Theory Linear_ODE
section ‹Linear ODE›
theory Linear_ODE
imports
"../IVP/Flow"
Bounded_Linear_Operator
Multivariate_Taylor
begin
lemma
exp_scaleR_has_derivative_right[derivative_intros]:
fixes f::"real ⇒ real"
assumes "(f has_derivative f') (at x within s)"
shows "((λx. exp (f x *⇩R A)) has_derivative (λh. f' h *⇩R (exp (f x *⇩R A) * A))) (at x within s)"
proof -
from assms have "bounded_linear f'" by auto
with real_bounded_linear obtain m where f': "f' = (λh. h * m)" by blast
show ?thesis
using vector_diff_chain_within[OF _ exp_scaleR_has_vector_derivative_right, of f m x s A] assms f'
by (auto simp: has_vector_derivative_def o_def)
qed
context
fixes A::"'a::{banach,perfect_space} blinop"
begin
definition "linode_solution t0 x0 = (λt. exp ((t - t0) *⇩R A) x0)"
lemma linode_solution_solves_ode:
"(linode_solution t0 x0 solves_ode (λ_. A)) UNIV UNIV" "linode_solution t0 x0 t0 = x0"
by (auto intro!: solves_odeI derivative_eq_intros
simp: has_vector_derivative_def blinop.bilinear_simps exp_times_scaleR_commute
has_vderiv_on_def linode_solution_def)
lemma "(linode_solution t0 x0 usolves_ode (λ_. A) from t0) UNIV UNIV"
using linode_solution_solves_ode(1)
proof (rule usolves_odeI)
fix s t1
assume s0: "s t0 = linode_solution t0 x0 t0"
assume sol: "(s solves_ode (λx. blinop_apply A)) {t0--t1} UNIV"
then have [derivative_intros]:
"(s has_derivative (λh. h *⇩R A (s t))) (at t within {t0 -- t1})" if "t ∈ {t0 -- t1}" for t
using that
by (auto dest!: solves_odeD(1) simp: has_vector_derivative_def has_vderiv_on_def)
have "((λt. exp (-(t - t0) *⇩R A) (s t)) has_derivative (λ_. 0)) (at t within {t0 -- t1})"
(is "(?es has_derivative _) _")
if "t ∈ {t0 -- t1}" for t
by (auto intro!: derivative_eq_intros that simp: has_vector_derivative_def
blinop.bilinear_simps)
from has_derivative_zero_constant[OF convex_closed_segment this]
obtain c where c: "⋀t. t ∈ {t0 -- t1} ⟹ ?es t = c" by auto
hence "(exp ((t - t0) *⇩R A) * (exp (-((t - t0) *⇩R A)))) (s t) = exp ((t - t0) *⇩R A) c"
if "t ∈ {t0 -- t1}" for t
by (metis (no_types, opaque_lifting) blinop_apply_times_blinop real_vector.scale_minus_left that)
then have s_def: "s t = exp ((t - t0) *⇩R A) c" if "t ∈ {t0 -- t1}" for t
by (simp add: exp_minus_inverse that)
from s0 s_def
have "exp ((t0 - t0) *⇩R A) c = x0"
by (simp add: linode_solution_solves_ode(2))
hence "c = x0" by simp
then show "s t1 = linode_solution t0 x0 t1"
using s_def[of t1] by (simp add: linode_solution_def)
qed auto
end
end