Theory FO_Ordered_Resolution_Prover

(*  Title:       An Ordered Resolution Prover for First-Order Clauses
    Author:      Anders Schlichtkrull <andschl at dtu.dk>, 2016, 2017
    Author:      Jasmin Blanchette <j.c.blanchette at vu.nl>, 2014, 2017
    Author:      Dmitriy Traytel <traytel at inf.ethz.ch>, 2014
    Maintainer:  Anders Schlichtkrull <andschl at dtu.dk>
*)

section ‹An Ordered Resolution Prover for First-Order Clauses›

theory FO_Ordered_Resolution_Prover
  imports FO_Ordered_Resolution
begin

text ‹
This material is based on Section 4.3 (``A Simple Resolution Prover for First-Order Clauses'') of
Bachmair and Ganzinger's chapter. Specifically, it formalizes the RP prover defined in Figure 5 and
its related lemmas and theorems, including Lemmas 4.10 and 4.11 and Theorem 4.13 (completeness).
›

definition is_least :: "(nat  bool)  nat  bool" where
  "is_least P n  P n  (n' < n. ¬ P n')"

lemma least_exists: "P n  n. is_least P n"
  using exists_least_iff unfolding is_least_def by auto

text ‹
The following corresponds to page 42 and 43 of Section 4.3, from the explanation of RP to
Lemma 4.10.
›

type_synonym 'a state = "'a clause set × 'a clause set × 'a clause set"

locale FO_resolution_prover =
  FO_resolution subst_atm id_subst comp_subst renamings_apart atm_of_atms mgu less_atm +
  selection S
  for
    S :: "('a :: wellorder) clause  'a clause" and
    subst_atm :: "'a  's  'a" and
    id_subst :: "'s" and
    comp_subst :: "'s  's  's" and
    renamings_apart :: "'a clause list  's list" and
    atm_of_atms :: "'a list  'a" and
    mgu :: "'a set set  's option" and
    less_atm :: "'a  'a  bool" +
  assumes
    sel_stable: "ρ C. is_renaming ρ  S (C  ρ) = S C  ρ"
begin

fun N_of_state :: "'a state  'a clause set" where
  "N_of_state (N, P, Q) = N"

fun P_of_state :: "'a state  'a clause set" where
  "P_of_state (N, P, Q) = P"

text O› denotes relation composition in Isabelle, so the formalization uses Q› instead.
›

fun Q_of_state :: "'a state  'a clause set" where
  "Q_of_state (N, P, Q) = Q"

abbreviation clss_of_state :: "'a state  'a clause set" where
  "clss_of_state St  N_of_state St  P_of_state St  Q_of_state St"

abbreviation grounding_of_state :: "'a state  'a clause set" where
  "grounding_of_state St  grounding_of_clss (clss_of_state St)"

interpretation ord_FO_resolution: inference_system "ord_FO_Γ S" .

text ‹
The following inductive predicate formalizes the resolution prover in Figure 5.
›

inductive RP :: "'a state  'a state  bool" (infix "" 50) where
  tautology_deletion: "Neg A ∈# C  Pos A ∈# C  (N  {C}, P, Q)  (N, P, Q)"
| forward_subsumption: "D  P  Q  subsumes D C  (N  {C}, P, Q)  (N, P, Q)"
| backward_subsumption_P: "D  N  strictly_subsumes D C  (N, P  {C}, Q)  (N, P, Q)"
| backward_subsumption_Q: "D  N  strictly_subsumes D C  (N, P, Q  {C})  (N, P, Q)"
| forward_reduction: "D + {#L'#}  P  Q  - L = L' ⋅l σ  D  σ ⊆# C 
    (N  {C + {#L#}}, P, Q)  (N  {C}, P, Q)"
| backward_reduction_P: "D + {#L'#}  N  - L = L' ⋅l σ  D  σ ⊆# C 
    (N, P  {C + {#L#}}, Q)  (N, P  {C}, Q)"
| backward_reduction_Q: "D + {#L'#}  N  - L = L' ⋅l σ  D  σ ⊆# C 
    (N, P, Q  {C + {#L#}})  (N, P  {C}, Q)"
| clause_processing: "(N  {C}, P, Q)  (N, P  {C}, Q)"
| inference_computation: "N = concls_of (ord_FO_resolution.inferences_between Q C) 
    ({}, P  {C}, Q)  (N, P, Q  {C})"

lemma final_RP: "¬ ({}, {}, Q)  St"
  by (auto elim: RP.cases)

definition Sup_state :: "'a state llist  'a state" where
  "Sup_state Sts =
   (Sup_llist (lmap N_of_state Sts), Sup_llist (lmap P_of_state Sts),
    Sup_llist (lmap Q_of_state Sts))"

definition Liminf_state :: "'a state llist  'a state" where
  "Liminf_state Sts =
   (Liminf_llist (lmap N_of_state Sts), Liminf_llist (lmap P_of_state Sts),
    Liminf_llist (lmap Q_of_state Sts))"

context
  fixes Sts Sts' :: "'a state llist"
  assumes Sts: "lfinite Sts" "lfinite Sts'" "¬ lnull Sts" "¬ lnull Sts'" "llast Sts' = llast Sts"
begin

lemma
  N_of_Liminf_state_fin: "N_of_state (Liminf_state Sts') = N_of_state (Liminf_state Sts)" and
  P_of_Liminf_state_fin: "P_of_state (Liminf_state Sts') = P_of_state (Liminf_state Sts)" and
  Q_of_Liminf_state_fin: "Q_of_state (Liminf_state Sts') = Q_of_state (Liminf_state Sts)"
  using Sts by (simp_all add: Liminf_state_def lfinite_Liminf_llist llast_lmap)

lemma Liminf_state_fin: "Liminf_state Sts' = Liminf_state Sts"
  using N_of_Liminf_state_fin P_of_Liminf_state_fin Q_of_Liminf_state_fin
  by (simp add: Liminf_state_def)

end

context
  fixes Sts Sts' :: "'a state llist"
  assumes Sts: "¬ lfinite Sts" "emb Sts Sts'"
begin

lemma
  N_of_Liminf_state_inf: "N_of_state (Liminf_state Sts')  N_of_state (Liminf_state Sts)" and
  P_of_Liminf_state_inf: "P_of_state (Liminf_state Sts')  P_of_state (Liminf_state Sts)" and
  Q_of_Liminf_state_inf: "Q_of_state (Liminf_state Sts')  Q_of_state (Liminf_state Sts)"
  using Sts by (simp_all add: Liminf_state_def emb_Liminf_llist_infinite emb_lmap)

lemma clss_of_Liminf_state_inf:
  "clss_of_state (Liminf_state Sts')  clss_of_state (Liminf_state Sts)"
  using N_of_Liminf_state_inf P_of_Liminf_state_inf Q_of_Liminf_state_inf by blast

end

definition fair_state_seq :: "'a state llist  bool" where
  "fair_state_seq Sts  N_of_state (Liminf_state Sts) = {}  P_of_state (Liminf_state Sts) = {}"

text ‹
The following formalizes Lemma 4.10.
›

context
  fixes Sts :: "'a state llist"
begin

definition S_Q :: "'a clause  'a clause" where
  "S_Q = S_M S (Q_of_state (Liminf_state Sts))"

interpretation sq: selection S_Q
  unfolding S_Q_def using S_M_selects_subseteq S_M_selects_neg_lits selection_axioms
  by unfold_locales auto

interpretation gr: ground_resolution_with_selection S_Q
  by unfold_locales

interpretation sr: standard_redundancy_criterion_reductive gr.ord_Γ
  by unfold_locales

interpretation sr: standard_redundancy_criterion_counterex_reducing gr.ord_Γ
  "ground_resolution_with_selection.INTERP S_Q"
  by unfold_locales

text ‹
The extension of ordered resolution mentioned in 4.10. We let it consist of all sound rules.
›

definition ground_sound_Γ:: "'a inference set" where
  "ground_sound_Γ = {Infer CC D E | CC D E. (I. I ⊨m CC  I  D  I  E)}"

text ‹
We prove that we indeed defined an extension.
›

lemma gd_ord_Γ_ngd_ord_Γ: "gr.ord_Γ  ground_sound_Γ"
  unfolding ground_sound_Γ_def using gr.ord_Γ_def gr.ord_resolve_sound by fastforce

lemma sound_ground_sound_Γ: "sound_inference_system ground_sound_Γ"
  unfolding sound_inference_system_def ground_sound_Γ_def by auto

lemma sat_preserving_ground_sound_Γ: "sat_preserving_inference_system ground_sound_Γ"
  using sound_ground_sound_Γ sat_preserving_inference_system.intro
    sound_inference_system.Γ_sat_preserving by blast

definition sr_ext_Ri :: "'a clause set  'a inference set" where
  "sr_ext_Ri N = sr.Ri N  (ground_sound_Γ - gr.ord_Γ)"

interpretation sr_ext:
  sat_preserving_redundancy_criterion ground_sound_Γ sr.Rf sr_ext_Ri
  unfolding sat_preserving_redundancy_criterion_def sr_ext_Ri_def
  using sat_preserving_ground_sound_Γ redundancy_criterion_standard_extension gd_ord_Γ_ngd_ord_Γ
    sr.redundancy_criterion_axioms by auto

lemma strict_subset_subsumption_redundant_clause:
  assumes
    sub: "D  σ ⊂# C" and
    ground_σ: "is_ground_subst σ"
  shows "C  sr.Rf (grounding_of_cls D)"
proof -
  from sub have "I. I  D  σ  I  C"
    unfolding true_cls_def by blast
  moreover have "C > D  σ"
    using sub by (simp add: subset_imp_less_mset)
  moreover have "D  σ  grounding_of_cls D"
    using ground_σ by (metis (mono_tags) mem_Collect_eq substitution_ops.grounding_of_cls_def)
  ultimately have "set_mset {#D  σ#}  grounding_of_cls D"
    "(I. I ⊨m {#D  σ#}  I  C)"
    "(D'. D' ∈# {#D  σ#}  D' < C)"
    by auto
  then show ?thesis
    using sr.Rf_def by blast
qed

lemma strict_subset_subsumption_redundant_clss:
  assumes
    "D  σ ⊂# C" and
    "is_ground_subst σ" and
    "D  CC"
  shows "C  sr.Rf (grounding_of_clss CC)"
  using assms
proof -
  have "C  sr.Rf (grounding_of_cls D)"
    using strict_subset_subsumption_redundant_clause assms by auto
  then show ?thesis
    using assms unfolding grounding_of_clss_def
    by (metis (no_types) sr.Rf_mono sup_ge1 SUP_absorb contra_subsetD)
qed

lemma strict_subset_subsumption_grounding_redundant_clss:
  assumes
    Dσ_subset_C: "D  σ ⊂# C" and
    D_in_St: "D  CC"
  shows "grounding_of_cls C  sr.Rf (grounding_of_clss CC)"
proof
  fix 
  assume "  grounding_of_cls C"
  then obtain μ where
    μ_p: " = C  μ  is_ground_subst μ"
    unfolding grounding_of_cls_def by auto
  have DσμCμ: "D  σ  μ ⊂# C  μ"
    using Dσ_subset_C subst_subset_mono by auto
  then show "  sr.Rf (grounding_of_clss CC)"
    using μ_p strict_subset_subsumption_redundant_clss[of D "σ  μ" "C  μ"] D_in_St by auto
qed

lemma derive_if_remove_subsumed:
  assumes
    "D  clss_of_state St" and
    "subsumes D C"
  shows "sr_ext.derive (grounding_of_state St  grounding_of_cls C) (grounding_of_state St)"
proof -
  from assms obtain σ where
    "D  σ = C  D  σ ⊂# C"
    by (auto simp: subsumes_def subset_mset_def)
  then have "D  σ = C  D  σ ⊂# C"
    by (simp add: subset_mset_def)
  then show ?thesis
  proof
    assume "D  σ = C"
    then have "grounding_of_cls C  grounding_of_cls D"
      using subst_cls_eq_grounding_of_cls_subset_eq
      by (auto dest: sym)
    then have "(grounding_of_state St  grounding_of_cls C) = grounding_of_state St"
      using assms unfolding grounding_of_clss_def by auto
    then show ?thesis
      by (auto intro: sr_ext.derive.intros)
  next
    assume a: "D  σ ⊂# C"
    then have "grounding_of_cls C  sr.Rf (grounding_of_state St)"
      using strict_subset_subsumption_grounding_redundant_clss assms by auto
    then show ?thesis
      unfolding grounding_of_clss_def by (force intro: sr_ext.derive.intros)
  qed
qed

lemma reduction_in_concls_of:
  assumes
    "  grounding_of_cls C" and
    "D + {#L'#}  CC" and
    "- L = L' ⋅l σ" and
    "D  σ ⊆# C"
  shows "  concls_of (sr_ext.inferences_from (grounding_of_clss (CC  {C + {#L#}})))"
proof -
  from assms
  obtain μ where
    μ_p: " = C  μ  is_ground_subst μ"
    unfolding grounding_of_cls_def by auto

  define γ where
    "γ = Infer {#(C + {#L#})  μ#} ((D + {#L'#})  σ  μ) (C  μ)"

  have "(D + {#L'#})  σ  μ  grounding_of_clss (CC  {C + {#L#}})"
    unfolding grounding_of_clss_def grounding_of_cls_def
    by (rule UN_I[of "D + {#L'#}"], use assms(2) in simp,
        metis (mono_tags, lifting) μ_p is_ground_comp_subst mem_Collect_eq subst_cls_comp_subst)
  moreover have "(C + {#L#})  μ  grounding_of_clss (CC  {C + {#L#}})"
    using μ_p unfolding  grounding_of_clss_def grounding_of_cls_def by auto
  moreover have
    "I. I  D  σ  μ + {#- (L  ⋅l μ)#}  I  C   μ + {#L  ⋅l μ#}  I  D  σ  μ + C  μ"
    by auto
  then have "I. I  (D + {#L'#})  σ  μ  I  (C + {#L#})  μ  I  D  σ  μ + C  μ"
    using assms
    by (metis add_mset_add_single subst_cls_add_mset subst_cls_union subst_minus)
  then have "I. I  (D + {#L'#})  σ  μ  I  (C + {#L#})  μ  I  C  μ"
    using assms by (metis (no_types, lifting) subset_mset.le_iff_add subst_cls_union true_cls_union)
  then have "I. I ⊨m {#(D + {#L'#})  σ  μ#}  I  (C + {#L#})  μ  I  C  μ"
    by (meson true_cls_mset_singleton)
  ultimately have "γ  sr_ext.inferences_from (grounding_of_clss (CC  {C + {#L#}}))"
    unfolding sr_ext.inferences_from_def unfolding ground_sound_Γ_def infer_from_def γ_def by auto
  then have "C  μ  concls_of (sr_ext.inferences_from (grounding_of_clss (CC  {C + {#L#}})))"
    using image_iff unfolding γ_def by fastforce
  then show "  concls_of (sr_ext.inferences_from (grounding_of_clss (CC  {C + {#L#}})))"
    using μ_p by auto
qed

lemma reduction_derivable:
  assumes
    "D + {#L'#}  CC" and
    "- L = L' ⋅l σ" and
    "D  σ ⊆# C"
  shows "sr_ext.derive (grounding_of_clss (CC  {C + {#L#}})) (grounding_of_clss (CC  {C}))"
proof -
  from assms have "grounding_of_clss (CC  {C}) - grounding_of_clss (CC  {C + {#L#}})
     concls_of (sr_ext.inferences_from (grounding_of_clss (CC  {C + {#L#}})))"
    using reduction_in_concls_of unfolding grounding_of_clss_def by auto
  moreover
  have "grounding_of_cls (C + {#L#})  sr.Rf (grounding_of_clss (CC  {C}))"
    using strict_subset_subsumption_grounding_redundant_clss[of C "id_subst"]
    by auto
  then have "grounding_of_clss (CC  {C + {#L#}}) - grounding_of_clss (CC  {C})
     sr.Rf (grounding_of_clss (CC  {C}))"
    unfolding grounding_of_clss_def by auto
  ultimately show
    "sr_ext.derive (grounding_of_clss (CC  {C + {#L#}})) (grounding_of_clss (CC  {C}))"
    using sr_ext.derive.intros[of "grounding_of_clss (CC  {C})"
        "grounding_of_clss (CC  {C + {#L#}})"]
    by auto
qed

text ‹
The following corresponds the part of Lemma 4.10 that states we have a theorem proving process:
›

lemma RP_ground_derive:
  "St  St'  sr_ext.derive (grounding_of_state St) (grounding_of_state St')"
proof (induction rule: RP.induct)
  case (tautology_deletion A C N P Q)
  {
    fix 
    assume "  grounding_of_cls C"
    then obtain σ where
      " = C  σ"
      unfolding grounding_of_cls_def by auto
    then have "Neg (A ⋅a σ) ∈#   Pos (A ⋅a σ) ∈# "
      using tautology_deletion Neg_Melem_subst_atm_subst_cls Pos_Melem_subst_atm_subst_cls by auto
    then have "  sr.Rf (grounding_of_state (N, P, Q))"
      using sr.tautology_Rf by auto
  }
  then have "grounding_of_state (N  {C}, P, Q) - grounding_of_state (N, P, Q)
     sr.Rf (grounding_of_state (N, P, Q))"
    unfolding grounding_of_clss_def by auto
  moreover have "grounding_of_state (N, P, Q) - grounding_of_state (N  {C}, P, Q) = {}"
    unfolding grounding_of_clss_def by auto
  ultimately show ?case
    using sr_ext.derive.intros[of "grounding_of_state (N, P, Q)"
      "grounding_of_state (N  {C}, P, Q)"]
    by auto
next
  case (forward_subsumption D P Q C N)
  then show ?case
    using derive_if_remove_subsumed[of D "(N, P, Q)" C] unfolding grounding_of_clss_def
    by (simp add: sup_commute sup_left_commute)
next
  case (backward_subsumption_P D N C P Q)
  then show ?case
    using derive_if_remove_subsumed[of D "(N, P, Q)" C] strictly_subsumes_def
    unfolding grounding_of_clss_def by (simp add: sup_commute sup_left_commute)
next
  case (backward_subsumption_Q D N C P Q)
  then show ?case
    using derive_if_remove_subsumed[of D "(N, P, Q)" C] strictly_subsumes_def
    unfolding grounding_of_clss_def by (simp add: sup_commute sup_left_commute)
next
  case (forward_reduction D L' P Q L σ C N)
  then show ?case
    using reduction_derivable[of _ _ "N  P  Q"] by force
next
  case (backward_reduction_P D L' N L σ C P Q)
  then show ?case
    using reduction_derivable[of _ _ "N  P  Q"] by force
next
  case (backward_reduction_Q D L' N L σ C P Q)
  then show ?case
    using reduction_derivable[of _ _ "N  P  Q"] by force
next
  case (clause_processing N C P Q)
  then show ?case
    using sr_ext.derive.intros by auto
next
  case (inference_computation N Q C P)
  {
    fix 
    assume "  grounding_of_clss N"
    then obtain μ E where
      E_μ_p: " = E  μ  E  N  is_ground_subst μ"
      unfolding grounding_of_clss_def grounding_of_cls_def by auto
    then have E_concl: "E  concls_of (ord_FO_resolution.inferences_between Q C)"
      using inference_computation by auto
    then obtain γ where
      γ_p: "γ  ord_FO_Γ S  infer_from (Q  {C}) γ  C ∈# prems_of γ  concl_of γ = E"
      unfolding ord_FO_resolution.inferences_between_def by auto
    then obtain CC CAs D AAs As σ where
      γ_p2: "γ = Infer CC D E  ord_resolve_rename S CAs D AAs As σ E  mset CAs = CC"
      unfolding ord_FO_Γ_def by auto
    define ρ where
      "ρ = hd (renamings_apart (D # CAs))"
    define ρs where
      "ρs = tl (renamings_apart (D # CAs))"
    define γ_ground where
      "γ_ground = Infer (mset (CAs ⋅⋅cl ρs) ⋅cm σ ⋅cm μ) (D  ρ  σ  μ) (E  μ)"
    have "I. I ⊨m mset (CAs ⋅⋅cl ρs) ⋅cm σ ⋅cm μ  I  D  ρ  σ  μ  I  E  μ"
      using ord_resolve_rename_ground_inst_sound[of _ _ _ _ _ _ _ _ _ _ μ] ρ_def ρs_def E_μ_p γ_p2
      by auto
    then have "γ_ground  {Infer cc d e | cc d e. I. I ⊨m cc  I  d  I  e}"
      unfolding γ_ground_def by auto
    moreover have "set_mset (prems_of γ_ground)  grounding_of_state ({}, P  {C}, Q)"
    proof -
      have "D = C  D  Q"
        unfolding γ_ground_def using E_μ_p γ_p2 γ_p unfolding infer_from_def
        unfolding grounding_of_clss_def grounding_of_cls_def by simp
      then have "D  ρ  σ  μ  grounding_of_cls C  (x  Q. D  ρ  σ  μ  grounding_of_cls x)"
        using E_μ_p
        unfolding grounding_of_cls_def
        by (metis (mono_tags, lifting) is_ground_comp_subst mem_Collect_eq subst_cls_comp_subst)
      then have "(D  ρ  σ  μ  grounding_of_cls C 
        (x  P. D  ρ  σ  μ  grounding_of_cls x) 
        (x  Q. D  ρ  σ  μ  grounding_of_cls x))"
        by metis
      moreover have "i < length (CAs ⋅⋅cl ρs ⋅cl σ ⋅cl μ). (CAs ⋅⋅cl ρs ⋅cl σ ⋅cl μ) ! i 
        {C  σ |σ. is_ground_subst σ} 
        ((C  P. {C  σ | σ. is_ground_subst σ})  (CQ. {C  σ | σ. is_ground_subst σ}))"
      proof (rule, rule)
        fix i
        assume "i < length (CAs ⋅⋅cl ρs ⋅cl σ ⋅cl μ)"
        then have a: "i < length CAs  i < length ρs"
          by simp
        moreover from a have "CAs ! i  {C}  Q"
          using γ_p2 γ_p unfolding infer_from_def
          by (metis (no_types, lifting) Un_subset_iff inference.sel(1) set_mset_union
              sup_commute nth_mem_mset subsetCE)
        ultimately have "(CAs ⋅⋅cl ρs ⋅cl σ ⋅cl μ) ! i 
          {C  σ |σ. is_ground_subst σ} 
          ((CAs ⋅⋅cl ρs ⋅cl σ ⋅cl μ) ! i  (CP. {C  σ |σ. is_ground_subst σ}) 
          (CAs ⋅⋅cl ρs ⋅cl σ ⋅cl μ) ! i  (C  Q. {C  σ | σ. is_ground_subst σ}))"
          using E_μ_p γ_p2 γ_p
          unfolding γ_ground_def infer_from_def grounding_of_clss_def grounding_of_cls_def
          apply -
          apply (cases "CAs ! i = C")
          subgoal
            apply (rule disjI1)
            apply (rule Set.CollectI)
            apply (rule_tac x = "(ρs ! i)  σ  μ" in exI)
            using ρs_def using renamings_apart_length by (auto; fail)
          subgoal
            apply (rule disjI2)
            apply (rule disjI2)
            apply (rule_tac a = "CAs ! i" in UN_I)
            subgoal by blast
            subgoal
              apply (rule Set.CollectI)
              apply (rule_tac x = "(ρs ! i)  σ  μ" in exI)
              using ρs_def using renamings_apart_length by (auto; fail)
            done
          done
        then show "(CAs ⋅⋅cl ρs ⋅cl σ ⋅cl μ) ! i  {C  σ |σ. is_ground_subst σ} 
          ((C  P. {C  σ |σ. is_ground_subst σ})  (C  Q. {C  σ |σ. is_ground_subst σ}))"
          by blast
      qed
      then have "x ∈# mset (CAs ⋅⋅cl ρs ⋅cl σ ⋅cl μ). x  {C  σ |σ. is_ground_subst σ} 
        ((C  P. {C  σ |σ. is_ground_subst σ})  (C  Q. {C  σ |σ. is_ground_subst σ}))"
        by (metis (lifting) in_set_conv_nth set_mset_mset)
      then have "set_mset (mset (CAs ⋅⋅cl ρs) ⋅cm σ ⋅cm μ) 
        grounding_of_cls C  grounding_of_clss P  grounding_of_clss Q"
        unfolding grounding_of_cls_def grounding_of_clss_def
        using mset_subst_cls_list_subst_cls_mset by auto
      ultimately show ?thesis
        unfolding γ_ground_def grounding_of_clss_def by auto
    qed
    ultimately have
      "E  μ  concls_of (sr_ext.inferences_from (grounding_of_state ({}, P  {C}, Q)))"
      unfolding sr_ext.inferences_from_def inference_system.inferences_from_def ground_sound_Γ_def
        infer_from_def
      using γ_ground_def by (metis (mono_tags, lifting) image_eqI inference.sel(3) mem_Collect_eq)
    then have "  concls_of (sr_ext.inferences_from (grounding_of_state ({}, P  {C}, Q)))"
      using E_μ_p by auto
  }
  then have "grounding_of_state (N, P, Q  {C}) - grounding_of_state ({}, P  {C}, Q)
     concls_of (sr_ext.inferences_from (grounding_of_state ({}, P  {C}, Q)))"
    unfolding grounding_of_clss_def by auto
  moreover have "grounding_of_state ({}, P  {C}, Q) - grounding_of_state (N, P, Q  {C}) = {}"
    unfolding grounding_of_clss_def by auto
  ultimately show ?case
    using sr_ext.derive.intros[of "(grounding_of_state (N, P, Q  {C}))"
        "(grounding_of_state ({}, P  {C}, Q))"] by auto
qed

text ‹
A useful consequence:
›

theorem RP_model: "St  St'  I ⊨s grounding_of_state St'  I ⊨s grounding_of_state St"
proof (drule RP_ground_derive, erule sr_ext.derive.cases, hypsubst)
  let
    ?gSt = "grounding_of_state St" and
    ?gSt' = "grounding_of_state St'"

  assume
    deduct: "?gSt' - ?gSt  concls_of (sr_ext.inferences_from ?gSt)" (is "_  ?concls") and
    delete: "?gSt - ?gSt'  sr.Rf ?gSt'"

  show "I ⊨s ?gSt'  I ⊨s ?gSt"
  proof
    assume bef: "I ⊨s ?gSt"
    then have "I ⊨s ?concls"
      unfolding ground_sound_Γ_def inference_system.inferences_from_def true_clss_def
        true_cls_mset_def
      by (auto simp add: image_def infer_from_def dest!: spec[of _ I])
    then have diff: "I ⊨s ?gSt' - ?gSt"
      using deduct by (blast intro: true_clss_mono)
    then show "I ⊨s ?gSt'"
      using bef unfolding true_clss_def by blast
  next
    assume aft: "I ⊨s ?gSt'"
    have "I ⊨s ?gSt'  sr.Rf ?gSt'"
      by (rule sr.Rf_model) (smt (verit) Diff_eq_empty_iff Diff_subset Un_Diff aft
          standard_redundancy_criterion.Rf_mono sup_bot.right_neutral sup_ge1 true_clss_mono)
    then have "I ⊨s sr.Rf ?gSt'"
      using true_clss_union by blast
    then have diff: "I ⊨s ?gSt - ?gSt'"
      using delete by (blast intro: true_clss_mono)
    then show "I ⊨s ?gSt"
      using aft unfolding true_clss_def by blast
  qed
qed

text ‹
Another formulation of the part of Lemma 4.10 that states we have a theorem proving process:
›

lemma ground_derive_chain: "chain (↝) Sts  chain sr_ext.derive (lmap grounding_of_state Sts)"
  using RP_ground_derive by (simp add: chain_lmap[of "(↝)"])

text ‹
The following is used prove to Lemma 4.11:
›

lemma Sup_llist_grounding_of_state_ground:
  assumes "C  Sup_llist (lmap grounding_of_state Sts)"
  shows "is_ground_cls C"
proof -
  have "j. enat j < llength (lmap grounding_of_state Sts)
     C  lnth (lmap grounding_of_state Sts) j"
    using assms Sup_llist_imp_exists_index by fast
  then show ?thesis
    unfolding grounding_of_clss_def grounding_of_cls_def by auto
qed

lemma Liminf_grounding_of_state_ground:
  "C  Liminf_llist (lmap grounding_of_state Sts)  is_ground_cls C"
  using Liminf_llist_subset_Sup_llist[of "lmap grounding_of_state Sts"]
    Sup_llist_grounding_of_state_ground
  by blast

lemma in_Sup_llist_in_Sup_state:
  assumes "C  Sup_llist (lmap grounding_of_state Sts)"
  shows "D σ. D  clss_of_state (Sup_state Sts)  D  σ = C  is_ground_subst σ"
proof -
  from assms obtain i where
    i_p: "enat i < llength Sts  C  lnth (lmap grounding_of_state Sts) i"
    using Sup_llist_imp_exists_index by fastforce
  then obtain D σ where
    "D  clss_of_state (lnth Sts i)  D  σ = C  is_ground_subst σ"
    using assms unfolding grounding_of_clss_def grounding_of_cls_def by fastforce
  then have "D  clss_of_state (Sup_state Sts)  D  σ = C  is_ground_subst σ"
    using i_p unfolding Sup_state_def
    by (metis (no_types, lifting) UnCI UnE contra_subsetD N_of_state.simps P_of_state.simps
        Q_of_state.simps llength_lmap lnth_lmap lnth_subset_Sup_llist)
  then show ?thesis
    by auto
qed

lemma
  N_of_state_Liminf: "N_of_state (Liminf_state Sts) = Liminf_llist (lmap N_of_state Sts)" and
  P_of_state_Liminf: "P_of_state (Liminf_state Sts) = Liminf_llist (lmap P_of_state Sts)"
  unfolding Liminf_state_def by auto

lemma eventually_removed_from_N:
  assumes
    d_in: "D  N_of_state (lnth Sts i)" and
    fair: "fair_state_seq Sts" and
    i_Sts: "enat i < llength Sts"
  shows "l. D  N_of_state (lnth Sts l)  D  N_of_state (lnth Sts (Suc l))  i  l
     enat (Suc l) < llength Sts"
proof (rule ccontr)
  assume a: "¬ ?thesis"
  have "i  l  enat l < llength Sts  D  N_of_state (lnth Sts l)" for l
    using d_in by (induction l, blast, metis a Suc_ile_eq le_SucE less_imp_le)
  then have "D  Liminf_llist (lmap N_of_state Sts)"
    unfolding Liminf_llist_def using i_Sts by auto
  then show False
    using fair unfolding fair_state_seq_def by (simp add: N_of_state_Liminf)
qed

lemma eventually_removed_from_P:
  assumes
    d_in: "D  P_of_state (lnth Sts i)" and
    fair: "fair_state_seq Sts" and
    i_Sts: "enat i < llength Sts"
  shows "l. D  P_of_state (lnth Sts l)  D  P_of_state (lnth Sts (Suc l))  i  l
     enat (Suc l) < llength Sts"
proof (rule ccontr)
  assume a: "¬ ?thesis"
  have "i  l  enat l < llength Sts  D  P_of_state (lnth Sts l)" for l
    using d_in by (induction l, blast, metis a Suc_ile_eq le_SucE less_imp_le)
  then have "D  Liminf_llist (lmap P_of_state Sts)"
    unfolding Liminf_llist_def using i_Sts by auto
  then show False
    using fair unfolding fair_state_seq_def by (simp add: P_of_state_Liminf)
qed

lemma instance_if_subsumed_and_in_limit:
  assumes
    deriv: "chain (↝) Sts" and
    ns: "Gs = lmap grounding_of_state Sts" and
    c: "C  Liminf_llist Gs - sr.Rf (Liminf_llist Gs)" and
    d: "D  clss_of_state (lnth Sts i)" "enat i < llength Sts" "subsumes D C"
  shows "σ. D  σ = C  is_ground_subst σ"
proof -
  let ?Ps = "λi. P_of_state (lnth Sts i)"
  let ?Qs = "λi. Q_of_state (lnth Sts i)"

  have ground_C: "is_ground_cls C"
    using c using Liminf_grounding_of_state_ground ns by auto

  have derivns: "chain sr_ext.derive Gs"
    using ground_derive_chain deriv ns by auto

  have "σ. D  σ = C"
  proof (rule ccontr)
    assume "σ. D  σ = C"
    moreover from d(3) obtain τ_proto where
      "D  τ_proto ⊆# C" unfolding subsumes_def
      by blast
    then obtain τ where
      τ_p: "D  τ ⊆# C  is_ground_subst τ"
      using ground_C by (metis is_ground_cls_mono make_ground_subst subset_mset.order_refl)
    ultimately have subsub: "D  τ ⊂# C"
      using subset_mset.le_imp_less_or_eq by auto
    moreover have "is_ground_subst τ"
      using τ_p by auto
    moreover have "D  clss_of_state (lnth Sts i)"
      using d by auto
    ultimately have "C  sr.Rf (grounding_of_state (lnth Sts i))"
      using strict_subset_subsumption_redundant_clss by auto
    then have "C  sr.Rf (Sup_llist Gs)"
      using d ns by (smt (verit) contra_subsetD llength_lmap lnth_lmap lnth_subset_Sup_llist sr.Rf_mono)
    then have "C  sr.Rf (Liminf_llist Gs)"
      unfolding ns using local.sr_ext.Rf_limit_Sup derivns ns by auto
    then show False
      using c by auto
  qed
  then obtain σ where
    "D  σ = C  is_ground_subst σ"
    using ground_C by (metis make_ground_subst)
  then show ?thesis
    by auto
qed

lemma from_Q_to_Q_inf:
  assumes
    deriv: "chain (↝) Sts" and
    fair: "fair_state_seq Sts" and
    ns: "Gs = lmap grounding_of_state Sts" and
    c: "C  Liminf_llist Gs - sr.Rf (Liminf_llist Gs)" and
    d: "D  Q_of_state (lnth Sts i)" "enat i < llength Sts" "subsumes D C" and
    d_least: "E  {E. E  (clss_of_state (Sup_state Sts))  subsumes E C}.
      ¬ strictly_subsumes E D"
  shows "D  Q_of_state (Liminf_state Sts)"
proof -
  let ?Ps = "λi. P_of_state (lnth Sts i)"
  let ?Qs = "λi. Q_of_state (lnth Sts i)"

  have ground_C: "is_ground_cls C"
    using c using Liminf_grounding_of_state_ground ns by auto

  have derivns: "chain sr_ext.derive Gs"
    using ground_derive_chain deriv ns by auto

  have "σ. D  σ = C  is_ground_subst σ"
    using instance_if_subsumed_and_in_limit[OF deriv] c d unfolding ns by blast
  then obtain σ where
    σ: "D  σ = C" "is_ground_subst σ"
    by auto

  have in_Sts_in_Sts_Suc:
    "l  i. enat (Suc l) < llength Sts  D  Q_of_state (lnth Sts l) 
       D  Q_of_state (lnth Sts (Suc l))"
  proof (rule, rule, rule, rule)
    fix l
    assume
      len: "i  l" and
      llen: "enat (Suc l) < llength Sts" and
      d_in_q: "D  Q_of_state (lnth Sts l)"

    have "lnth Sts l  lnth Sts (Suc l)"
      using llen deriv chain_lnth_rel by blast
    then show "D  Q_of_state (lnth Sts (Suc l))"
    proof (cases rule: RP.cases)
      case (backward_subsumption_Q D' N D_removed P Q)
      moreover
      {
        assume "D_removed = D"
        then obtain D_subsumes where
          D_subsumes_p: "D_subsumes  N  strictly_subsumes D_subsumes D"
          using backward_subsumption_Q by auto
        moreover from D_subsumes_p have "subsumes D_subsumes C"
          using d subsumes_trans unfolding strictly_subsumes_def by blast
        moreover from backward_subsumption_Q have "D_subsumes  clss_of_state (Sup_state Sts)"
          using D_subsumes_p llen
          by (metis (no_types) UnI1 N_of_state.simps llength_lmap lnth_lmap lnth_subset_Sup_llist
              rev_subsetD Sup_state_def)
        ultimately have False
          using d_least unfolding subsumes_def by auto
      }
      ultimately show ?thesis
        using d_in_q by auto
    next
      case (backward_reduction_Q E L' N L σ D' P Q)
      {
        assume "D' + {#L#} = D"
        then have D'_p: "strictly_subsumes D' D  D'  ?Ps (Suc l)"
          using subset_strictly_subsumes[of D' D] backward_reduction_Q by auto
        then have subc: "subsumes D' C"
          using d(3) subsumes_trans unfolding strictly_subsumes_def by auto
        from D'_p have "D'  clss_of_state (Sup_state Sts)"
          using llen by (metis (no_types) UnI1 P_of_state.simps llength_lmap lnth_lmap
              lnth_subset_Sup_llist subsetCE sup_ge2 Sup_state_def)
        then have False
          using d_least D'_p subc by auto
      }
      then show ?thesis
        using backward_reduction_Q d_in_q by auto
    qed (use d_in_q in auto)
  qed
  have D_in_Sts: "D  Q_of_state (lnth Sts l)" and D_in_Sts_Suc: "D  Q_of_state (lnth Sts (Suc l))"
    if l_i: "l  i" and enat: "enat (Suc l) < llength Sts" for l
  proof -
    show "D  Q_of_state (lnth Sts l)"
      using l_i enat
      apply (induction "l - i" arbitrary: l)
      subgoal using d by auto
      subgoal using d(1) in_Sts_in_Sts_Suc
        by (metis (no_types, lifting) Suc_ile_eq add_Suc_right add_diff_cancel_left' le_SucE
            le_Suc_ex less_imp_le)
      done
    then show "D  Q_of_state (lnth Sts (Suc l))"
      using l_i enat in_Sts_in_Sts_Suc by blast
  qed
  have "i  x  enat x < llength Sts  D  Q_of_state (lnth Sts x)" for x
    apply (cases x)
    subgoal using d(1) by (auto intro!: exI[of _ i] simp: less_Suc_eq)
    subgoal for x'
      using d(1) D_in_Sts_Suc[of x'] by (cases i  x') (auto simp: not_less_eq_eq)
    done
  then have "D  Liminf_llist (lmap Q_of_state Sts)"
    unfolding Liminf_llist_def by (auto intro!: exI[of _ i] simp: d)
  then show ?thesis
    unfolding Liminf_state_def by auto
qed

lemma from_P_to_Q:
  assumes
    deriv: "chain (↝) Sts" and
    fair: "fair_state_seq Sts" and
    ns: "Gs = lmap grounding_of_state Sts" and
    c: "C  Liminf_llist Gs - sr.Rf (Liminf_llist Gs)" and
    d: "D  P_of_state (lnth Sts i)" "enat i < llength Sts" "subsumes D C" and
    d_least: "E  {E. E  (clss_of_state (Sup_state Sts))  subsumes E C}.
      ¬ strictly_subsumes E D"
  shows "l. D  Q_of_state (lnth Sts l)  enat l < llength Sts"
proof -
  let ?Ns = "λi. N_of_state (lnth Sts i)"
  let ?Ps = "λi. P_of_state (lnth Sts i)"
  let ?Qs = "λi. Q_of_state (lnth Sts i)"

  have ground_C: "is_ground_cls C"
    using c using Liminf_grounding_of_state_ground ns by auto

  have derivns: "chain sr_ext.derive Gs"
    using ground_derive_chain deriv ns by auto

  have "σ. D  σ = C  is_ground_subst σ"
    using instance_if_subsumed_and_in_limit[OF deriv] ns c d by blast
  then obtain σ where
    σ: "D  σ = C" "is_ground_subst σ"
    by auto

  obtain l where
    l_p: "D  P_of_state (lnth Sts l)  D  P_of_state (lnth Sts (Suc l))  i  l
       enat (Suc l) < llength Sts"
    using fair using eventually_removed_from_P d unfolding ns by auto
  then have l_Gs: "enat (Suc l) < llength Gs"
    using ns by auto
  from l_p have "lnth Sts l  lnth Sts (Suc l)"
    using deriv using chain_lnth_rel by auto
  then show ?thesis
  proof (cases rule: RP.cases)
    case (backward_subsumption_P D' N D_twin P Q)
    note lrhs = this(1,2) and D'_p = this(3,4)
    then have twins: "D_twin = D" "?Ns (Suc l) = N" "?Ns l = N"  "?Ps (Suc l) = P"
      "?Ps l = P  {D_twin}" "?Qs (Suc l) = Q" "?Qs l = Q"
      using l_p by auto
    note D'_p = D'_p[unfolded twins(1)]
    then have subc: "subsumes D' C"
      unfolding strictly_subsumes_def subsumes_def using σ
      by (metis subst_cls_comp_subst subst_cls_mono_mset)
    from D'_p have "D'  clss_of_state (Sup_state Sts)"
      unfolding twins(2)[symmetric] using l_p
      by (metis (no_types) UnI1 N_of_state.simps llength_lmap lnth_lmap lnth_subset_Sup_llist
          subsetCE Sup_state_def)
    then have False
      using d_least D'_p subc by auto
    then show ?thesis
      by auto
  next
    case (backward_reduction_P E L' N L σ D' P Q)
    then have twins: "D' + {#L#} = D" "?Ns (Suc l) = N" "?Ns l = N"  "?Ps (Suc l) = P  {D'}"
      "?Ps l = P  {D' + {#L#}}" "?Qs (Suc l) = Q" "?Qs l = Q"
      using l_p by auto
    then have D'_p: "strictly_subsumes D' D  D'  ?Ps (Suc l)"
      using subset_strictly_subsumes[of D' D] by auto
    then have subc: "subsumes D' C"
      using d(3) subsumes_trans unfolding strictly_subsumes_def by auto
    from D'_p have "D'  clss_of_state (Sup_state Sts)"
      using l_p by (metis (no_types) UnI1 P_of_state.simps llength_lmap lnth_lmap
          lnth_subset_Sup_llist subsetCE sup_ge2 Sup_state_def)
    then have False
      using d_least D'_p subc by auto
    then show ?thesis
      by auto
  next
    case (inference_computation N Q D_twin P)
    then have twins: "D_twin = D" "?Ps (Suc l) = P" "?Ps l = P  {D_twin}"
      "?Qs (Suc l) = Q  {D_twin}" "?Qs l = Q"
      using l_p by auto
    then show ?thesis
      using d σ l_p by auto
  qed (use l_p in auto)
qed

lemma from_N_to_P_or_Q:
  assumes
    deriv: "chain (↝) Sts" and
    fair: "fair_state_seq Sts" and
    ns: "Gs = lmap grounding_of_state Sts" and
    c: "C  Liminf_llist Gs - sr.Rf (Liminf_llist Gs)" and
    d: "D  N_of_state (lnth Sts i)" "enat i < llength Sts" "subsumes D C" and
    d_least: "E  {E. E  (clss_of_state (Sup_state Sts))  subsumes E C}. ¬ strictly_subsumes E D"
  shows "l D' σ'. D'  P_of_state (lnth Sts l)  Q_of_state (lnth Sts l) 
    enat l < llength Sts 
    (E  {E. E  (clss_of_state (Sup_state Sts))  subsumes E C}. ¬ strictly_subsumes E D') 
    D'  σ' = C  is_ground_subst σ'  subsumes D' C"
proof -
  let ?Ns = "λi. N_of_state (lnth Sts i)"
  let ?Ps = "λi. P_of_state (lnth Sts i)"
  let ?Qs = "λi. Q_of_state (lnth Sts i)"

  have ground_C: "is_ground_cls C"
    using c using Liminf_grounding_of_state_ground ns by auto

  have derivns: "chain sr_ext.derive Gs"
    using ground_derive_chain deriv ns by auto

  have "σ. D  σ = C  is_ground_subst σ"
    using instance_if_subsumed_and_in_limit[OF deriv] ns c d by blast
  then obtain σ where
    σ: "D  σ = C" "is_ground_subst σ"
    by auto

  from c have no_taut: "¬ (A. Pos A ∈# C  Neg A ∈# C)"
    using sr.tautology_Rf by auto

  have "l. D  N_of_state (lnth Sts l)
     D  N_of_state (lnth Sts (Suc l))  i  l  enat (Suc l) < llength Sts"
    using fair using eventually_removed_from_N d unfolding ns by auto
  then obtain l where
    l_p: "D  N_of_state (lnth Sts l)  D  N_of_state (lnth Sts (Suc l))  i  l
       enat (Suc l) < llength Sts"
    by auto
  then have l_Gs: "enat (Suc l) < llength Gs"
    using ns by auto
  from l_p have "lnth Sts l  lnth Sts (Suc l)"
    using deriv using chain_lnth_rel by auto
  then show ?thesis
  proof (cases rule: RP.cases)
    case (tautology_deletion A D_twin N P Q)
    then have "D_twin = D"
      using l_p by auto
    then have "Pos (A ⋅a σ) ∈# C  Neg (A ⋅a σ) ∈# C"
      using tautology_deletion(3,4) σ
      by (metis Melem_subst_cls eql_neg_lit_eql_atm eql_pos_lit_eql_atm)
    then have False
      using no_taut by metis
    then show ?thesis
      by blast
  next
    case (forward_subsumption D' P Q D_twin N)
    note lrhs = this(1,2) and D'_p = this(3,4)
    then have twins: "D_twin = D" "?Ns (Suc l) = N" "?Ns l = N  {D_twin}"  "?Ps (Suc l) = P "
      "?Ps l = P" "?Qs (Suc l) = Q" "?Qs l = Q"
      using l_p by auto
    note D'_p = D'_p[unfolded twins(1)]
    from D'_p(2) have subs: "subsumes D' C"
      using d(3) by (blast intro: subsumes_trans)
    moreover have "D'  clss_of_state (Sup_state Sts)"
      using twins D'_p l_p unfolding Sup_state_def
      by simp (metis (no_types) contra_subsetD llength_lmap lnth_lmap lnth_subset_Sup_llist)
    ultimately have "¬ strictly_subsumes D' D"
      using d_least by auto
    then have "subsumes D D'"
      unfolding strictly_subsumes_def using D'_p by auto
    then have v: "variants D D'"
      using D'_p unfolding variants_iff_subsumes by auto
    then have mini: "E  {E  clss_of_state (Sup_state Sts). subsumes E C}.
      ¬ strictly_subsumes E D'"
      using d_least D'_p neg_strictly_subsumes_variants[of _ D D'] by auto

    from v have "σ'. D'  σ' = C"
      using σ variants_imp_exists_substitution variants_sym by (metis subst_cls_comp_subst)
    then have "σ'. D'  σ' = C  is_ground_subst σ'"
      using ground_C by (meson make_ground_subst refl)
    then obtain σ' where
      σ'_p: "D'  σ' = C  is_ground_subst σ'"
      by metis

    show ?thesis
      using D'_p twins l_p subs mini σ'_p by auto
  next
    case (forward_reduction E L' P Q L σ D' N)
    then have twins: "D' + {#L#} = D" "?Ns (Suc l) = N  {D'}" "?Ns l = N  {D' + {#L#}}"
      "?Ps (Suc l) = P " "?Ps l = P" "?Qs (Suc l) = Q" "?Qs l = Q"
      using l_p by auto
    then have D'_p: "strictly_subsumes D' D  D'  ?Ns (Suc l)"
      using subset_strictly_subsumes[of D' D] by auto
    then have subc: "subsumes D' C"
      using d(3) subsumes_trans unfolding strictly_subsumes_def by blast
    from D'_p have "D'  clss_of_state (Sup_state Sts)"
      using l_p by (metis (no_types) UnI1 N_of_state.simps llength_lmap lnth_lmap
          lnth_subset_Sup_llist subsetCE Sup_state_def)
    then have False
      using d_least D'_p subc by auto
    then show ?thesis
      by auto
  next
    case (clause_processing N D_twin P Q)
    then have twins:  "D_twin = D" "?Ns (Suc l) = N" "?Ns l = N  {D}"  "?Ps (Suc l) = P  {D}"
      "?Ps l = P" "?Qs (Suc l) = Q" "?Qs l = Q"
      using l_p by auto
    then show ?thesis
      using d σ l_p d_least by blast
  qed (use l_p in auto)
qed

lemma eventually_in_Qinf:
  assumes
    deriv: "chain (↝) Sts" and
    D_p: "D  clss_of_state (Sup_state Sts)"
      "subsumes D C" "E  {E. E  (clss_of_state (Sup_state Sts))  subsumes E C}.
       ¬ strictly_subsumes E D" and
    fair: "fair_state_seq Sts" and
    ns: "Gs = lmap grounding_of_state Sts" and
    c: "C  Liminf_llist Gs - sr.Rf (Liminf_llist Gs)" and
    ground_C: "is_ground_cls C"
  shows "D' σ'. D'  Q_of_state (Liminf_state Sts)  D'  σ' = C  is_ground_subst σ'"
proof -
  let ?Ns = "λi. N_of_state (lnth Sts i)"
  let ?Ps = "λi. P_of_state (lnth Sts i)"
  let ?Qs = "λi. Q_of_state (lnth Sts i)"

  from D_p obtain i where
    i_p: "i < llength Sts" "D  ?Ns i  D  ?Ps i  D  ?Qs i"
    unfolding Sup_state_def
    by simp_all (metis (no_types) Sup_llist_imp_exists_index llength_lmap lnth_lmap)

  have derivns: "chain sr_ext.derive Gs"
    using ground_derive_chain deriv ns by auto

  have "σ. D  σ = C  is_ground_subst σ"
    using instance_if_subsumed_and_in_limit[OF deriv ns c] D_p i_p by blast
  then obtain σ where
    σ: "D  σ = C" "is_ground_subst σ"
    by blast

  {
    assume a: "D  ?Ns i"
    then obtain D' σ' l where D'_p:
      "D'  ?Ps l  ?Qs l"
      "D'  σ' = C"
      "enat l < llength Sts"
      "is_ground_subst σ'"
      "E  {E. E  (clss_of_state (Sup_state Sts))  subsumes E C}. ¬ strictly_subsumes E D'"
      "subsumes D' C"
      using from_N_to_P_or_Q deriv fair ns c i_p(1) D_p(2) D_p(3) by blast
    then obtain l' where
      l'_p: "D'  ?Qs l'" "l' < llength Sts"
      using from_P_to_Q[OF deriv fair ns c _ D'_p(3) D'_p(6) D'_p(5)] by blast
    then have "D'  Q_of_state (Liminf_state Sts)"
      using from_Q_to_Q_inf[OF deriv fair ns c _ l'_p(2)] D'_p by auto
    then have ?thesis
      using D'_p by auto
  }
  moreover
  {
    assume a: "D  ?Ps i"
    then obtain l' where
      l'_p: "D  ?Qs l'" "l' < llength Sts"
      using from_P_to_Q[OF deriv fair ns c a i_p(1) D_p(2) D_p(3)] by auto
    then have "D  Q_of_state (Liminf_state Sts)"
      using from_Q_to_Q_inf[OF deriv fair ns c l'_p(1) l'_p(2)] D_p(3) σ(1) σ(2) D_p(2) by auto
    then have ?thesis
      using D_p σ by auto
  }
  moreover
  {
    assume a: "D  ?Qs i"
    then have "D  Q_of_state (Liminf_state Sts)"
      using from_Q_to_Q_inf[OF deriv fair ns c a i_p(1)] σ D_p(2,3) by auto
    then have ?thesis
      using D_p σ by auto
  }
  ultimately show ?thesis
    using i_p by auto
qed

text ‹
The following corresponds to Lemma 4.11:
›

lemma fair_imp_Liminf_minus_Rf_subset_ground_Liminf_state:
  assumes
    deriv: "chain (↝) Sts" and
    fair: "fair_state_seq Sts" and
    ns: "Gs = lmap grounding_of_state Sts"
  shows "Liminf_llist Gs - sr.Rf (Liminf_llist Gs)
     grounding_of_clss (Q_of_state (Liminf_state Sts))"
proof
  let ?Ns = "λi. N_of_state (lnth Sts i)"
  let ?Ps = "λi. P_of_state (lnth Sts i)"
  let ?Qs = "λi. Q_of_state (lnth Sts i)"

  have SQinf: "clss_of_state (Liminf_state Sts) = Liminf_llist (lmap Q_of_state Sts)"
    using fair unfolding fair_state_seq_def Liminf_state_def by auto

  fix C
  assume C_p: "C  Liminf_llist Gs - sr.Rf (Liminf_llist Gs)"
  then have "C  Sup_llist Gs"
    using Liminf_llist_subset_Sup_llist[of Gs] by blast
  then obtain D_proto where
    "D_proto  clss_of_state (Sup_state Sts)  subsumes D_proto C"
    using in_Sup_llist_in_Sup_state unfolding ns subsumes_def by blast
  then obtain D where
    D_p: "D  clss_of_state (Sup_state Sts)"
    "subsumes D C"
    "E  {E. E  clss_of_state (Sup_state Sts)  subsumes E C}. ¬ strictly_subsumes E D"
    using strictly_subsumes_has_minimum[of "{E. E  clss_of_state (Sup_state Sts)  subsumes E C}"]
    by auto

  have ground_C: "is_ground_cls C"
    using C_p using Liminf_grounding_of_state_ground ns by auto

  have "D' σ'. D'  Q_of_state (Liminf_state Sts)  D'  σ' = C  is_ground_subst σ'"
    using eventually_in_Qinf[of D C Gs] using D_p(1-3) deriv fair ns C_p ground_C by auto
  then obtain D' σ' where
    D'_p: "D'  Q_of_state (Liminf_state Sts)  D'  σ' = C  is_ground_subst σ'"
    by blast
  then have "D'  clss_of_state (Liminf_state Sts)"
    by simp
  then have "C  grounding_of_state (Liminf_state Sts)"
    unfolding grounding_of_clss_def grounding_of_cls_def using D'_p by auto
  then show "C  grounding_of_clss (Q_of_state (Liminf_state Sts))"
    using SQinf fair fair_state_seq_def by auto
qed

text ‹
The following corresponds to (one direction of) Theorem 4.13:
›

lemma subseteq_Liminf_state_eventually_always:
  fixes CC
  assumes
    "finite CC" and
    "CC  {}" and
    "CC  Q_of_state (Liminf_state Sts)"
  shows "j. enat j < llength Sts  (j'  enat j. j' < llength Sts  CC  Q_of_state (lnth Sts j'))"
proof -
  from assms(3) have "C  CC. j. enat j < llength Sts 
    (j'  enat j. j' < llength Sts  C  Q_of_state (lnth Sts j'))"
    unfolding Liminf_state_def Liminf_llist_def by force
  then obtain f where
    f_p: "C  CC. f C < llength Sts  (j'  enat (f C). j' < llength Sts  C  Q_of_state (lnth Sts j'))"
    by moura

  define j :: nat where
    "j = Max (f ` CC)"

  have "enat j < llength Sts"
    unfolding j_def using f_p assms(1)
    by (metis (mono_tags) Max_in assms(2) finite_imageI imageE image_is_empty)
  moreover have "C j'. C  CC  enat j  j'  j' < llength Sts  C  Q_of_state (lnth Sts j')"
  proof (intro allI impI)
    fix C :: "'a clause" and j' :: nat
    assume a: "C  CC" "enat j  enat j'" "enat j' < llength Sts"
    then have "f C  j'"
      unfolding j_def using assms(1) Max.bounded_iff by auto
    then show "C  Q_of_state (lnth Sts j')"
      using f_p a by auto
  qed
  ultimately show ?thesis
    by auto
qed

lemma empty_clause_in_Q_of_Liminf_state:
  assumes
    deriv: "chain (↝) Sts" and
    fair: "fair_state_seq Sts" and
    empty_in: "{#}  Liminf_llist (lmap grounding_of_state Sts)"
  shows "{#}  Q_of_state (Liminf_state Sts)"
proof -
  define Gs :: "'a clause set llist" where
    ns: "Gs = lmap grounding_of_state Sts"
  from empty_in have in_Liminf_not_Rf: "{#}  Liminf_llist Gs - sr.Rf (Liminf_llist Gs)"
    unfolding ns sr.Rf_def by auto
  then have "{#}  grounding_of_clss (Q_of_state (Liminf_state Sts))"
    using fair_imp_Liminf_minus_Rf_subset_ground_Liminf_state[OF deriv fair ns] by auto
  then show ?thesis
    unfolding grounding_of_clss_def grounding_of_cls_def by auto
qed

lemma grounding_of_state_Liminf_state_subseteq:
  "grounding_of_state (Liminf_state Sts)  Liminf_llist (lmap grounding_of_state Sts)"
proof
  fix C :: "'a clause"
  assume "C  grounding_of_state (Liminf_state Sts)"
  then obtain D σ where
    D_σ_p: "D  clss_of_state (Liminf_state Sts)" "D  σ = C" "is_ground_subst σ"
    unfolding grounding_of_clss_def grounding_of_cls_def by auto
  then have ii: "D  Liminf_llist (lmap N_of_state Sts)
     D  Liminf_llist (lmap P_of_state Sts)  D  Liminf_llist (lmap Q_of_state Sts)"
    unfolding Liminf_state_def by simp
  then have "C  Liminf_llist (lmap grounding_of_clss (lmap N_of_state Sts))
     C  Liminf_llist (lmap grounding_of_clss (lmap P_of_state Sts))
     C  Liminf_llist (lmap grounding_of_clss (lmap Q_of_state Sts))"
    unfolding Liminf_llist_def grounding_of_clss_def grounding_of_cls_def
    using D_σ_p
    apply -
    apply (erule disjE)
    subgoal
      apply (rule disjI1)
      using D_σ_p by auto
    subgoal
      apply (erule disjE)
      subgoal
        apply (rule disjI2)
        apply (rule disjI1)
        using D_σ_p by auto
      subgoal
        apply (rule disjI2)
        apply (rule disjI2)
        using D_σ_p by auto
      done
    done
  then show "C  Liminf_llist (lmap grounding_of_state Sts)"
    unfolding Liminf_llist_def grounding_of_clss_def by auto
qed

theorem RP_sound:
  assumes
    deriv: "chain (↝) Sts" and
    "{#}  clss_of_state (Liminf_state Sts)"
  shows "¬ satisfiable (grounding_of_state (lhd Sts))"
proof -
  from assms have "{#}  grounding_of_state (Liminf_state Sts)"
    unfolding grounding_of_clss_def by (force intro: ex_ground_subst)
  then have "{#}  Liminf_llist (lmap grounding_of_state Sts)"
    using grounding_of_state_Liminf_state_subseteq by auto
  then have "¬ satisfiable (Liminf_llist (lmap grounding_of_state Sts))"
    using true_clss_def by auto
  then have "¬ satisfiable (lhd (lmap grounding_of_state Sts))"
    using sr_ext.sat_limit_iff ground_derive_chain deriv by blast
  then show ?thesis
    using chain_not_lnull deriv by fastforce
qed

theorem RP_saturated_if_fair:
  assumes
    deriv: "chain (↝) Sts" and
    fair: "fair_state_seq Sts" and
    empty_Q0: "Q_of_state (lhd Sts) = {}"
  shows "sr.saturated_upto (Liminf_llist (lmap grounding_of_state Sts))"
proof -
  define Gs :: "'a clause set llist" where
    ns: "Gs = lmap grounding_of_state Sts"

  let ?N = "λi. grounding_of_state (lnth Sts i)"

  let ?Ns = "λi. N_of_state (lnth Sts i)"
  let ?Ps = "λi. P_of_state (lnth Sts i)"
  let ?Qs = "λi. Q_of_state (lnth Sts i)"

  have ground_ns_in_ground_limit_st:
    "Liminf_llist Gs - sr.Rf (Liminf_llist Gs)  grounding_of_clss (Q_of_state (Liminf_state Sts))"
    using fair deriv fair_imp_Liminf_minus_Rf_subset_ground_Liminf_state ns by blast

  have derivns: "chain sr_ext.derive Gs"
    using ground_derive_chain deriv ns by auto

  {
    fix γ :: "'a inference"
    assume γ_p: "γ  gr.ord_Γ"
    let ?CC = "side_prems_of γ"
    let ?DA = "main_prem_of γ"
    let ?E = "concl_of γ"
    assume a: "set_mset ?CC  {?DA}
       Liminf_llist (lmap grounding_of_state Sts)
        - sr.Rf (Liminf_llist (lmap grounding_of_state Sts))"

    have ground_ground_Liminf: "is_ground_clss (Liminf_llist (lmap grounding_of_state Sts))"
      using Liminf_grounding_of_state_ground unfolding is_ground_clss_def by auto

    have ground_cc: "is_ground_clss (set_mset ?CC)"
      using a ground_ground_Liminf is_ground_clss_def by auto

    have ground_da: "is_ground_cls ?DA"
      using a grounding_ground singletonI ground_ground_Liminf
      by (simp add: Liminf_grounding_of_state_ground)

    from γ_p obtain CAs AAs As where
      CAs_p: "gr.ord_resolve CAs ?DA AAs As ?E  mset CAs = ?CC"
      unfolding gr.ord_Γ_def by auto

    have DA_CAs_in_ground_Liminf:
      "{?DA}  set CAs  grounding_of_clss (Q_of_state (Liminf_state Sts))"
      using a CAs_p fair unfolding fair_state_seq_def
      by (metis (no_types, lifting) Un_empty_left ground_ns_in_ground_limit_st a ns set_mset_mset
          subset_trans sup_commute)

    then have ground_cas: "is_ground_cls_list CAs"
      using CAs_p unfolding is_ground_cls_list_def by auto

    have "σ. ord_resolve S_Q CAs ?DA AAs As σ ?E"
      by (rule ground_ord_resolve_imp_ord_resolve[OF ground_da ground_cas
            gr.ground_resolution_with_selection_axioms CAs_p[THEN conjunct1]])
    then obtain σ where
      σ_p: "ord_resolve S_Q CAs ?DA AAs As σ ?E"
      by auto
    then obtain ηs' η' η2' CAs' DA' AAs' As' τ' E' where s_p:
      "is_ground_subst η'"
      "is_ground_subst_list ηs'"
      "is_ground_subst η2'"
      "ord_resolve_rename S CAs' DA' AAs' As' τ' E'"
      "CAs' ⋅⋅cl ηs' = CAs"
      "DA'  η' = ?DA"
      "E'  η2' = ?E"
      "{DA'}  set CAs'  Q_of_state (Liminf_state Sts)"
      using ord_resolve_rename_lifting[OF sel_stable, of "Q_of_state (Liminf_state Sts)" CAs ?DA]
        σ_p[unfolded S_Q_def] selection_axioms DA_CAs_in_ground_Liminf by metis
    from this(8) have "j. enat j < llength Sts  (set CAs'  {DA'}  ?Qs j)"
      unfolding Liminf_llist_def
      using subseteq_Liminf_state_eventually_always[of "{DA'}  set CAs'"] by auto
    then obtain j where
      j_p: "is_least (λj. enat j < llength Sts  set CAs'  {DA'}  ?Qs j) j"
      using least_exists[of "λj. enat j < llength Sts  set CAs'  {DA'}  ?Qs j"] by force
    then have j_p': "enat j < llength Sts" "set CAs'  {DA'}  ?Qs j"
      unfolding is_least_def by auto
    then have jn0: "j  0"
      using empty_Q0 by (metis bot_eq_sup_iff gr_implies_not_zero insert_not_empty llength_lnull
          lnth_0_conv_lhd sup.orderE)
    then have j_adds_CAs': "¬ set CAs'  {DA'}  ?Qs (j - 1)" "set CAs'  {DA'}  ?Qs j"
      using j_p unfolding is_least_def
       apply (metis (no_types) One_nat_def Suc_diff_Suc Suc_ile_eq diff_diff_cancel diff_zero
          less_imp_le less_one neq0_conv zero_less_diff)
      using j_p'(2) by blast
    have "lnth Sts (j - 1)  lnth Sts j"
      using j_p'(1) jn0 deriv chain_lnth_rel[of _ _ "j - 1"] by force
    then obtain C' where C'_p:
      "?Ns (j - 1) = {}"
      "?Ps (j - 1) = ?Ps j  {C'}"
      "?Qs j = ?Qs (j - 1)  {C'}"
      "?Ns j = concls_of (ord_FO_resolution.inferences_between (?Qs (j - 1)) C')"
      "C'  set CAs'  {DA'}"
      "C'  ?Qs (j - 1)"
      using j_adds_CAs' by (induction rule: RP.cases) auto
    have "E'  ?Ns j"
    proof -
      have "E'  concls_of (ord_FO_resolution.inferences_between (Q_of_state (lnth Sts (j - 1))) C')"
        unfolding infer_from_def ord_FO_Γ_def inference_system.inferences_between_def
        apply (rule_tac x = "Infer (mset CAs') DA' E'" in image_eqI)
        subgoal by auto
        subgoal
          unfolding infer_from_def
          by (rule ord_resolve_rename.cases[OF s_p(4)]) (use s_p(4) C'_p(3,5) j_p'(2) in force)
        done
      then show ?thesis
        using C'_p(4) by auto
    qed
    then have "E'  clss_of_state (lnth Sts j)"
      using j_p' by auto
    then have "?E  grounding_of_state (lnth Sts j)"
      using s_p(7) s_p(3) unfolding grounding_of_clss_def grounding_of_cls_def by force
    then have "γ  sr.Ri (grounding_of_state (lnth Sts j))"
      using sr.Ri_effective γ_p by auto
    then have "γ  sr_ext_Ri (?N j)"
      unfolding sr_ext_Ri_def by auto
    then have "γ  sr_ext_Ri (Sup_llist (lmap grounding_of_state Sts))"
      using j_p' contra_subsetD llength_lmap lnth_lmap lnth_subset_Sup_llist sr_ext.Ri_mono by (smt (verit))
    then have "γ  sr_ext_Ri (Liminf_llist (lmap grounding_of_state Sts))"
      using sr_ext.Ri_limit_Sup[of Gs] derivns ns by blast
  }
  then have "sr_ext.saturated_upto (Liminf_llist (lmap grounding_of_state Sts))"
    unfolding sr_ext.saturated_upto_def sr_ext.inferences_from_def infer_from_def sr_ext_Ri_def
    by auto
  then show ?thesis
    using gd_ord_Γ_ngd_ord_Γ sr.redundancy_criterion_axioms
      redundancy_criterion_standard_extension_saturated_upto_iff[of gr.ord_Γ]
    unfolding sr_ext_Ri_def by auto
qed

corollary RP_complete_if_fair:
  assumes
    deriv: "chain (↝) Sts" and
    fair: "fair_state_seq Sts" and
    empty_Q0: "Q_of_state (lhd Sts) = {}" and
    unsat: "¬ satisfiable (grounding_of_state (lhd Sts))"
  shows "{#}  Q_of_state (Liminf_state Sts)"
proof -
  have "¬ satisfiable (Liminf_llist (lmap grounding_of_state Sts))"
    using unsat sr_ext.sat_limit_iff[OF ground_derive_chain] chain_not_lnull deriv by fastforce
  moreover have "sr.saturated_upto (Liminf_llist (lmap grounding_of_state Sts))"
    by (rule RP_saturated_if_fair[OF deriv fair empty_Q0, simplified])
  ultimately have "{#}  Liminf_llist (lmap grounding_of_state Sts)"
    using sr.saturated_upto_complete_if by auto
  then show ?thesis
    using empty_clause_in_Q_of_Liminf_state[OF deriv fair] by auto
qed

end

end

end