set A m)"
by (auto simp: fmfilter_alt_defs)
lemma fmpred_drop_fset[intro]: "fmpred P m ⟹ fmpred P (fmdrop_fset A m)"
by (auto simp: fmfilter_alt_defs)
lemma fmpred_restrict_set[intro]: "fmpred P m ⟹ fmpred P (fmrestrict_set A m)"
by (auto simp: fmfilter_alt_defs)
lemma fmpred_restrict_fset[intro]: "fmpred P m ⟹ fmpred P (fmrestrict_fset A m)"
by (auto simp: fmfilter_alt_defs)
lemma fmpred_cases[consumes 1]:
assumes "fmpred P m"
obtains (none) "fmlookup m x = None" | (some) y where "fmlookup m x = Some y" "P x y"
using assms by auto
lift_definition fmsubset :: "('a, 'b) fmap ⇒ ('a, 'b) fmap ⇒ bool" (infix "⊆⇩f" 50)
is map_le
.
lemma fmsubset_alt_def: "m ⊆⇩f n ⟷ fmpred (λk v. fmlookup n k = Some v) m"
by transfer' (auto simp: map_pred_def map_le_def dom_def split: option.splits)
lemma fmsubset_pred: "fmpred P m ⟹ n ⊆⇩f m ⟹ fmpred P n"
unfolding fmsubset_alt_def fmpred_iff
by auto
lemma fmsubset_filter_mono: "m ⊆⇩f n ⟹ fmfilter P m ⊆⇩f fmfilter P n"
unfolding fmsubset_alt_def fmpred_iff
by auto
lemma fmsubset_drop_mono: "m ⊆⇩f n ⟹ fmdrop a m ⊆⇩f fmdrop a n"
unfolding fmfilter_alt_defs by (rule fmsubset_filter_mono)
lemma fmsubset_drop_set_mono: "m ⊆⇩f n ⟹ fmdrop_set A m ⊆⇩f fmdrop_set A n"
unfolding fmfilter_alt_defs by (rule fmsubset_filter_mono)
lemma fmsubset_drop_fset_mono: "m ⊆⇩f n ⟹ fmdrop_fset A m ⊆⇩f fmdrop_fset A n"
unfolding fmfilter_alt_defs by (rule fmsubset_filter_mono)
lemma fmsubset_restrict_set_mono: "m ⊆⇩f n ⟹ fmrestrict_set A m ⊆⇩f fmrestrict_set A n"
unfolding fmfilter_alt_defs by (rule fmsubset_filter_mono)
lemma fmsubset_restrict_fset_mono: "m ⊆⇩f n ⟹ fmrestrict_fset A m ⊆⇩f fmrestrict_fset A n"
unfolding fmfilter_alt_defs by (rule fmsubset_filter_mono)
lemma fmfilter_subset[simp]: "fmfilter P m ⊆⇩f m"
unfolding fmsubset_alt_def fmpred_iff by auto
lemma fmsubset_drop[simp]: "fmdrop a m ⊆⇩f m"
unfolding fmfilter_alt_defs by (rule fmfilter_subset)
lemma fmsubset_drop_set[simp]: "fmdrop_set S m ⊆⇩f m"
unfolding fmfilter_alt_defs by (rule fmfilter_subset)
lemma fmsubset_drop_fset[simp]: "fmdrop_fset S m ⊆⇩f m"
unfolding fmfilter_alt_defs by (rule fmfilter_subset)
lemma fmsubset_restrict_set[simp]: "fmrestrict_set S m ⊆⇩f m"
unfolding fmfilter_alt_defs by (rule fmfilter_subset)
lemma fmsubset_restrict_fset[simp]: "fmrestrict_fset S m ⊆⇩f m"
unfolding fmfilter_alt_defs by (rule fmfilter_subset)
lift_definition fset_of_fmap :: "('a, 'b) fmap ⇒ ('a × 'b) fset" is set_of_map
by (rule set_of_map_finite)
lemma fset_of_fmap_inj[intro, simp]: "inj fset_of_fmap"
apply rule
apply transfer'
using set_of_map_inj unfolding inj_def by auto
lemma fset_of_fmap_iff[simp]: "(a, b) |∈| fset_of_fmap m ⟷ fmlookup m a = Some b"
by transfer' (auto simp: set_of_map_def)
lemma fset_of_fmap_iff': "(a, b) ∈ fset (fset_of_fmap m) ⟷ fmlookup m a = Some b"
by simp
lift_definition fmap_of_list :: "('a × 'b) list ⇒ ('a, 'b) fmap"
is map_of
parametric map_of_transfer
by (rule finite_dom_map_of)
lemma fmap_of_list_simps[simp]:
"fmap_of_list [] = fmempty"
"fmap_of_list ((k, v) # kvs) = fmupd k v (fmap_of_list kvs)"
by (transfer, simp add: map_upd_def)+
lemma fmap_of_list_app[simp]: "fmap_of_list (xs @ ys) = fmap_of_list ys ++⇩f fmap_of_list xs"
by transfer' simp
lemma fmupd_alt_def: "fmupd k v m = m ++⇩f fmap_of_list [(k, v)]"
by simp
lemma fmpred_of_list[intro]:
assumes "⋀k v. (k, v) ∈ set xs ⟹ P k v"
shows "fmpred P (fmap_of_list xs)"
using assms
by (induction xs) (transfer'; auto simp: map_pred_def)+
lemma fmap_of_list_SomeD: "fmlookup (fmap_of_list xs) k = Some v ⟹ (k, v) ∈ set xs"
by transfer' (auto dest: map_of_SomeD)
lemma fmdom_fmap_of_list[simp]: "fmdom (fmap_of_list xs) = fset_of_list (map fst xs)"
by transfer' (simp add: dom_map_of_conv_image_fst)
lift_definition fmrel_on_fset :: "'a fset ⇒ ('b ⇒ 'c ⇒ bool) ⇒ ('a, 'b) fmap ⇒ ('a, 'c) fmap ⇒ bool"
is rel_map_on_set
.
lemma fmrel_on_fset_alt_def: "fmrel_on_fset S P m n ⟷ fBall S (λx. rel_option P (fmlookup m x) (fmlookup n x))"
by transfer' (auto simp: rel_map_on_set_def eq_onp_def rel_fun_def)
lemma fmrel_on_fsetI[intro]:
assumes "⋀x. x |∈| S ⟹ rel_option P (fmlookup m x) (fmlookup n x)"
shows "fmrel_on_fset S P m n"
by (simp add: assms fmrel_on_fset_alt_def)
lemma fmrel_on_fset_mono[mono]: "R ≤ Q ⟹ fmrel_on_fset S R ≤ fmrel_on_fset S Q"
unfolding fmrel_on_fset_alt_def[abs_def]
using option.rel_mono by blast
lemma fmrel_on_fsetD: "x |∈| S ⟹ fmrel_on_fset S P m n ⟹ rel_option P (fmlookup m x) (fmlookup n x)"
unfolding fmrel_on_fset_alt_def
by auto
lemma fmrel_on_fsubset: "fmrel_on_fset S R m n ⟹ T |⊆| S ⟹ fmrel_on_fset T R m n"
unfolding fmrel_on_fset_alt_def
by auto
lemma fmrel_on_fset_unionI:
"fmrel_on_fset A R m n ⟹ fmrel_on_fset B R m n ⟹ fmrel_on_fset (A |∪| B) R m n"
unfolding fmrel_on_fset_alt_def
by auto
lemma fmrel_on_fset_updateI:
assumes "fmrel_on_fset S P m n" "P v⇩1 v⇩2"
shows "fmrel_on_fset (finsert k S) P (fmupd k v⇩1 m) (fmupd k v⇩2 n)"
using assms
unfolding fmrel_on_fset_alt_def
by auto
lift_definition fmimage :: "('a, 'b) fmap ⇒ 'a fset ⇒ 'b fset" is "λm S. {b|a b. m a = Some b ∧ a ∈ S}"
by (smt (verit, del_insts) Collect_mono_iff finite_surj ran_alt_def ran_def)
lemma fmimage_alt_def: "fmimage m S = fmran (fmrestrict_fset S m)"
by transfer' (auto simp: ran_def map_restrict_set_def map_filter_def)
lemma fmimage_empty[simp]: "fmimage m fempty = fempty"
by transfer' auto
lemma fmimage_subset_ran[simp]: "fmimage m S |⊆| fmran m"
by transfer' (auto simp: ran_def)
lemma fmimage_dom[simp]: "fmimage m (fmdom m) = fmran m"
by transfer' (auto simp: ran_def)
lemma fmimage_inter: "fmimage m (A |∩| B) |⊆| fmimage m A |∩| fmimage m B"
by transfer' auto
lemma fimage_inter_dom[simp]:
"fmimage m (fmdom m |∩| A) = fmimage m A"
"fmimage m (A |∩| fmdom m) = fmimage m A"
by (transfer'; auto)+
lemma fmimage_union[simp]: "fmimage m (A |∪| B) = fmimage m A |∪| fmimage m B"
by transfer' auto
lemma fmimage_Union[simp]: "fmimage m (ffUnion A) = ffUnion (fmimage m |`| A)"
by transfer' auto
lemma fmimage_filter[simp]: "fmimage (fmfilter P m) A = fmimage m (ffilter P A)"
by transfer' (auto simp: map_filter_def)
lemma fmimage_drop[simp]: "fmimage (fmdrop a m) A = fmimage m (A - {|a|})"
by (simp add: fmimage_alt_def)
lemma fmimage_drop_fset[simp]: "fmimage (fmdrop_fset B m) A = fmimage m (A - B)"
by transfer' (auto simp: map_filter_def map_drop_set_def)
lemma fmimage_restrict_fset[simp]: "fmimage (fmrestrict_fset B m) A = fmimage m (A |∩| B)"
by transfer' (auto simp: map_filter_def map_restrict_set_def)
lemma fmfilter_ran[simp]: "fmran (fmfilter P m) = fmimage m (ffilter P (fmdom m))"
by transfer' (auto simp: ran_def map_filter_def)
lemma fmran_drop[simp]: "fmran (fmdrop a m) = fmimage m (fmdom m - {|a|})"
by transfer' (auto simp: ran_def map_drop_def map_filter_def)
lemma fmran_drop_fset[simp]: "fmran (fmdrop_fset A m) = fmimage m (fmdom m - A)"
by transfer' (auto simp: ran_def map_drop_set_def map_filter_def)
lemma fmran_restrict_fset: "fmran (fmrestrict_fset A m) = fmimage m (fmdom m |∩| A)"
by transfer' (auto simp: ran_def map_restrict_set_def map_filter_def)
lemma fmlookup_image_iff: "y |∈| fmimage m A ⟷ (∃x. fmlookup m x = Some y ∧ x |∈| A)"
by transfer' (auto simp: ran_def)
lemma fmimageI: "fmlookup m x = Some y ⟹ x |∈| A ⟹ y |∈| fmimage m A"
by (auto simp: fmlookup_image_iff)
lemma fmimageE[elim]:
assumes "y |∈| fmimage m A"
obtains x where "fmlookup m x = Some y" "x |∈| A"
using assms by (auto simp: fmlookup_image_iff)
lift_definition fmcomp :: "('b, 'c) fmap ⇒ ('a, 'b) fmap ⇒ ('a, 'c) fmap" (infixl "∘⇩f" 55)
is map_comp
parametric map_comp_transfer
by (rule dom_comp_finite)
lemma fmlookup_comp[simp]: "fmlookup (m ∘⇩f n) x = Option.bind (fmlookup n x) (fmlookup m)"
by transfer' (auto simp: map_comp_def split: option.splits)
end
subsection ‹BNF setup›
lift_bnf ('a, fmran': 'b) fmap [wits: Map.empty]
for map: fmmap
rel: fmrel
by auto
declare fmap.pred_mono[mono]
lemma fmran'_alt_def: "fmran' m = fset (fmran m)"
including fset.lifting
by transfer' (auto simp: ran_def fun_eq_iff)
lemma fmlookup_ran'_iff: "y ∈ fmran' m ⟷ (∃x. fmlookup m x = Some y)"
by transfer' (auto simp: ran_def)
lemma fmran'I: "fmlookup m x = Some y ⟹ y ∈ fmran' m"
by (auto simp: fmlookup_ran'_iff)
lemma fmran'E[elim]:
assumes "y ∈ fmran' m"
obtains x where "fmlookup m x = Some y"
using assms by (auto simp: fmlookup_ran'_iff)
lemma fmrel_iff: "fmrel R m n ⟷ (∀x. rel_option R (fmlookup m x) (fmlookup n x))"
by transfer' (auto simp: rel_fun_def)
lemma fmrelI[intro]:
assumes "⋀x. rel_option R (fmlookup m x) (fmlookup n x)"
shows "fmrel R m n"
using assms
by transfer' auto
lemma fmrel_upd[intro]: "fmrel P m n ⟹ P x y ⟹ fmrel P (fmupd k x m) (fmupd k y n)"
by transfer' (auto simp: map_upd_def rel_fun_def)
lemma fmrelD[dest]: "fmrel P m n ⟹ rel_option P (fmlookup m x) (fmlookup n x)"
by transfer' (auto simp: rel_fun_def)
lemma fmrel_addI[intro]:
assumes "fmrel P m n" "fmrel P a b"
shows "fmrel P (m ++⇩f a) (n ++⇩f b)"
by (smt (verit, del_insts) assms domIff fmdom.rep_eq fmlookup_add fmrel_iff option.rel_sel)
lemma fmrel_cases[consumes 1]:
assumes "fmrel P m n"
obtains (none) "fmlookup m x = None" "fmlookup n x = None"
| (some) a b where "fmlookup m x = Some a" "fmlookup n x = Some b" "P a b"
proof -
from assms have "rel_option P (fmlookup m x) (fmlookup n x)"
by auto
then show thesis
using none some
by (cases rule: option.rel_cases) auto
qed
lemma fmrel_filter[intro]: "fmrel P m n ⟹ fmrel P (fmfilter Q m) (fmfilter Q n)"
unfolding fmrel_iff by auto
lemma fmrel_drop[intro]: "fmrel P m n ⟹ fmrel P (fmdrop a m) (fmdrop a n)"
unfolding fmfilter_alt_defs by blast
lemma fmrel_drop_set[intro]: "fmrel P m n ⟹ fmrel P (fmdrop_set A m) (fmdrop_set A n)"
unfolding fmfilter_alt_defs by blast
lemma fmrel_drop_fset[intro]: "fmrel P m n ⟹ fmrel P (fmdrop_fset A m) (fmdrop_fset A n)"
unfolding fmfilter_alt_defs by blast
lemma fmrel_restrict_set[intro]: "fmrel P m n ⟹ fmrel P (fmrestrict_set A m) (fmrestrict_set A n)"
unfolding fmfilter_alt_defs by blast
lemma fmrel_restrict_fset[intro]: "fmrel P m n ⟹ fmrel P (fmrestrict_fset A m) (fmrestrict_fset A n)"
unfolding fmfilter_alt_defs by blast
lemma fmrel_on_fset_fmrel_restrict:
"fmrel_on_fset S P m n ⟷ fmrel P (fmrestrict_fset S m) (fmrestrict_fset S n)"
unfolding fmrel_on_fset_alt_def fmrel_iff
by auto
lemma fmrel_on_fset_refl_strong:
assumes "⋀x y. x |∈| S ⟹ fmlookup m x = Some y ⟹ P y y"
shows "fmrel_on_fset S P m m"
unfolding fmrel_on_fset_fmrel_restrict fmrel_iff
using assms
by (simp add: option.rel_sel)
lemma fmrel_on_fset_addI:
assumes "fmrel_on_fset S P m n" "fmrel_on_fset S P a b"
shows "fmrel_on_fset S P (m ++⇩f a) (n ++⇩f b)"
using assms
unfolding fmrel_on_fset_fmrel_restrict
by auto
lemma fmrel_fmdom_eq:
assumes "fmrel P x y"
shows "fmdom x = fmdom y"
proof -
have "a |∈| fmdom x ⟷ a |∈| fmdom y" for a
proof -
have "rel_option P (fmlookup x a) (fmlookup y a)"
using assms by (simp add: fmrel_iff)
thus ?thesis
by cases (auto intro: fmdomI)
qed
thus ?thesis
by auto
qed
lemma fmrel_fmdom'_eq: "fmrel P x y ⟹ fmdom' x = fmdom' y"
unfolding fmdom'_alt_def
by (metis fmrel_fmdom_eq)
lemma fmrel_rel_fmran:
assumes "fmrel P x y"
shows "rel_fset P (fmran x) (fmran y)"
proof -
{
fix b
assume "b |∈| fmran x"
then obtain a where "fmlookup x a = Some b"
by auto
moreover have "rel_option P (fmlookup x a) (fmlookup y a)"
using assms by auto
ultimately have "∃b'. b' |∈| fmran y ∧ P b b'"
by (metis option_rel_Some1 fmranI)
}
moreover
{
fix b
assume "b |∈| fmran y"
then obtain a where "fmlookup y a = Some b"
by auto
moreover have "rel_option P (fmlookup x a) (fmlookup y a)"
using assms by auto
ultimately have "∃b'. b' |∈| fmran x ∧ P b' b"
by (metis option_rel_Some2 fmranI)
}
ultimately show ?thesis
unfolding rel_fset_alt_def
by auto
qed
lemma fmrel_rel_fmran': "fmrel P x y ⟹ rel_set P (fmran' x) (fmran' y)"
unfolding fmran'_alt_def
by (metis fmrel_rel_fmran rel_fset_fset)
lemma pred_fmap_fmpred[simp]: "pred_fmap P = fmpred (λ_. P)"
unfolding fmap.pred_set fmran'_alt_def
using fmranI by fastforce
lemma pred_fmap_id[simp]: "pred_fmap id (fmmap f m) ⟷ pred_fmap f m"
unfolding fmap.pred_set fmap.set_map
by simp
lemma pred_fmapD: "pred_fmap P m ⟹ x |∈| fmran m ⟹ P x"
by auto
lemma fmlookup_map[simp]: "fmlookup (fmmap f m) x = map_option f (fmlookup m x)"
by transfer' auto
lemma fmpred_map[simp]: "fmpred P (fmmap f m) ⟷ fmpred (λk v. P k (f v)) m"
unfolding fmpred_iff pred_fmap_def fmap.set_map
by auto
lemma fmpred_id[simp]: "fmpred (λ_. id) (fmmap f m) ⟷ fmpred (λ_. f) m"
by simp
lemma fmmap_add[simp]: "fmmap f (m ++⇩f n) = fmmap f m ++⇩f fmmap f n"
by transfer' (auto simp: map_add_def fun_eq_iff split: option.splits)
lemma fmmap_empty[simp]: "fmmap f fmempty = fmempty"
by transfer auto
lemma fmdom_map[simp]: "fmdom (fmmap f m) = fmdom m"
including fset.lifting
by transfer' simp
lemma fmdom'_map[simp]: "fmdom' (fmmap f m) = fmdom' m"
by transfer' simp
lemma fmran_fmmap[simp]: "fmran (fmmap f m) = f |`| fmran m"
including fset.lifting
by transfer' (auto simp: ran_def)
lemma fmran'_fmmap[simp]: "fmran' (fmmap f m) = f ` fmran' m"
by transfer' (auto simp: ran_def)
lemma fmfilter_fmmap[simp]: "fmfilter P (fmmap f m) = fmmap f (fmfilter P m)"
by transfer' (auto simp: map_filter_def)
lemma fmdrop_fmmap[simp]: "fmdrop a (fmmap f m) = fmmap f (fmdrop a m)"
unfolding fmfilter_alt_defs by simp
lemma fmdrop_set_fmmap[simp]: "fmdrop_set A (fmmap f m) = fmmap f (fmdrop_set A m)"
unfolding fmfilter_alt_defs by simp
lemma fmdrop_fset_fmmap[simp]: "fmdrop_fset A (fmmap f m) = fmmap f (fmdrop_fset A m)"
unfolding fmfilter_alt_defs by simp
lemma fmrestrict_set_fmmap[simp]: "fmrestrict_set A (fmmap f m) = fmmap f (fmrestrict_set A m)"
unfolding fmfilter_alt_defs by simp
lemma fmrestrict_fset_fmmap[simp]: "fmrestrict_fset A (fmmap f m) = fmmap f (fmrestrict_fset A m)"
unfolding fmfilter_alt_defs by simp
lemma fmmap_subset[intro]: "m ⊆⇩f n ⟹ fmmap f m ⊆⇩f fmmap f n"
by transfer' (auto simp: map_le_def)
lemma fmmap_fset_of_fmap: "fset_of_fmap (fmmap f m) = (λ(k, v). (k, f v)) |`| fset_of_fmap m"
including fset.lifting
by transfer' (auto simp: set_of_map_def)
lemma fmmap_fmupd: "fmmap f (fmupd x y m) = fmupd x (f y) (fmmap f m)"
by transfer' (auto simp: fun_eq_iff map_upd_def)
subsection ‹\<^const>‹size› setup›
definition size_fmap :: "('a ⇒ nat) ⇒ ('b ⇒ nat) ⇒ ('a, 'b) fmap ⇒ nat" where
[simp]: "size_fmap f g m = size_fset (λ(a, b). f a + g b) (fset_of_fmap m)"
instantiation fmap :: (type, type) size begin
definition size_fmap where
size_fmap_overloaded_def: "size_fmap = Finite_Map.size_fmap (λ_. 0) (λ_. 0)"
instance ..
end
lemma size_fmap_overloaded_simps[simp]: "size x = size (fset_of_fmap x)"
unfolding size_fmap_overloaded_def
by simp
lemma fmap_size_o_map: "size_fmap f g ∘ fmmap h = size_fmap f (g ∘ h)"
proof -
have inj: "inj_on (λ(k, v). (k, h v)) (fset (fset_of_fmap m))" for m
using inj_on_def by force
show ?thesis
unfolding size_fmap_def
apply (clarsimp simp: fun_eq_iff fmmap_fset_of_fmap sum.reindex [OF inj])
by (rule sum.cong) (auto split: prod.splits)
qed
setup ‹
BNF_LFP_Size.register_size_global \<^type_name>‹fmap› \<^const_name>‹size_fmap›
@{thm size_fmap_overloaded_def} @{thms size_fmap_def size_fmap_overloaded_simps}
@{thms fmap_size_o_map}
›
subsection ‹Additional operations›
lift_definition fmmap_keys :: "('a ⇒ 'b ⇒ 'c) ⇒ ('a, 'b) fmap ⇒ ('a, 'c) fmap" is
"λf m a. map_option (f a) (m a)"
unfolding dom_def
by simp
lemma fmpred_fmmap_keys[simp]: "fmpred P (fmmap_keys f m) = fmpred (λa b. P a (f a b)) m"
by transfer' (auto simp: map_pred_def split: option.splits)
lemma fmdom_fmmap_keys[simp]: "fmdom (fmmap_keys f m) = fmdom m"
including fset.lifting
by transfer' auto
lemma fmlookup_fmmap_keys[simp]: "fmlookup (fmmap_keys f m) x = map_option (f x) (fmlookup m x)"
by transfer' simp
lemma fmfilter_fmmap_keys[simp]: "fmfilter P (fmmap_keys f m) = fmmap_keys f (fmfilter P m)"
by transfer' (auto simp: map_filter_def)
lemma fmdrop_fmmap_keys[simp]: "fmdrop a (fmmap_keys f m) = fmmap_keys f (fmdrop a m)"
unfolding fmfilter_alt_defs by simp
lemma fmdrop_set_fmmap_keys[simp]: "fmdrop_set A (fmmap_keys f m) = fmmap_keys f (fmdrop_set A m)"
unfolding fmfilter_alt_defs by simp
lemma fmdrop_fset_fmmap_keys[simp]: "fmdrop_fset A (fmmap_keys f m) = fmmap_keys f (fmdrop_fset A m)"
unfolding fmfilter_alt_defs by simp
lemma fmrestrict_set_fmmap_keys[simp]: "fmrestrict_set A (fmmap_keys f m) = fmmap_keys f (fmrestrict_set A m)"
unfolding fmfilter_alt_defs by simp
lemma fmrestrict_fset_fmmap_keys[simp]: "fmrestrict_fset A (fmmap_keys f m) = fmmap_keys f (fmrestrict_fset A m)"
unfolding fmfilter_alt_defs by simp
lemma fmmap_keys_subset[intro]: "m ⊆⇩f n ⟹ fmmap_keys f m ⊆⇩f fmmap_keys f n"
by transfer' (auto simp: map_le_def dom_def)
definition sorted_list_of_fmap :: "('a::linorder, 'b) fmap ⇒ ('a × 'b) list" where
"sorted_list_of_fmap m = map (λk. (k, the (fmlookup m k))) (sorted_list_of_fset (fmdom m))"
lemma list_all_sorted_list[simp]: "list_all P (sorted_list_of_fmap m) = fmpred (curry P) m"
unfolding sorted_list_of_fmap_def curry_def list.pred_map
by (smt (verit, best) Ball_set comp_def fmpred_alt_def sorted_list_of_fset_simps(1))
lemma map_of_sorted_list[simp]: "map_of (sorted_list_of_fmap m) = fmlookup m"
unfolding sorted_list_of_fmap_def
including fset.lifting
by transfer (simp add: map_of_map_keys)
subsection ‹Additional properties›
lemma fmchoice':
assumes "finite S" "∀x ∈ S. ∃y. Q x y"
shows "∃m. fmdom' m = S ∧ fmpred Q m"
proof -
obtain f where f: "Q x (f x)" if "x ∈ S" for x
using assms by metis
define f' where "f' x = (if x ∈ S then Some (f x) else None)" for x
have "eq_onp (λm. finite (dom m)) f' f'"
unfolding eq_onp_def f'_def dom_def using assms by auto
show ?thesis
apply (rule exI[where x = "Abs_fmap f'"])
apply (subst fmpred.abs_eq, fact)
apply (subst fmdom'.abs_eq, fact)
unfolding f'_def dom_def map_pred_def using f
by auto
qed
subsection ‹Lifting/transfer setup›
context includes lifting_syntax begin
lemma fmempty_transfer[simp, intro, transfer_rule]: "fmrel P fmempty fmempty"
by transfer auto
lemma fmadd_transfer[transfer_rule]:
"(fmrel P ===> fmrel P ===> fmrel P) fmadd fmadd"
by (intro fmrel_addI rel_funI)
lemma fmupd_transfer[transfer_rule]:
"((=) ===> P ===> fmrel P ===> fmrel P) fmupd fmupd"
by auto
end
lemma Quotient_fmap_bnf[quot_map]:
assumes "Quotient R Abs Rep T"
shows "Quotient (fmrel R) (fmmap Abs) (fmmap Rep) (fmrel T)"
unfolding Quotient_alt_def4 proof safe
fix m n
assume "fmrel T m n"
then have "fmlookup (fmmap Abs m) x = fmlookup n x" for x
using assms unfolding Quotient_alt_def
by (cases rule: fmrel_cases[where x = x]) auto
then show "fmmap Abs m = n"
by (rule fmap_ext)
next
fix m
show "fmrel T (fmmap Rep m) m"
unfolding fmap.rel_map
by (metis (mono_tags) Quotient_alt_def assms fmap.rel_refl)
next
from assms have "R = T OO T¯¯"
unfolding Quotient_alt_def4 by simp
then show "fmrel R = fmrel T OO (fmrel T)¯¯"
by (simp add: fmap.rel_compp fmap.rel_conversep)
qed
subsection ‹View as datatype›
lemma fmap_distinct[simp]:
"fmempty ≠ fmupd k v m"
"fmupd k v m ≠ fmempty"
by (transfer'; auto simp: map_upd_def fun_eq_iff)+
lifting_update fmap.lifting
lemma fmap_exhaust[cases type: fmap]:
obtains (fmempty) "m = fmempty"
| (fmupd) x y m' where "m = fmupd x y m'" "x |∉| fmdom m'"
using that including fmap.lifting fset.lifting
proof transfer
fix m P
assume "finite (dom m)"
assume empty: P if "m = Map.empty"
assume map_upd: P if "finite (dom m')" "m = map_upd x y m'" "x ∉ dom m'" for x y m'
show P
proof (cases "m = Map.empty")
case True thus ?thesis using empty by simp
next
case False
hence "dom m ≠ {}" by simp
then obtain x where "x ∈ dom m" by blast
let ?m' = "map_drop x m"
show ?thesis
proof (rule map_upd)
show "finite (dom ?m')"
using ‹finite (dom m)›
unfolding map_drop_def
by auto
next
show "m = map_upd x (the (m x)) ?m'"
using ‹x ∈ dom m› unfolding map_drop_def map_filter_def map_upd_def
by auto
next
show "x ∉ dom ?m'"
unfolding map_drop_def map_filter_def
by auto
qed
qed
qed
lemma fmap_induct[case_names fmempty fmupd, induct type: fmap]:
assumes "P fmempty"
assumes "(⋀x y m. P m ⟹ fmlookup m x = None ⟹ P (fmupd x y m))"
shows "P m"
proof (induction "fmdom m" arbitrary: m rule: fset_induct_stronger)
case empty
hence "m = fmempty"
by (metis fmrestrict_fset_dom fmrestrict_fset_null)
with assms show ?case
by simp
next
case (insert x S)
hence "S = fmdom (fmdrop x m)"
by auto
with insert have "P (fmdrop x m)"
by auto
moreover
obtain y where "fmlookup m x = Some y"
using insert.hyps by force
hence "m = fmupd x y (fmdrop x m)"
by (auto intro: fmap_ext)
ultimately show ?case
by (metis assms(2) fmdrop_lookup)
qed
subsection ‹Code setup›
instantiation fmap :: (type, equal) equal begin
definition "equal_fmap ≡ fmrel HOL.equal"
instance proof
fix m n :: "('a, 'b) fmap"
have "fmrel (=) m n ⟷ (m = n)"
by transfer' (simp add: option.rel_eq rel_fun_eq)
then show "equal_class.equal m n ⟷ (m = n)"
unfolding equal_fmap_def
by (simp add: equal_eq[abs_def])
qed
end
lemma fBall_alt_def: "fBall S P ⟷ (∀x. x |∈| S ⟶ P x)"
by force
lemma fmrel_code:
"fmrel R m n ⟷
fBall (fmdom m) (λx. rel_option R (fmlookup m x) (fmlookup n x)) ∧
fBall (fmdom n) (λx. rel_option R (fmlookup m x) (fmlookup n x))"
unfolding fmrel_iff fmlookup_dom_iff fBall_alt_def
by (metis option.collapse option.rel_sel)
lemmas [code] =
fmrel_code
fmran'_alt_def
fmdom'_alt_def
fmfilter_alt_defs
pred_fmap_fmpred
fmsubset_alt_def
fmupd_alt_def
fmrel_on_fset_alt_def
fmpred_alt_def
code_datatype fmap_of_list
quickcheck_generator fmap constructors: fmap_of_list
context includes fset.lifting begin
lemma fmlookup_of_list[code]: "fmlookup (fmap_of_list m) = map_of m"
by transfer simp
lemma fmempty_of_list[code]: "fmempty = fmap_of_list []"
by transfer simp
lemma fmran_of_list[code]: "fmran (fmap_of_list m) = snd |`| fset_of_list (AList.clearjunk m)"
by transfer (auto simp: ran_map_of)
lemma fmdom_of_list[code]: "fmdom (fmap_of_list m) = fst |`| fset_of_list m"
by transfer (auto simp: dom_map_of_conv_image_fst)
lemma fmfilter_of_list[code]: "fmfilter P (fmap_of_list m) = fmap_of_list (filter (λ(k, _). P k) m)"
by transfer' auto
lemma fmadd_of_list[code]: "fmap_of_list m ++⇩f fmap_of_list n = fmap_of_list (AList.merge m n)"
by transfer (simp add: merge_conv')
lemma fmmap_of_list[code]: "fmmap f (fmap_of_list m) = fmap_of_list (map (apsnd f) m)"
apply transfer
by (metis (no_types, lifting) apsnd_conv map_eq_conv map_of_map old.prod.case old.prod.exhaust)
lemma fmmap_keys_of_list[code]:
"fmmap_keys f (fmap_of_list m) = fmap_of_list (map (λ(a, b). (a, f a b)) m)"
apply transfer
subgoal for f m by (induction m) (auto simp: apsnd_def map_prod_def fun_eq_iff)
done
lemma fmimage_of_list[code]:
"fmimage (fmap_of_list m) A = fset_of_list (map snd (filter (λ(k, _). k |∈| A) (AList.clearjunk m)))"
apply (subst fmimage_alt_def)
apply (subst fmfilter_alt_defs)
apply (subst fmfilter_of_list)
apply (subst fmran_of_list)
apply transfer'
by (metis AList.restrict_eq clearjunk_restrict list.set_map)
lemma fmcomp_list[code]:
"fmap_of_list m ∘⇩f fmap_of_list n = fmap_of_list (AList.compose n m)"
by (rule fmap_ext) (simp add: fmlookup_of_list compose_conv map_comp_def split: option.splits)
end
subsection ‹Instances›
lemma exists_map_of:
assumes "finite (dom m)" shows "∃xs. map_of xs = m"
using assms
proof (induction "dom m" arbitrary: m)
case empty
hence "m = Map.empty"
by auto
moreover have "map_of [] = Map.empty"
by simp
ultimately show ?case
by blast
next
case (insert x F)
hence "F = dom (map_drop x m)"
unfolding map_drop_def map_filter_def dom_def by auto
with insert have "∃xs'. map_of xs' = map_drop x m"
by auto
then obtain xs' where "map_of xs' = map_drop x m"
..
moreover obtain y where "m x = Some y"
using insert unfolding dom_def by blast
ultimately have "map_of ((x, y) # xs') = m"
using ‹insert x F = dom m›
unfolding map_drop_def map_filter_def
by auto
thus ?case
..
qed
lemma exists_fmap_of_list: "∃xs. fmap_of_list xs = m"
by transfer (rule exists_map_of)
lemma fmap_of_list_surj[simp, intro]: "surj fmap_of_list"
proof -
have "x ∈ range fmap_of_list" for x :: "('a, 'b) fmap"
unfolding image_iff
using exists_fmap_of_list by (metis UNIV_I)
thus ?thesis by auto
qed
instance fmap :: (countable, countable) countable
proof
obtain to_nat :: "('a × 'b) list ⇒ nat" where "inj to_nat"
by (metis ex_inj)
moreover have "inj (inv fmap_of_list)"
using fmap_of_list_surj by (rule surj_imp_inj_inv)
ultimately have "inj (to_nat ∘ inv fmap_of_list)"
by (rule inj_compose)
thus "∃to_nat::('a, 'b) fmap ⇒ nat. inj to_nat"
by auto
qed
instance fmap :: (finite, finite) finite
proof
show "finite (UNIV :: ('a, 'b) fmap set)"
by (rule finite_imageD) auto
qed
lifting_update fmap.lifting
lifting_forget fmap.lifting
subsection ‹Tests›
export_code
Ball fset fmrel fmran fmran' fmdom fmdom' fmpred pred_fmap fmsubset fmupd fmrel_on_fset
fmdrop fmdrop_set fmdrop_fset fmrestrict_set fmrestrict_fset fmimage fmlookup fmempty
fmfilter fmadd fmmap fmmap_keys fmcomp
checking SML Scala Haskell? OCaml?
experiment begin
context includes fset.lifting begin
lift_definition test1 :: "('a, 'b fset) fmap" is "fmempty :: ('a, 'b set) fmap"
by auto
lift_definition test2 :: "'a ⇒ 'b ⇒ ('a, 'b fset) fmap" is "λa b. fmupd a {b} fmempty"
by auto
end
end
end