Theory IL_IntervalOperators
section ‹Arithmetic operators on natural intervals›
theory IL_IntervalOperators
imports IL_Interval
begin
subsection ‹Arithmetic operations with intervals›
subsubsection ‹Addition of and multiplication by constants›
definition iT_Plus :: "iT ⇒ Time ⇒ iT" (infixl ‹⊕› 55)
where "I ⊕ k ≡ (λn.(n + k)) ` I"
definition iT_Mult :: "iT ⇒ Time ⇒ iT" (infixl ‹⊗› 55)
where iT_Mult_def : "I ⊗ k ≡ (λn.(n * k)) ` I"
lemma iT_Plus_image_conv: "I ⊕ k = (λn.(n + k)) ` I"
by (simp add: iT_Plus_def)
lemma iT_Mult_image_conv: "I ⊗ k = (λn.(n * k)) ` I"
by (simp add: iT_Mult_def)
lemma iT_Plus_empty: "{} ⊕ k = {}"
by (simp add: iT_Plus_def)
lemma iT_Mult_empty: "{} ⊗ k = {}"
by (simp add: iT_Mult_def)
lemma iT_Plus_not_empty: "I ≠ {} ⟹ I ⊕ k ≠ {}"
by (simp add: iT_Plus_def)
lemma iT_Mult_not_empty: "I ≠ {} ⟹ I ⊗ k ≠ {}"
by (simp add: iT_Mult_def)
lemma iT_Plus_empty_iff: "(I ⊕ k = {}) = (I = {})"
by (simp add: iT_Plus_def)
lemma iT_Mult_empty_iff: "(I ⊗ k = {}) = (I = {})"
by (simp add: iT_Mult_def)
lemma iT_Plus_mono: "A ⊆ B ⟹ A ⊕ k ⊆ B ⊕ k"
by (simp add: iT_Plus_def image_mono)
lemma iT_Mult_mono: "A ⊆ B ⟹ A ⊗ k ⊆ B ⊗ k"
by (simp add: iT_Mult_def image_mono)
lemma iT_Mult_0: "I ≠ {} ⟹ I ⊗ 0 = […0]"
by (fastforce simp add: iTILL_def iT_Mult_def)
corollary iT_Mult_0_if: "I ⊗ 0 = (if I = {} then {} else […0])"
by (simp add: iT_Mult_empty iT_Mult_0)
lemma iT_Plus_mem_iff: "x ∈ (I ⊕ k) = (k ≤ x ∧ (x - k) ∈ I)"
apply (simp add: iT_Plus_def image_iff)
apply (rule iffI)
apply fastforce
apply (rule_tac x="x - k" in bexI, simp+)
done
lemma iT_Plus_mem_iff2: "x + k ∈ (I ⊕ k) = (x ∈ I)"
by (simp add: iT_Plus_def image_iff)
lemma iT_Mult_mem_iff_0: "x ∈ (I ⊗ 0) = (I ≠ {} ∧ x = 0)"
apply (case_tac "I = {}")
apply (simp add: iT_Mult_empty)
apply (simp add: iT_Mult_0 iT_iff)
done
lemma iT_Mult_mem_iff: "
0 < k ⟹ x ∈ (I ⊗ k) = (x mod k = 0 ∧ x div k ∈ I)"
by (fastforce simp: iT_Mult_def image_iff)
lemma iT_Mult_mem_iff2: "0 < k ⟹ x * k ∈ (I ⊗ k) = (x ∈ I)"
by (simp add: iT_Mult_def image_iff)
lemma iT_Plus_singleton: "{a} ⊕ k = {a + k}"
by (simp add: iT_Plus_def)
lemma iT_Mult_singleton: "{a} ⊗ k = {a * k}"
by (simp add: iT_Mult_def)
lemma iT_Plus_Un: "(A ∪ B) ⊕ k = (A ⊕ k) ∪ (B ⊕ k)"
by (simp add: iT_Plus_def image_Un)
lemma iT_Mult_Un: "(A ∪ B) ⊗ k = (A ⊗ k) ∪ (B ⊗ k)"
by (simp add: iT_Mult_def image_Un)
lemma iT_Plus_Int: "(A ∩ B) ⊕ k = (A ⊕ k) ∩ (B ⊕ k)"
by (simp add: iT_Plus_def image_Int)
lemma iT_Mult_Int: "0 < k ⟹ (A ∩ B) ⊗ k = (A ⊗ k) ∩ (B ⊗ k)"
by (simp add: iT_Mult_def image_Int mult_right_inj)
lemma iT_Plus_image: "f ` I ⊕ n = (λx. f x + n) ` I"
by (fastforce simp: iT_Plus_def)
lemma iT_Mult_image: "f ` I ⊗ n = (λx. f x * n) ` I"
by (fastforce simp: iT_Mult_def)
lemma iT_Plus_commute: "I ⊕ a ⊕ b = I ⊕ b ⊕ a"
by (fastforce simp: iT_Plus_def)
lemma iT_Mult_commute: "I ⊗ a ⊗ b = I ⊗ b ⊗ a"
by (fastforce simp: iT_Mult_def)
lemma iT_Plus_assoc:"I ⊕ a ⊕ b = I ⊕ (a + b)"
by (fastforce simp: iT_Plus_def)
lemma iT_Mult_assoc:"I ⊗ a ⊗ b = I ⊗ (a * b)"
by (fastforce simp: iT_Mult_def)
lemma iT_Plus_Mult_distrib: "I ⊕ n ⊗ m = I ⊗ m ⊕ n * m"
by (simp add: iT_Plus_def iT_Mult_def image_image add_mult_distrib)
lemma "i ⊗ n1 ⊗ n2 ⊗ n3 ⊗ n4 ⊗ n5 ⊗ n6 ⊗ n7 =
i ⊗ n1 * n2 * n3 * n4 * n5 * n6 * n7"
by (simp add: iT_Mult_assoc)
lemma "i ⊕ n1 ⊕ n2 ⊕ n3 ⊕ n4 ⊕ n5 = i ⊕ n1 + n2 + n3 + n4 + n5"
by (simp add: iT_Plus_assoc)
lemma "i ⊕ n1 ⊗ m ⊕ n2 = i ⊗ m ⊕ n1 * m + n2"
by (simp add: iT_Plus_assoc iT_Plus_Mult_distrib)
lemma "i ⊕ n1 ⊗ m1 ⊗ m2 ⊕ n2 = i ⊗ m1 * m2 ⊕ n1 * m1 * m2 + n2"
by (simp add: iT_Plus_assoc iT_Mult_assoc iT_Plus_Mult_distrib)
lemma "n ∈ I ⊕ k ⟹ k ≤ n"
by (clarsimp simp add: iT_Plus_def)
lemma iT_Plus_finite_iff: "finite (I ⊕ k) = finite I"
by (simp add: iT_Plus_def inj_on_finite_image_iff)
lemma iT_Mult_0_finite: "finite (I ⊗ 0)"
by (simp add: iT_Mult_0_if iTILL_0)
lemma iT_Mult_finite_iff: "0 < k ⟹ finite (I ⊗ k) = finite I"
by (simp add: iT_Mult_def inj_on_finite_image_iff[OF inj_imp_inj_on] mult_right_inj)
lemma iT_Plus_Min: "I ≠ {} ⟹ iMin (I ⊕ k) = iMin I + k"
by (simp add: iT_Plus_def iMin_mono2 mono_def)
lemma iT_Mult_Min: "I ≠ {} ⟹ iMin (I ⊗ k) = iMin I * k"
by (simp add: iT_Mult_def iMin_mono2 mono_def)
lemma iT_Plus_Max: "⟦ finite I; I ≠ {} ⟧ ⟹ Max (I ⊕ k) = Max I + k"
by (simp add: iT_Plus_def Max_mono2 mono_def)
lemma iT_Mult_Max: "⟦ finite I; I ≠ {} ⟧ ⟹ Max (I ⊗ k) = Max I * k"
by (simp add: iT_Mult_def Max_mono2 mono_def)
corollary
iMOD_mult_0: "[r, mod m] ⊗ 0 = […0]" and
iMODb_mult_0: "[r, mod m, c] ⊗ 0 = […0]" and
iFROM_mult_0: "[n…] ⊗ 0 = […0]" and
iIN_mult_0: "[n…,d] ⊗ 0 = […0]" and
iTILL_mult_0: "[…n] ⊗ 0 = […0]"
by (simp add: iT_not_empty iT_Mult_0)+
lemmas iT_mult_0 =
iTILL_mult_0
iFROM_mult_0
iIN_mult_0
iMOD_mult_0
iMODb_mult_0
lemma iT_Plus_0: "I ⊕ 0 = I"
by (simp add: iT_Plus_def)
lemma iT_Mult_1: "I ⊗ Suc 0 = I"
by (simp add: iT_Mult_def)
corollary
iFROM_add_Min: "iMin ([n…] ⊕ k) = n + k" and
iIN_add_Min: "iMin ([n…,d] ⊕ k) = n + k" and
iTILL_add_Min: "iMin ([…n] ⊕ k) = k" and
iMOD_add_Min: "iMin ([r, mod m] ⊕ k) = r + k" and
iMODb_add_Min: "iMin ([r, mod m, c] ⊕ k) = r + k"
by (simp add: iT_not_empty iT_Plus_Min iT_Min)+
corollary
iFROM_mult_Min: "iMin ([n…] ⊗ k) = n * k" and
iIN_mult_Min: "iMin ([n…,d] ⊗ k) = n * k" and
iTILL_mult_Min: "iMin ([…n] ⊗ k) = 0" and
iMOD_mult_Min: "iMin ([r, mod m] ⊗ k) = r * k" and
iMODb_mult_Min: "iMin ([r, mod m, c] ⊗ k) = r * k"
by (simp add: iT_not_empty iT_Mult_Min iT_Min)+
lemmas iT_add_Min =
iIN_add_Min
iTILL_add_Min
iFROM_add_Min
iMOD_add_Min
iMODb_add_Min
lemmas iT_mult_Min =
iIN_mult_Min
iTILL_mult_Min
iFROM_mult_Min
iMOD_mult_Min
iMODb_mult_Min
lemma iFROM_add: "[n…] ⊕ k = [n+k…]"
by (simp add: iFROM_def iT_Plus_def image_add_atLeast)
lemma iIN_add: "[n…,d] ⊕ k = [n+k…,d]"
by (fastforce simp add: iIN_def iT_Plus_def)
lemma iTILL_add: "[…i] ⊕ k = [k…,i]"
by (simp add: iIN_0_iTILL_conv[symmetric] iIN_add)
lemma iMOD_add: "[r, mod m] ⊕ k = [r + k, mod m]"
apply (clarsimp simp: set_eq_iff iMOD_def iT_Plus_def image_iff)
apply (rule iffI)
apply (clarsimp simp: mod_add)
apply (rule_tac x="x - k" in exI)
apply clarsimp
apply (simp add: mod_sub_add)
done
lemma iMODb_add: "[r, mod m, c] ⊕ k = [r + k, mod m, c]"
by (simp add: iMODb_iMOD_iIN_conv iT_Plus_Int iMOD_add iIN_add)
lemmas iT_add =
iMOD_add
iMODb_add
iFROM_add
iIN_add
iTILL_add
iT_Plus_singleton
lemma iFROM_mult: "[n…] ⊗ k = [ n * k, mod k ]"
apply (case_tac "k = 0")
apply (simp add: iMOD_0 iT_mult_0 iIN_0 iTILL_0)
apply (clarsimp simp: set_eq_iff iT_Mult_mem_iff iT_iff)
apply (rule conj_cong, simp)
apply (rule iffI)
apply (drule mult_le_mono1[of _ _ k])
apply (rule order_trans, assumption)
apply (simp add: div_mult_cancel)
apply (drule div_le_mono[of _ _ k])
apply simp
done
lemma iIN_mult: "[n…,d] ⊗ k = [ n * k, mod k, d ]"
apply (case_tac "k = 0")
apply (simp add: iMODb_mod_0 iT_mult_0 iIN_0 iTILL_0)
apply (clarsimp simp: set_eq_iff iT_Mult_mem_iff iT_iff)
apply (rule conj_cong, simp)
apply (rule iffI)
apply (elim conjE)
apply (drule mult_le_mono1[of _ _ k], drule mult_le_mono1[of _ _ k])
apply (rule conjI)
apply (rule order_trans, assumption)
apply (simp add: div_mult_cancel)
apply (simp add: div_mult_cancel add_mult_distrib mult.commute[of k])
apply (erule conjE)
apply (drule div_le_mono[of _ _ k], drule div_le_mono[of _ _ k])
apply simp
done
lemma iTILL_mult: "[…n] ⊗ k = [ 0, mod k, n ]"
by (simp add: iIN_0_iTILL_conv[symmetric] iIN_mult)
lemma iMOD_mult: "[r, mod m ] ⊗ k = [ r * k, mod m * k ]"
apply (case_tac "k = 0")
apply (simp add: iMOD_0 iT_mult_0 iIN_0 iTILL_0)
apply (clarsimp simp: set_eq_iff iT_Mult_mem_iff iT_iff)
apply (subst mult.commute[of m k])
apply (simp add: mod_mult2_eq)
apply (rule iffI)
apply (elim conjE)
apply (drule mult_le_mono1[of _ _ k])
apply (simp add: div_mult_cancel)
apply (elim conjE)
apply (subgoal_tac "x mod k = 0")
prefer 2
apply (drule_tac arg_cong[where f="λx. x mod k"])
apply (simp add: mult.commute[of k])
apply (drule div_le_mono[of _ _ k])
apply simp
done
lemma iMODb_mult: "
[r, mod m, c ] ⊗ k = [ r * k, mod m * k, c ]"
apply (case_tac "k = 0")
apply (simp add: iMODb_mod_0 iT_mult_0 iIN_0 iTILL_0)
apply (subst iMODb_iMOD_iTILL_conv)
apply (simp add: iT_Mult_Int iMOD_mult iTILL_mult iMODb_iMOD_iTILL_conv)
apply (subst Int_assoc[symmetric])
apply (subst Int_absorb2)
apply (simp add: iMOD_subset)
apply (simp add: iMOD_iTILL_iMODb_conv add_mult_distrib2)
done
lemmas iT_mult =
iTILL_mult
iFROM_mult
iIN_mult
iMOD_mult
iMODb_mult
iT_Mult_singleton
subsubsection ‹Some conversions between intervals using constant addition and multiplication›
lemma iFROM_conv: "[n…] = UNIV ⊕ n"
by (simp add: iFROM_0[symmetric] iFROM_add)
lemma iIN_conv: "[n…,d] = […d] ⊕ n"
by (simp add: iTILL_add)
lemma iMOD_conv: "[r, mod m] = [0…] ⊗ m ⊕ r"
apply (case_tac "m = 0")
apply (simp add: iMOD_0 iT_mult_0 iTILL_add)
apply (simp add: iFROM_mult iMOD_add)
done
lemma iMODb_conv: "[r, mod m, c] = […c] ⊗ m ⊕ r"
apply (case_tac "m = 0")
apply (simp add: iMODb_mod_0 iT_mult_0 iTILL_add)
apply (simp add: iTILL_mult iMODb_add)
done
text ‹Some examples showing the utility of iMODb\_conv›
lemma "[12, mod 10, 4] = {12, 22, 32, 42, 52}"
apply (simp add: iT_defs)
apply safe
defer 1
apply simp+
txt ‹The direct proof without iMODb\_conv fails›
oops
lemma "[12, mod 10, 4] = {12, 22, 32, 42, 52}"
apply (simp only: iMODb_conv)
apply (simp add: iT_defs iT_Mult_def iT_Plus_def)
apply safe
apply simp+
done
lemma "[12, mod 10, 4] = {12, 22, 32, 42, 52}"
apply (simp only: iMODb_conv)
apply (simp add: iT_defs iT_Mult_def iT_Plus_def)
apply (simp add: atMost_def)
apply safe
apply simp+
done
lemma "[r, mod m, 4] = {r, r+m, r+2*m, r+3*m, r+4*m}"
apply (simp only: iMODb_conv)
apply (simp add: iT_defs iT_Mult_def iT_Plus_def atMost_def)
apply (simp add: image_Collect)
apply safe
apply fastforce+
done
lemma "[2, mod 10, 4] = {2, 12, 22, 32, 42}"
apply (simp only: iMODb_conv)
apply (simp add: iT_defs iT_Plus_def iT_Mult_def)
apply fastforce
done
subsubsection ‹Subtraction of constants›
definition iT_Plus_neg :: "iT ⇒ Time ⇒ iT" (infixl ‹⊕-› 55) where
"I ⊕- k ≡ {x. x + k ∈ I}"
lemma iT_Plus_neg_mem_iff: "(x ∈ I ⊕- k) = (x + k ∈ I)"
by (simp add: iT_Plus_neg_def)
lemma iT_Plus_neg_mem_iff2: "k ≤ x ⟹ (x - k ∈ I ⊕- k) = (x ∈ I)"
by (simp add: iT_Plus_neg_def)
lemma iT_Plus_neg_image_conv: "I ⊕- k = (λn.(n - k)) ` (I ↓≥ k)"
apply (simp add: iT_Plus_neg_def cut_ge_def, safe)
apply (rule_tac x="x+k" in image_eqI)
apply simp+
done
lemma iT_Plus_neg_cut_eq: "t ≤ k ⟹ (I ↓≥ t) ⊕- k = I ⊕- k"
by (simp add: set_eq_iff iT_Plus_neg_mem_iff cut_ge_mem_iff)
lemma iT_Plus_neg_mono: "A ⊆ B ⟹ A ⊕- k ⊆ B ⊕- k"
by (simp add: iT_Plus_neg_def subset_iff)
lemma iT_Plus_neg_empty: "{} ⊕- k = {}"
by (simp add: iT_Plus_neg_def)
lemma iT_Plus_neg_Max_less_empty: "
⟦ finite I; Max I < k ⟧ ⟹ I ⊕- k = {}"
by (simp add: iT_Plus_neg_image_conv cut_ge_Max_empty)
lemma iT_Plus_neg_not_empty_iff: "(I ⊕- k ≠ {}) = (∃x∈I. k ≤ x)"
by (simp add: iT_Plus_neg_image_conv cut_ge_not_empty_iff)
lemma iT_Plus_neg_empty_iff: "
(I ⊕- k = {}) = (I = {} ∨ (finite I ∧ Max I < k))"
apply (case_tac "I = {}")
apply (simp add: iT_Plus_neg_empty)
apply (simp add: iT_Plus_neg_image_conv)
apply (case_tac "infinite I")
apply (simp add: nat_cut_ge_infinite_not_empty)
apply (simp add: cut_ge_empty_iff)
done
lemma iT_Plus_neg_assoc: "(I ⊕- a) ⊕- b = I ⊕- (a + b)"
apply (simp add: iT_Plus_neg_def)
apply (simp add: add.assoc add.commute[of b])
done
lemma iT_Plus_neg_commute: "I ⊕- a ⊕- b = I ⊕- b ⊕- a"
by (simp add: iT_Plus_neg_assoc add.commute[of b])
lemma iT_Plus_neg_0: "I ⊕- 0 = I"
by (simp add: iT_Plus_neg_image_conv cut_ge_0_all)
lemma iT_Plus_Plus_neg_assoc: "b ≤ a ⟹ I ⊕ a ⊕- b = I ⊕ (a - b)"
apply (simp add: iT_Plus_neg_image_conv)
apply (clarsimp simp add: set_eq_iff image_iff Bex_def cut_ge_mem_iff iT_Plus_mem_iff)
apply (rule iffI)
apply fastforce
apply (rule_tac x="x + b" in exI)
apply (simp add: le_diff_conv)
done
lemma iT_Plus_Plus_neg_assoc2: "a ≤ b ⟹ I ⊕ a ⊕- b = I ⊕- (b - a)"
apply (simp add: iT_Plus_neg_image_conv)
apply (clarsimp simp add: set_eq_iff image_iff Bex_def cut_ge_mem_iff iT_Plus_mem_iff)
apply (rule iffI)
apply fastforce
apply (clarify, rename_tac x')
apply (rule_tac x="x' + a" in exI)
apply simp
done
lemma iT_Plus_neg_Plus_le_cut_eq: "
a ≤ b ⟹ (I ⊕- a) ⊕ b = (I ↓≥ a) ⊕ (b - a)"
apply (simp add: iT_Plus_neg_image_conv)
apply (clarsimp simp add: set_eq_iff image_iff Bex_def cut_ge_mem_iff iT_Plus_mem_iff)
apply (rule iffI)
apply (clarify, rename_tac x')
apply (subgoal_tac "x' = x + a - b")
prefer 2
apply simp
apply (simp add: le_imp_diff_le le_add_diff)
apply fastforce
done
corollary iT_Plus_neg_Plus_le_Min_eq: "
⟦ a ≤ b; a ≤ iMin I ⟧ ⟹ (I ⊕- a) ⊕ b = I ⊕ (b - a)"
by (simp add: iT_Plus_neg_Plus_le_cut_eq cut_ge_Min_all)
lemma iT_Plus_neg_Plus_ge_cut_eq: "
b ≤ a ⟹ (I ⊕- a) ⊕ b = (I ↓≥ a) ⊕- (a - b)"
apply (simp add: iT_Plus_neg_image_conv iT_Plus_def cut_cut_ge max_eqL)
apply (subst image_comp)
apply (rule image_cong, simp)
apply (simp add: cut_ge_mem_iff)
done
corollary iT_Plus_neg_Plus_ge_Min_eq: "
⟦ b ≤ a; a ≤ iMin I ⟧ ⟹ (I ⊕- a) ⊕ b = I ⊕- (a - b)"
by (simp add: iT_Plus_neg_Plus_ge_cut_eq cut_ge_Min_all)
lemma iT_Plus_neg_Mult_distrib: "
0 < m ⟹ I ⊕- n ⊗ m = I ⊗ m ⊕- n * m"
apply (clarsimp simp: set_eq_iff iT_Plus_neg_image_conv image_iff iT_Plus_def iT_Mult_def Bex_def cut_ge_mem_iff)
apply (rule iffI)
apply (clarsimp, rename_tac x')
apply (rule_tac x="x' * m" in exI)
apply (simp add: diff_mult_distrib)
apply (clarsimp, rename_tac x')
apply (rule_tac x="x' - n" in exI)
apply (simp add: diff_mult_distrib)
apply fastforce
done
lemma iT_Plus_neg_Plus_le_inverse: "k ≤ iMin I ⟹ I ⊕- k ⊕ k = I"
by (simp add: iT_Plus_neg_Plus_le_Min_eq iT_Plus_0)
lemma iT_Plus_neg_Plus_inverse: "I ⊕- k ⊕ k = I ↓≥ k"
by (simp add: iT_Plus_neg_Plus_ge_cut_eq iT_Plus_neg_0)
lemma iT_Plus_Plus_neg_inverse: "I ⊕ k ⊕- k = I"
by (simp add: iT_Plus_Plus_neg_assoc iT_Plus_0)
lemma iT_Plus_neg_Un: "(A ∪ B) ⊕- k = (A ⊕- k) ∪ (B ⊕- k)"
by (fastforce simp: iT_Plus_neg_def)
lemma iT_Plus_neg_Int: "(A ∩ B) ⊕- k = (A ⊕- k) ∩ (B ⊕- k)"
by (fastforce simp: iT_Plus_neg_def)
lemma iT_Plus_neg_Max_singleton: "⟦ finite I; I ≠ {} ⟧ ⟹ I ⊕- Max I= {0}"
apply (rule set_eqI)
apply (simp add: iT_Plus_neg_def)
apply (case_tac "x = 0")
apply simp
apply fastforce
done
lemma iT_Plus_neg_singleton: "{a} ⊕- k = (if k ≤ a then {a - k} else {})"
by (force simp add: set_eq_iff iT_Plus_neg_mem_iff singleton_iff)
corollary iT_Plus_neg_singleton1: "k ≤ a ⟹ {a} ⊕- k = {a-k}"
by (simp add: iT_Plus_neg_singleton)
corollary iT_Plus_neg_singleton2: "a < k ⟹ {a} ⊕- k= {}"
by (simp add: iT_Plus_neg_singleton)
lemma iT_Plus_neg_finite_iff: "finite (I ⊕- k) = finite I"
apply (simp add: iT_Plus_neg_image_conv)
apply (subst inj_on_finite_image_iff)
apply (metis cut_geE inj_on_diff_nat)
apply (simp add: nat_cut_ge_finite_iff)
done
lemma iT_Plus_neg_Min: "
I ⊕- k ≠ {} ⟹ iMin (I ⊕- k) = iMin (I ↓≥ k) - k"
apply (simp add: iT_Plus_neg_image_conv)
apply (simp add: iMin_mono2 monoI)
done
lemma iT_Plus_neg_Max: "
⟦ finite I; I ⊕- k ≠ {} ⟧ ⟹ Max (I ⊕- k) = Max I - k"
apply (simp add: iT_Plus_neg_image_conv)
apply (simp add: Max_mono2 monoI cut_ge_finite cut_ge_Max_eq)
done
text ‹Subtractions of constants from intervals›
lemma iFROM_add_neg: "[n…] ⊕- k = [n - k…]"
by (fastforce simp: set_eq_iff iT_Plus_neg_mem_iff)
lemma iTILL_add_neg: "[…n] ⊕- k = (if k ≤ n then […n - k] else {})"
by (force simp add: set_eq_iff iT_Plus_neg_mem_iff iT_iff)
lemma iTILL_add_neg1: "k ≤ n ⟹ […n] ⊕- k = […n-k]"
by (simp add: iTILL_add_neg)
lemma iTILL_add_neg2: "n < k ⟹ […n] ⊕- k = {}"
by (simp add: iTILL_add_neg)
lemma iIN_add_neg: "
[n…,d] ⊕- k = (
if k ≤ n then [n - k…,d]
else if k ≤ n + d then […n + d - k] else {})"
by (simp add: iIN_iFROM_iTILL_conv iT_Plus_neg_Int iFROM_add_neg iTILL_add_neg iFROM_0)
lemma iIN_add_neg1: "k ≤ n ⟹ [n…,d] ⊕- k = [n - k…,d]"
by (simp add: iIN_add_neg)
lemma iIN_add_neg2: "⟦ n ≤ k; k ≤ n + d ⟧ ⟹ [n…,d] ⊕- k = […n + d - k]"
by (simp add: iIN_add_neg iIN_0_iTILL_conv)
lemma iIN_add_neg3: "n + d < k ⟹ [n…,d] ⊕- k = {}"
by (simp add: iT_Plus_neg_Max_less_empty iT_finite iT_Max)
lemma iMOD_0_add_neg: "[r, mod 0] ⊕- k = {r} ⊕- k"
by (simp add: iMOD_0 iIN_0)
lemma iMOD_gr0_add_neg: "
0 < m ⟹
[r, mod m] ⊕- k = (
if k ≤ r then [r - k, mod m]
else [(m + r mod m - k mod m) mod m, mod m])"
apply (rule set_eqI)
apply (simp add: iMOD_def iT_Plus_neg_def)
apply (simp add: eq_sym_conv[of _ "r mod m"])
apply (intro conjI impI)
apply (simp add: eq_sym_conv[of _ "(r - k) mod m"] mod_sub_add le_diff_conv)
apply (simp add: eq_commute[of "r mod m"] mod_add_eq_mod_conv)
apply safe
apply (drule sym)
apply simp
done
lemma iMOD_add_neg: "
[r, mod m] ⊕- k = (
if k ≤ r then [r - k, mod m]
else if 0 < m then [(m + r mod m - k mod m) mod m, mod m] else {})"
apply (case_tac "0 < m")
apply (simp add: iMOD_gr0_add_neg)
apply (simp add: iMOD_0 iIN_0 iT_Plus_neg_singleton)
done
corollary iMOD_add_neg1: "
k ≤ r ⟹ [r, mod m] ⊕- k = [r - k, mod m]"
by (simp add: iMOD_add_neg)
lemma iMOD_add_neg2: "
⟦ 0 < m; r < k ⟧ ⟹ [r, mod m] ⊕- k = [(m + r mod m - k mod m) mod m, mod m]"
by (simp add: iMOD_add_neg)
lemma iMODb_mod_0_add_neg: "[r, mod 0, c] ⊕- k = {r} ⊕- k"
by (simp add: iMODb_mod_0 iIN_0)
lemma iMODb_add_neg: "
[r, mod m, c] ⊕- k = (
if k ≤ r then [r - k, mod m, c]
else
if k ≤ r + m * c then
[(m + r mod m - k mod m) mod m, mod m, (r + m * c - k) div m]
else {})"
apply (clarsimp simp add: iMODb_iMOD_iIN_conv iT_Plus_neg_Int iMOD_add_neg iIN_add_neg)
apply (simp add: iMOD_iIN_iMODb_conv)
apply (rule_tac t="(m + r mod m - k mod m) mod m" and s="(r + m * c - k) mod m" in subst)
apply (simp add: mod_diff1_eq[of k])
apply (subst iMOD_iTILL_iMODb_conv, simp)
apply (subst sub_mod_div_eq_div, simp)
done
lemma iMODb_add_neg': "
[r, mod m, c] ⊕- k = (
if k ≤ r then [r - k, mod m, c]
else if k ≤ r + m * c then
if k mod m ≤ r mod m
then [ r mod m - k mod m, mod m, c + r div m - k div m]
else [ m + r mod m - k mod m, mod m, c + r div m - Suc (k div m) ]
else {})"
apply (clarsimp simp add: iMODb_add_neg)
apply (case_tac "m = 0", simp+)
apply (case_tac "k mod m ≤ r mod m")
apply (clarsimp simp: linorder_not_le)
apply (simp add: divisor_add_diff_mod_if)
apply (simp add: div_diff1_eq_if)
apply (clarsimp simp: linorder_not_le)
apply (simp add: div_diff1_eq_if)
done
corollary iMODb_add_neg1: "
k ≤ r ⟹ [r, mod m, c] ⊕- k = [r - k, mod m, c]"
by (simp add: iMODb_add_neg)
corollary iMODb_add_neg2: "
⟦ r < k; k ≤ r + m * c ⟧ ⟹
[r, mod m, c] ⊕- k =
[(m + r mod m - k mod m) mod m, mod m, (r + m * c - k) div m]"
by (simp add: iMODb_add_neg)
corollary iMODb_add_neg2_mod_le: "
⟦ r < k; k ≤ r + m * c; k mod m ≤ r mod m ⟧ ⟹
[r, mod m, c] ⊕- k =
[ r mod m - k mod m, mod m, c + r div m - k div m]"
by (simp add: iMODb_add_neg')
corollary iMODb_add_neg2_mod_less: "
⟦ r < k; k ≤ r + m * c; r mod m < k mod m⟧ ⟹
[r, mod m, c] ⊕- k =
[ m + r mod m - k mod m, mod m, c + r div m - Suc (k div m) ]"
by (simp add: iMODb_add_neg')
lemma iMODb_add_neg3: "r + m * c < k ⟹ [r, mod m, c] ⊕- k = {}"
by (simp add: iMODb_add_neg)
lemmas iT_add_neg =
iFROM_add_neg
iIN_add_neg
iTILL_add_neg
iMOD_add_neg
iMODb_add_neg
iT_Plus_neg_singleton
subsubsection ‹Subtraction of intervals from constants›
definition iT_Minus :: "Time ⇒ iT ⇒ iT" (infixl ‹⊖› 55)
where "k ⊖ I ≡ {x. x ≤ k ∧ (k - x) ∈ I}"
lemma iT_Minus_mem_iff: "(x ∈ k ⊖ I) = (x ≤ k ∧ k - x ∈ I)"
by (simp add: iT_Minus_def)
lemma iT_Minus_mono: "A ⊆ B ⟹ k ⊖ A ⊆ k ⊖ B"
by (simp add: subset_iff iT_Minus_mem_iff)
lemma iT_Minus_image_conv: "k ⊖ I = (λx. k - x) ` (I ↓≤ k)"
by (fastforce simp: iT_Minus_def cut_le_def image_iff)
lemma iT_Minus_cut_eq: "k ≤ t ⟹ k ⊖ (I ↓≤ t) = k ⊖ I"
by (fastforce simp: set_eq_iff iT_Minus_mem_iff)
lemma iT_Minus_Minus_cut_eq: "k ⊖ (k ⊖ (I ↓≤ k)) = I ↓≤ k"
by (fastforce simp: iT_Minus_def)
lemma "10 ⊖ […3] = [7…,3]"
by (fastforce simp: iT_Minus_def)
lemma iT_Minus_empty: "k ⊖ {} = {}"
by (simp add: iT_Minus_def)
lemma iT_Minus_0: "k ⊖ {0} = {k}"
by (simp add: iT_Minus_image_conv cut_le_def image_Collect)
lemma iT_Minus_bound: "x ∈ k ⊖ I ⟹ x ≤ k"
by (simp add: iT_Minus_def)
lemma iT_Minus_finite: "finite (k ⊖ I)"
apply (rule finite_nat_iff_bounded_le2[THEN iffD2])
apply (rule_tac x=k in exI)
apply (simp add: iT_Minus_bound)
done
lemma iT_Minus_less_Min_empty: "k < iMin I ⟹ k ⊖ I = {}"
by (simp add: iT_Minus_image_conv cut_le_Min_empty)
lemma iT_Minus_Min_singleton: "I ≠ {} ⟹ (iMin I) ⊖ I = {0}"
apply (rule set_eqI)
apply (simp add: iT_Minus_mem_iff)
apply (fastforce intro: iMinI_ex2)
done
lemma iT_Minus_empty_iff: "(k ⊖ I = {}) = (I = {} ∨ k < iMin I)"
apply (case_tac "I = {}", simp add: iT_Minus_empty)
apply (simp add: iT_Minus_image_conv cut_le_empty_iff iMin_gr_iff)
done
lemma iT_Minus_imirror_conv: "
k ⊖ I = imirror (I ↓≤ k) ⊕ k ⊕- (iMin I + Max (I ↓≤ k))"
apply (case_tac "I = {}")
apply (simp add: iT_Minus_empty cut_le_empty imirror_empty iT_Plus_empty iT_Plus_neg_empty)
apply (case_tac "k < iMin I")
apply (simp add: iT_Minus_less_Min_empty cut_le_Min_empty imirror_empty iT_Plus_empty iT_Plus_neg_empty)
apply (simp add: linorder_not_less)
apply (frule cut_le_Min_not_empty[of _ k], assumption)
apply (rule set_eqI)
apply (simp add: iT_Minus_image_conv iT_Plus_neg_image_conv iT_Plus_neg_mem_iff iT_Plus_mem_iff imirror_iff image_iff Bex_def i_cut_mem_iff cut_le_Min_eq)
apply (rule iffI)
apply (clarsimp, rename_tac x')
apply (rule_tac x="k - x' + iMin I + Max (I ↓≤ k)" in exI, simp)
apply (simp add: add.assoc le_add_diff)
apply (simp add: add.commute[of k] le_add_diff nat_cut_le_finite cut_leI trans_le_add2)
apply (rule_tac x=x' in exI, simp)
apply (clarsimp, rename_tac x1 x2)
apply (rule_tac x=x2 in exI)
apply simp
apply (drule add_right_cancel[THEN iffD2, of _ _ k], simp)
apply (simp add: trans_le_add2 nat_cut_le_finite cut_le_mem_iff)
done
lemma iT_Minus_imirror_conv': "
k ⊖ I = imirror (I ↓≤ k) ⊕ k ⊕- (iMin (I ↓≤ k) + Max (I ↓≤ k))"
apply (case_tac "I = {}")
apply (simp add: iT_Minus_empty cut_le_empty imirror_empty iT_Plus_empty iT_Plus_neg_empty)
apply (case_tac "k < iMin I")
apply (simp add: iT_Minus_less_Min_empty cut_le_Min_empty imirror_empty iT_Plus_empty iT_Plus_neg_empty)
apply (simp add: cut_le_Min_not_empty cut_le_Min_eq iT_Minus_imirror_conv)
done
lemma iT_Minus_Max: "
⟦ I ≠ {}; iMin I ≤ k ⟧ ⟹ Max (k ⊖ I) = k - (iMin I)"
apply (rule Max_equality)
apply (simp add: iT_Minus_mem_iff iMinI_ex2)
apply (simp add: iT_Minus_finite)
apply (fastforce simp: iT_Minus_def)
done
lemma iT_Minus_Min: "
⟦ I ≠ {}; iMin I ≤ k ⟧ ⟹ iMin (k ⊖ I) = k - (Max (I ↓≤ k))"
apply (insert nat_cut_le_finite[of I k])
apply (frule cut_le_Min_not_empty[of _ k], assumption)
apply (rule iMin_equality)
apply (simp add: iT_Minus_mem_iff nat_cut_le_Max_le del: Max_le_iff)
apply (simp add: subsetD[OF cut_le_subset, OF Max_in])
apply (clarsimp simp add: iT_Minus_image_conv image_iff, rename_tac x')
apply (rule diff_le_mono2)
apply (simp add: Max_ge_iff cut_le_mem_iff)
done
lemma iT_Minus_Minus_eq: "⟦ finite I; Max I ≤ k ⟧ ⟹ k ⊖ (k ⊖ I) = I"
apply (simp add: iT_Minus_cut_eq[of k k I, symmetric] iT_Minus_Minus_cut_eq)
apply (simp add: cut_le_Max_all)
done
lemma iT_Minus_Minus_eq2: "I ⊆ […k] ⟹ k ⊖ (k ⊖ I) = I"
apply (case_tac "I = {}")
apply (simp add: iT_Minus_empty)
apply (rule iT_Minus_Minus_eq)
apply (simp add: finite_subset iTILL_finite)
apply (frule Max_subset)
apply (simp add: iTILL_finite iTILL_Max)+
done
lemma iT_Minus_Minus: "a ⊖ (b ⊖ I) = (I ↓≤ b) ⊕ a ⊕- b"
apply (rule set_eqI)
apply (simp add: iT_Minus_image_conv iT_Plus_image_conv iT_Plus_neg_image_conv image_iff Bex_def i_cut_mem_iff)
apply fastforce
done
lemma iT_Minus_Plus_empty: "k < n ⟹ k ⊖ (I ⊕ n) = {}"
apply (case_tac "I = {}")
apply (simp add: iT_Plus_empty iT_Minus_empty)
apply (simp add: iT_Minus_empty_iff iT_Plus_empty_iff iT_Plus_Min)
done
lemma iT_Minus_Plus_commute: "n ≤ k ⟹ k ⊖ (I ⊕ n) = (k - n) ⊖ I"
apply (rule set_eqI)
apply (simp add: iT_Minus_image_conv iT_Plus_image_conv image_iff Bex_def i_cut_mem_iff)
apply fastforce
done
lemma iT_Minus_Plus_cut_assoc: "(k ⊖ I) ⊕ n = (k + n) ⊖ (I ↓≤ k)"
apply (rule set_eqI)
apply (simp add: iT_Plus_mem_iff iT_Minus_mem_iff cut_le_mem_iff)
apply fastforce
done
lemma iT_Minus_Plus_assoc: "
⟦ finite I; Max I ≤ k ⟧ ⟹ (k ⊖ I) ⊕ n = (k + n) ⊖ I"
by (insert iT_Minus_Plus_cut_assoc[of k I n], simp add: cut_le_Max_all)
lemma iT_Minus_Plus_assoc2: "
I ⊆ […k] ⟹ (k ⊖ I) ⊕ n = (k + n) ⊖ I"
apply (case_tac "I = {}")
apply (simp add: iT_Minus_empty iT_Plus_empty)
apply (rule iT_Minus_Plus_assoc)
apply (simp add: finite_subset iTILL_finite)
apply (frule Max_subset)
apply (simp add: iTILL_finite iTILL_Max)+
done
lemma iT_Minus_Un: "k ⊖ (A ∪ B) = (k ⊖ A) ∪ (k ⊖ B)"
by (fastforce simp: iT_Minus_def)
lemma iT_Minus_Int: "k ⊖ (A ∩ B) = (k ⊖ A) ∩ (k ⊖ B)"
by (fastforce simp: set_eq_iff iT_Minus_mem_iff)
lemma iT_Minus_singleton: "k ⊖ {a} = (if a ≤ k then {k - a} else {})"
by (simp add: iT_Minus_image_conv cut_le_singleton)
corollary iT_Minus_singleton1: "a ≤ k ⟹ k ⊖ {a} = {k-a}"
by (simp add: iT_Minus_singleton)
corollary iT_Minus_singleton2: "k < a ⟹ k ⊖ {a} = {}"
by (simp add: iT_Minus_singleton)
lemma iMOD_sub: "
k ⊖ [r, mod m] =
(if r ≤ k then [(k - r) mod m, mod m, (k - r) div m] else {})"
apply (rule set_eqI)
apply (simp add: iT_Minus_mem_iff iT_iff)
apply (fastforce simp add: mod_sub_eq_mod_swap[of r, symmetric])
done
corollary iMOD_sub1: "
r ≤ k ⟹ k ⊖ [r, mod m] = [(k - r) mod m, mod m, (k - r) div m]"
by (simp add: iMOD_sub)
corollary iMOD_sub2: "k < r ⟹ k ⊖ [r, mod m] = {}"
apply (rule iT_Minus_less_Min_empty)
apply (simp add: iMOD_Min)
done
lemma iTILL_sub: "k ⊖ […n] = (if n ≤ k then [k - n…,n] else […k])"
by (force simp add: set_eq_iff iT_Minus_mem_iff iT_iff)
corollary iTILL_sub1: "n ≤ k ⟹ k ⊖ […n] = [k - n…,n]"
by (simp add: iTILL_sub)
corollary iTILL_sub2: "k ≤ n ⟹ k ⊖ […n] = […k]"
by (simp add: iTILL_sub iIN_0_iTILL_conv)
lemma iMODb_sub: "
k ⊖ [r, mod m, c] = (
if r + m * c ≤ k then [ k - r - m * c, mod m, c] else
if r ≤ k then [ (k - r) mod m, mod m, (k - r) div m] else {})"
apply (case_tac "m = 0")
apply (simp add: iMODb_mod_0 iIN_0 iT_Minus_singleton)
apply (subst iMODb_iMOD_iTILL_conv)
apply (subst iT_Minus_Int)
apply (simp add: iMOD_sub iTILL_sub)
apply (intro conjI impI)
apply simp
apply (subgoal_tac "(k - r) mod m ≤ k - (r + m * c)")
prefer 2
apply (subgoal_tac "m * c ≤ k - r - (k - r) mod m")
prefer 2
apply (drule add_le_imp_le_diff2)
apply (drule div_le_mono[of _ _ m], simp)
apply (drule mult_le_mono2[of _ _ m])
apply (simp add: minus_mod_eq_mult_div [symmetric])
apply (simp add: le_diff_conv2[OF mod_le_dividend] del: diff_diff_left)
apply (subst iMODb_iMOD_iIN_conv)
apply (simp add: Int_assoc minus_mod_eq_mult_div [symmetric])
apply (subst iIN_inter, simp+)
apply (rule set_eqI)
apply (fastforce simp add: iT_iff mod_diff_mult_self2 diff_diff_left[symmetric] simp del: diff_diff_left)
apply (simp add: Int_absorb2 iMODb_iTILL_subset)
done
corollary iMODb_sub1: "
⟦ r ≤ k; k ≤ r + m * c ⟧ ⟹
k ⊖ [r, mod m, c] = [(k - r) mod m, mod m, (k - r) div m]"
by (clarsimp simp: iMODb_sub iMODb_mod_0)
corollary iMODb_sub2: "k < r ⟹ k ⊖ [r, mod m, c] = {}"
apply (rule iT_Minus_less_Min_empty)
apply (simp add: iMODb_Min)
done
corollary iMODb_sub3: "
r + m * c ≤ k ⟹ k ⊖ [r, mod m, c] = [ k - r - m * c, mod m, c]"
by (simp add: iMODb_sub)
lemma iFROM_sub: "k ⊖ [n…] = (if n ≤ k then […k - n] else {})"
by (simp add: iMOD_1[symmetric] iMOD_sub iMODb_mod_1 iIN_0_iTILL_conv)
corollary iFROM_sub1: "n ≤ k ⟹ k ⊖ [n…] = […k-n]"
by (simp add: iFROM_sub)
corollary iFROM_sub_empty: "k < n ⟹ k ⊖ [n…] = {}"
by (simp add: iFROM_sub)
lemma iIN_sub: "
k ⊖ [n…,d] = (
if n + d ≤ k then [k - (n + d)…,d]
else if n ≤ k then […k - n] else {})"
apply (simp add: iMODb_mod_1[symmetric] iMODb_sub)
apply (simp add: iMODb_mod_1 iIN_0_iTILL_conv)
done
lemma iIN_sub1: "n + d ≤ k ⟹ k ⊖ [n…,d] = [k - (n + d)…,d]"
by (simp add: iIN_sub)
lemma iIN_sub2: "⟦ n ≤ k; k ≤ n + d ⟧ ⟹ k ⊖ [n…,d] = […k - n]"
by (clarsimp simp: iIN_sub iIN_0_iTILL_conv)
lemma iIN_sub3: "k < n ⟹ k ⊖ [n…,d] = {}"
by (simp add: iIN_sub)
lemmas iT_sub =
iFROM_sub
iIN_sub
iTILL_sub
iMOD_sub
iMODb_sub
iT_Minus_singleton
subsubsection ‹Division of intervals by constants›
text ‹Monotonicity and injectivity of artithmetic operators›
lemma iMOD_div_right_strict_mono_on: "
⟦ 0 < k; k ≤ m ⟧ ⟹ strict_mono_on (λx. x div k) [r, mod m]"
apply (rule div_right_strict_mono_on, assumption)
apply (clarsimp simp: iT_iff)
apply (drule_tac s="y mod m" in sym, simp)
apply (rule_tac y="x + m" in order_trans, simp)
apply (simp add: less_mod_eq_imp_add_divisor_le)
done
corollary iMOD_div_right_inj_on: "
⟦ 0 < k; k ≤ m ⟧ ⟹ inj_on (λx. x div k) [r, mod m]"
by (rule strict_mono_on_imp_inj_on[OF iMOD_div_right_strict_mono_on])
lemma iMOD_mult_div_right_inj_on: "
inj_on (λx. x div (k::nat)) [r, mod (k * m)]"
apply (case_tac "k * m = 0")
apply (simp del: mult_is_0 mult_eq_0_iff add: iMOD_0 iIN_0)
apply (simp add: iMOD_div_right_inj_on)
done
lemma iMOD_mult_div_right_inj_on2: "
m mod k = 0 ⟹ inj_on (λx. x div k) [r, mod m]"
by (auto simp add: iMOD_mult_div_right_inj_on)
lemma iMODb_div_right_strict_mono_on: "
⟦ 0 < k; k ≤ m ⟧ ⟹ strict_mono_on (λx. x div k) [r, mod m, c]"
by (rule strict_mono_on_subset[OF iMOD_div_right_strict_mono_on iMODb_iMOD_subset_same])
corollary iMODb_div_right_inj_on: "
⟦ 0 < k; k ≤ m ⟧ ⟹ inj_on (λx. x div k) [r, mod m, c]"
by (rule strict_mono_on_imp_inj_on[OF iMODb_div_right_strict_mono_on])
lemma iMODb_mult_div_right_inj_on: "
inj_on (λx. x div (k::nat)) [r, mod (k * m), c]"
by (rule subset_inj_on[OF iMOD_mult_div_right_inj_on iMODb_iMOD_subset_same])
corollary iMODb_mult_div_right_inj_on2: "
m mod k = 0 ⟹ inj_on (λx. x div k) [r, mod m, c]"
by (auto simp add: iMODb_mult_div_right_inj_on)
definition iT_Div :: "iT ⇒ Time ⇒ iT" (infixl ‹⊘› 55)
where "I ⊘ k ≡ (λn.(n div k)) ` I"
lemma iT_Div_image_conv: "I ⊘ k = (λn.(n div k)) ` I"
by (simp add: iT_Div_def)
lemma iT_Div_mono: "A ⊆ B ⟹ A ⊘ k ⊆ B ⊘ k"
by (simp add: iT_Div_def image_mono)
lemma iT_Div_empty: "{} ⊘ k = {}"
by (simp add: iT_Div_def)
lemma iT_Div_not_empty: "I ≠ {} ⟹ I ⊘ k ≠ {}"
by (simp add: iT_Div_def)
lemma iT_Div_empty_iff: "(I ⊘ k = {}) = (I = {})"
by (simp add: iT_Div_def)
lemma iT_Div_0: "I ≠ {} ⟹ I ⊘ 0 = […0]"
by (force simp: iT_Div_def)
corollary iT_Div_0_if: "I ⊘ 0 = (if I = {} then {} else […0])"
by (force simp: iT_Div_def)
corollary
iFROM_div_0: "[n…] ⊘ 0 = […0]" and
iTILL_div_0: "[…n] ⊘ 0 = […0]" and
iIN_div_0: "[n…,d] ⊘ 0 = […0]" and
iMOD_div_0: "[r, mod m] ⊘ 0 = […0]" and
iMODb_div_0: "[r, mod m, c] ⊘ 0 = […0]"
by (simp add: iT_Div_0 iT_not_empty)+
lemmas iT_div_0 =
iTILL_div_0
iFROM_div_0
iIN_div_0
iMOD_div_0
iMODb_div_0
lemma iT_Div_1: "I ⊘ Suc 0 = I"
by (simp add: iT_Div_def)
lemma iT_Div_mem_iff_0: "x ∈ (I ⊘ 0) = (I ≠ {} ∧ x = 0)"
by (force simp: iT_Div_0_if)
lemma iT_Div_mem_iff: "
0 < k ⟹ x ∈ (I ⊘ k) = (∃y ∈ I. y div k = x)"
by (force simp: iT_Div_def)
lemma iT_Div_mem_iff2: "
0 < k ⟹ x div k ∈ (I ⊘ k) = (∃y ∈ I. y div k = x div k)"
by (rule iT_Div_mem_iff)
lemma iT_Div_mem_iff_Int: "
0 < k ⟹ x ∈ (I ⊘ k) = (I ∩ [x * k…,k - Suc 0] ≠ {})"
apply (simp add: ex_in_conv[symmetric] iT_Div_mem_iff iT_iff)
apply (simp add: le_less_div_conv[symmetric] add.commute[of k])
apply (subst less_eq_le_pred, simp)
apply blast
done
lemma iT_Div_imp_mem: "
0 < k ⟹ x ∈ I ⟹ x div k ∈ (I ⊘ k)"
by (force simp: iT_Div_mem_iff2)
lemma iT_Div_singleton: "{a} ⊘ k = {a div k}"
by (simp add: iT_Div_def)
lemma iT_Div_Un: "(A ∪ B) ⊘ k = (A ⊘ k) ∪ (B ⊘ k)"
by (fastforce simp: iT_Div_def)
lemma iT_Div_insert: "(insert n I) ⊘ k = insert (n div k) (I ⊘ k)"
by (fastforce simp: iT_Div_def)
lemma not_iT_Div_Int: "¬ (∀ k A B. (A ∩ B) ⊘ k = (A ⊘ k) ∩ (B ⊘ k))"
apply simp
apply (
rule_tac x=3 in exI,
rule_tac x="{0}" in exI,
rule_tac x="{1}" in exI)
by (simp add: iT_Div_def)
lemma subset_iT_Div_Int: "A ⊆ B ⟹ (A ∩ B) ⊘ k = (A ⊘ k) ∩ (B ⊘ k)"
by (simp add: iT_Div_def subset_image_Int)
lemma iFROM_iT_Div_Int: "
⟦ 0 < k; n ≤ iMin A ⟧ ⟹ (A ∩ [n…]) ⊘ k = (A ⊘ k) ∩ ([n…] ⊘ k)"
apply (rule subset_iT_Div_Int)
apply (blast intro: order_trans iMin_le)
done
lemma iIN_iT_Div_Int: "
⟦ 0 < k; n ≤ iMin A; ∀x∈A. x div k ≤ (n + d) div k ⟶ x ≤ n + d ⟧ ⟹
(A ∩ [n…,d]) ⊘ k = (A ⊘ k) ∩ ([n…,d] ⊘ k)"
apply (rule set_eqI)
apply (simp add: iT_Div_mem_iff Bex_def iIN_iff)
apply (rule iffI)
apply blast
apply (clarsimp, rename_tac x1 x2)
apply (frule iMin_le)
apply (rule_tac x=x1 in exI, simp)
apply (drule_tac x=x1 in bspec, simp)
apply (drule div_le_mono[of _ "n + d" k])
apply simp
done
corollary iTILL_iT_Div_Int: "
⟦ 0 < k; ∀x∈A. x div k ≤ n div k ⟶ x ≤ n ⟧ ⟹
(A ∩ […n]) ⊘ k = (A ⊘ k) ∩ ([…n] ⊘ k)"
by (simp add: iIN_0_iTILL_conv[symmetric] iIN_iT_Div_Int)
lemma iIN_iT_Div_Int_mod_0: "
⟦ 0 < k; n mod k = 0; ∀x∈A. x div k ≤ (n + d) div k ⟶ x ≤ n + d ⟧ ⟹
(A ∩ [n…,d]) ⊘ k = (A ⊘ k) ∩ ([n…,d] ⊘ k)"
apply (rule set_eqI)
apply (simp add: iT_Div_mem_iff Bex_def iIN_iff)
apply (rule iffI)
apply blast
apply (elim conjE exE, rename_tac x1 x2)
apply (rule_tac x=x1 in exI, simp)
apply (rule conjI)
apply (rule ccontr, simp add: linorder_not_le)
apply (drule_tac m=n and n=x2 and k=k in div_le_mono)
apply (drule_tac a=x1 and m=k in less_mod_0_imp_div_less)
apply simp+
apply (drule_tac x=x1 in bspec, simp)
apply (drule div_le_mono[of _ "n + d" k])
apply simp
done
lemma mod_partition_iT_Div_Int: "
⟦ 0 < k; 0 < d ⟧ ⟹
(A ∩ [n * k…,d * k - Suc 0]) ⊘ k =
(A ⊘ k) ∩ ([n * k…,d * k - Suc 0] ⊘ k)"
apply (rule iIN_iT_Div_Int_mod_0, simp+)
apply (clarify, rename_tac x)
apply (simp add: mod_0_imp_sub_1_div_conv)
apply (rule ccontr, simp add: linorder_not_le pred_less_eq_le)
apply (drule_tac n=x and k=k in div_le_mono)
apply simp
done
lemma "{0,1,2} ⊗ x = {0*x, 1*x, 2*x}"
by (simp add: iT_Mult_def)
corollary mod_partition_iT_Div_Int2: "
⟦ 0 < k; 0 < d; n mod k = 0; d mod k = 0 ⟧ ⟹
(A ∩ [n…,d - Suc 0]) ⊘ k =
(A ⊘ k) ∩ ([n…,d - Suc 0] ⊘ k)"
by (auto simp add: ac_simps mod_partition_iT_Div_Int elim!: dvdE)
corollary mod_partition_iT_Div_Int_one_segment: "
0 < k ⟹
(A ∩ [n * k…,k - Suc 0]) ⊘ k = (A ⊘ k) ∩ ([n * k…,k - Suc 0] ⊘ k)"
by (insert mod_partition_iT_Div_Int[where d=1], simp)
corollary mod_partition_iT_Div_Int_one_segment2: "
⟦ 0 < k; n mod k = 0 ⟧ ⟹
(A ∩ [n…,k - Suc 0]) ⊘ k = (A ⊘ k) ∩ ([n…,k - Suc 0] ⊘ k)"
using mod_partition_iT_Div_Int2[where k=k and d=k and n=n]
by (insert mod_partition_iT_Div_Int2[where k=k and d=k and n=n], simp)
lemma iT_Div_assoc:"I ⊘ a ⊘ b = I ⊘ (a * b)"
by (simp add: iT_Div_def image_image div_mult2_eq)
lemma iT_Div_commute: "I ⊘ a ⊘ b = I ⊘ b ⊘ a"
by (simp add: iT_Div_assoc mult.commute[of a])
lemma iT_Mult_Div_self: "0 < k ⟹ I ⊗ k ⊘ k = I"
by (simp add: iT_Mult_def iT_Div_def image_image)
lemma iT_Mult_Div: "
⟦ 0 < d; k mod d = 0 ⟧ ⟹ I ⊗ k ⊘ d = I ⊗ (k div d)"
by (auto simp add: ac_simps iT_Mult_assoc[symmetric] iT_Mult_Div_self)
lemma iT_Div_Mult_self: "
0 < k ⟹ I ⊘ k ⊗ k = {y. ∃x ∈ I. y = x - x mod k}"
by (simp add: set_eq_iff iT_Mult_def iT_Div_def image_image image_iff div_mult_cancel)
lemma iT_Plus_Div_distrib_mod_less: "
∀x∈I. x mod m + n mod m < m ⟹ I ⊕ n ⊘ m = I ⊘ m ⊕ n div m"
by (simp add: set_eq_iff iT_Div_def iT_Plus_def image_image image_iff div_add1_eq1)
corollary iT_Plus_Div_distrib_mod_0: "
n mod m = 0 ⟹ I ⊕ n ⊘ m = I ⊘ m ⊕ n div m"
apply (case_tac "m = 0", simp add: iT_Plus_0 iT_Div_0)
apply (simp add: iT_Plus_Div_distrib_mod_less)
done
lemma iT_Div_Min: "I ≠ {} ⟹ iMin (I ⊘ k) = iMin I div k"
by (simp add: iT_Div_def iMin_mono2 mono_def div_le_mono)
corollary
iFROM_div_Min: "iMin ([n…] ⊘ k) = n div k" and
iIN_div_Min: "iMin ([n…,d] ⊘ k) = n div k" and
iTILL_div_Min: "iMin ([…n] ⊘ k) = 0" and
iMOD_div_Min: "iMin ([r, mod m] ⊘ k) = r div k" and
iMODb_div_Min: "iMin ([r, mod m, c] ⊘ k) = r div k"
by (simp add: iT_not_empty iT_Div_Min iT_Min)+
lemmas iT_div_Min =
iFROM_div_Min
iIN_div_Min
iTILL_div_Min
iMOD_div_Min
iMODb_div_Min
lemma iT_Div_Max: "⟦ finite I; I ≠ {} ⟧ ⟹ Max (I ⊘ k) = Max I div k"
by (simp add: iT_Div_def Max_mono2 mono_def div_le_mono)
corollary
iIN_div_Max: "Max ([n…,d] ⊘ k) = (n + d) div k" and
iTILL_div_Max: "Max ([…n] ⊘ k) = n div k" and
iMODb_div_Max: "Max ([r, mod m, c] ⊘ k) = (r + m * c) div k"
by (simp add: iT_not_empty iT_finite iT_Div_Max iT_Max)+
lemma iT_Div_0_finite: "finite (I ⊘ 0)"
by (simp add: iT_Div_0_if iTILL_0)
lemma iT_Div_infinite_iff: "0 < k ⟹ infinite (I ⊘ k) = infinite I"
apply (unfold iT_Div_def)
apply (rule iffI)
apply (rule infinite_image_imp_infinite, assumption)
apply (clarsimp simp: infinite_nat_iff_unbounded_le image_iff, rename_tac x1)
apply (drule_tac x="x1 * k" in spec, clarsimp, rename_tac x2)
apply (drule div_le_mono[of _ _ k], simp)
apply (rule_tac x="x2 div k" in exI)
apply fastforce
done
lemma iT_Div_finite_iff: "0 < k ⟹ finite (I ⊘ k) = finite I"
by (insert iT_Div_infinite_iff, simp)
lemma iFROM_div: "0 < k ⟹ [n…] ⊘ k = [n div k…]"
apply (clarsimp simp: set_eq_iff iT_Div_def image_iff Bex_def iFROM_iff, rename_tac x)
apply (rule iffI)
apply (clarsimp simp: div_le_mono)
apply (rule_tac x="n mod k + k * x" in exI)
apply simp
apply (subst add.commute, subst le_diff_conv[symmetric])
apply (subst minus_mod_eq_mult_div)
apply simp
done
lemma iIN_div: "
0 < k ⟹
[n…,d] ⊘ k = [n div k…, d div k + (n mod k + d mod k) div k ]"
apply (clarsimp simp: set_eq_iff iT_Div_def image_iff Bex_def iIN_iff, rename_tac x)
apply (rule iffI)
apply clarify
apply (drule div_le_mono[of n _ k])
apply (drule div_le_mono[of _ "n + d" k])
apply (simp add: div_add1_eq[of n d])
apply (clarify, rename_tac x)
apply (simp add: add.assoc[symmetric] div_add1_eq[symmetric])
apply (frule mult_le_mono1[of "n div k" _ k])
apply (frule mult_le_mono1[of _ "(n + d) div k" k])
apply (simp add: mult.commute[of _ k] minus_mod_eq_mult_div [symmetric])
apply (simp add: le_diff_conv le_diff_conv2[OF mod_le_dividend])
apply (drule order_le_less[of _ "(n + d) div k", THEN iffD1], erule disjE)
apply (rule_tac x="k * x + n mod k" in exI)
apply (simp add: add.commute[of _ "n mod k"])
apply (case_tac "n mod k ≤ (n + d) mod k", simp)
apply (simp add: linorder_not_le)
apply (drule_tac m=x in less_imp_le_pred)
apply (drule_tac i=x and k=k in mult_le_mono2)
apply (simp add: diff_mult_distrib2 minus_mod_eq_mult_div [symmetric])
apply (subst add.commute[of "n mod k"])
apply (subst le_diff_conv2[symmetric])
apply (simp add: trans_le_add1)
apply (rule order_trans, assumption)
apply (rule diff_le_mono2)
apply (simp add: trans_le_add2)
apply (rule_tac x="n + d" in exI, simp)
done
corollary iIN_div_if: "
0 < k ⟹ [n…,d] ⊘ k =
[n div k…, d div k + (if n mod k + d mod k < k then 0 else Suc 0)]"
apply (simp add: iIN_div)
apply (simp add: iIN_def add.assoc[symmetric] div_add1_eq[symmetric] div_add1_eq2[where a=n])
done
corollary iIN_div_eq1: "
⟦ 0 < k; n mod k + d mod k < k ⟧ ⟹
[n…,d] ⊘ k = [n div k…,d div k]"
by (simp add: iIN_div_if)
corollary iIN_div_eq2: "
⟦ 0 < k; k ≤ n mod k + d mod k ⟧ ⟹
[n…,d] ⊘ k = [n div k…, Suc (d div k)]"
by (simp add: iIN_div_if)
corollary iIN_div_mod_eq_0: "
⟦ 0 < k; n mod k = 0 ⟧ ⟹ [n…,d] ⊘ k = [n div k…,d div k]"
by (simp add: iIN_div_eq1)
lemma iTILL_div: "
0 < k ⟹ […n] ⊘ k = […n div k]"
by (simp add: iIN_0_iTILL_conv[symmetric] iIN_div_if)
lemma iMOD_div_ge: "
⟦ 0 < m; m ≤ k ⟧ ⟹ [r, mod m] ⊘ k = [r div k…]"
apply (frule less_le_trans[of _ _ k], assumption)
apply (clarsimp simp: set_eq_iff iT_Div_mem_iff Bex_def iT_iff, rename_tac x)
apply (rule iffI)
apply (fastforce simp: div_le_mono)
apply (rule_tac x="
if x * k < r then r else
((if x * k mod m ≤ r mod m then 0 else m) + r mod m + (x * k - x * k mod m))"
in exI)
apply (case_tac "x * k < r")
apply simp
apply (drule less_imp_le[of _ r], drule div_le_mono[of _ r k], simp)
apply (simp add: linorder_not_less linorder_not_le)
apply (simp add: div_le_conv add.commute[of k])
apply (subst diff_add_assoc, simp)+
apply (simp add: div_mult_cancel[symmetric] del: add_diff_assoc)
apply (case_tac "x * k mod m = 0")
apply (clarsimp elim!: dvdE)
apply (drule sym)
apply (simp add: mult.commute[of m])
apply (blast intro: div_less order_less_le_trans mod_less_divisor)
apply simp
apply (intro conjI impI)
apply (simp add: div_mult_cancel)
apply (simp add: div_mult_cancel)
apply (subst add.commute, subst diff_add_assoc, simp)
apply (subst add.commute, subst div_mult_self1, simp)
apply (subst div_less)
apply (rule order_less_le_trans[of _ m], simp add: less_imp_diff_less)
apply simp
apply simp
apply (rule_tac y="x * k" in order_trans, assumption)
apply (simp add: div_mult_cancel)
apply (rule le_add_diff)
apply (simp add: trans_le_add1)
apply (simp add: div_mult_cancel)
apply (subst diff_add_assoc2, simp add: trans_le_add1)
apply simp
done
corollary iMOD_div_self: "
0 < m ⟹ [r, mod m] ⊘ m = [r div m…]"
by (simp add: iMOD_div_ge)
lemma iMOD_div: "
⟦ 0 < k; m mod k = 0 ⟧ ⟹
[r, mod m] ⊘ k = [r div k, mod (m div k) ]"
apply (case_tac "m = 0")
apply (simp add: iMOD_0 iIN_0 iT_Div_singleton)
apply (clarsimp elim!: dvdE)
apply (rename_tac q)
apply hypsubst_thin
apply (cut_tac r="r div k" and k=k and m=q in iMOD_mult)
apply (drule arg_cong[where f="λx. x ⊕ (r mod k)"])
apply (drule sym)
apply (simp add: iMOD_add mult.commute[of k])
apply (cut_tac I="[r div k, mod q] ⊗ k" and m=k and n="r mod k" in iT_Plus_Div_distrib_mod_less)
apply (rule ballI)
apply (simp only: iMOD_mult iMOD_iff, elim conjE)
apply (drule mod_factor_imp_mod_0)
apply simp
apply (simp add: iT_Plus_0)
apply (simp add: iT_Mult_Div[OF _ mod_self] iT_Mult_1)
done
lemma iMODb_div_self: "
0 < m ⟹ [r, mod m, c] ⊘ m = [r div m…,c]"
apply (subst iMODb_iMOD_iTILL_conv)
apply (subst iTILL_iT_Div_Int)
apply simp
apply (clarsimp simp: iT_iff simp del: div_mult_self1 div_mult_self2, rename_tac x)
apply (drule div_le_mod_le_imp_le)
apply simp+
apply (simp add: iMOD_div_self iTILL_div iFROM_iTILL_iIN_conv)
done
lemma iMODb_div_ge: "
⟦ 0 < m; m ≤ k ⟧ ⟹
[r, mod m, c] ⊘ k = [r div k…,(r + m * c) div k - r div k]"
apply (case_tac "m = k")
apply (simp add: iMODb_div_self)
apply (drule le_neq_trans, simp+)
apply (induct c)
apply (simp add: iMODb_0 iIN_0 iT_Div_singleton)
apply (rule_tac t="[ r, mod m, Suc c ]" and s="[ r, mod m, c ] ∪ {r + m * c + m}" in subst)
apply (cut_tac c=c and c'=0 and r=r and m=m in iMODb_append_union_Suc[symmetric])
apply (simp add: iMODb_0 iIN_0 add.commute[of m] add.assoc)
apply (subst iT_Div_Un)
apply (simp add: iT_Div_singleton)
apply (simp add: add.commute[of m] add.assoc[symmetric])
apply (case_tac "(r + m * c) mod k + m mod k < k")
apply (simp add: div_add1_eq1)
apply (rule insert_absorb)
apply (simp add: iIN_iff div_le_mono)
apply (simp add: linorder_not_less)
apply (simp add: div_add1_eq2)
apply (rule_tac t="Suc ((r + m * c) div k)" and s="Suc (r div k + ((r + m * c) div k - r div k))" in subst)
apply (simp add: div_le_mono)
apply (simp add: iIN_Suc_insert_conv)
done
corollary iMODb_div_ge_if: "
⟦ 0 < m; m ≤ k ⟧ ⟹
[r, mod m, c] ⊘ k =
[r div k…, m * c div k + (if r mod k + m * c mod k < k then 0 else Suc 0)]"
by (simp add: iMODb_div_ge div_add1_eq_if[of _ r])
lemma iMODb_div: "
⟦ 0 < k; m mod k = 0 ⟧ ⟹
[r, mod m, c] ⊘ k = [r div k, mod (m div k), c ]"
apply (subst iMODb_iMOD_iTILL_conv)
apply (subst iTILL_iT_Div_Int)
apply simp
apply (simp add: Ball_def iMOD_iff, intro allI impI, elim conjE, rename_tac x)
apply (drule div_le_mod_le_imp_le)
apply (subst mod_add1_eq_if)
apply (simp add: mod_0_imp_mod_mult_right_0)
apply (drule mod_eq_mod_0_imp_mod_eq, simp+)
apply (simp add: iMOD_div iTILL_div)
apply (simp add: iMOD_iTILL_iMODb_conv div_le_mono)
apply (clarsimp simp: mult.assoc iMODb_mod_0 iMOD_0 elim!: dvdE)
done
lemmas iT_div =
iTILL_div
iFROM_div
iIN_div
iMOD_div
iMODb_div
iT_Div_singleton
text ‹This lemma is valid for all @{term "k ≤ m"},i. e., also for k with @{term "m mod k ≠ 0"}.›
lemma iMODb_div_unique: "
⟦ 0 < k; k ≤ m; k ≤ c; [r', mod m', c'] = [r, mod m, c] ⊘ k ⟧ ⟹
r' = r div k ∧ m' = m div k ∧ c' = c"
apply (case_tac "r' ≠ r div k")
apply (drule arg_cong[where f="iMin"])
apply (simp add: iT_Min iT_not_empty iT_Div_Min)
apply simp
apply (case_tac "m' = 0 ∨ c' = 0")
apply (subgoal_tac "[ r div k, mod m', c' ] = {r div k}")
prefer 2
apply (rule iMODb_singleton_eq_conv[THEN iffD2], simp)
apply simp
apply (drule arg_cong[where f="Max"])
apply (simp add: iMODb_mod_0 iIN_0 iT_Max iT_Div_Max iT_Div_finite_iff iT_Div_not_empty iT_finite iT_not_empty)
apply (subgoal_tac "r div k < (r + m * c) div k", simp)
apply (subst div_add1_eq_if, simp)
apply clarsimp
apply (rule order_less_le_trans[of _ "k * k div k"], simp)
apply (rule div_le_mono)
apply (simp add: mult_mono)
apply (subgoal_tac "c' = c")
prefer 2
apply (drule arg_cong[where f="λA. card A"])
apply (simp add: iT_Div_def card_image[OF iMODb_div_right_inj_on] iMODb_card)
apply clarsimp
apply (frule iMODb_div_right_strict_mono_on[of k m r c], assumption)
apply (frule_tac a=k and b=0 and m=m' and r="r div k" and c=c in iMODb_inext_nth_diff, simp)
apply (simp add: iT_Div_Min iT_not_empty iT_Min)
apply (simp add: iT_Div_def inext_nth_image[OF iMODb_not_empty])
apply (simp add: iMODb_inext_nth)
done
lemma iMODb_div_mod_gr0_is_0_not_ex0: "
⟦ 0 < k; k < m; 0 < m mod k; k ≤ c; r mod k = 0 ⟧ ⟹
¬(∃r' m' c'. [r', mod m', c'] = [r, mod m, c] ⊘ k)"
apply (rule ccontr, simp, elim exE conjE)
apply (frule_tac r'=r' and m'=m' and c'=c' and r=r and k=k and m=m and c=c
in iMODb_div_unique[OF _ less_imp_le], simp+)
apply (drule arg_cong[where f="Max"])
apply (simp add: iT_Max iT_Div_Max iT_Div_finite_iff iT_Div_not_empty iT_finite iT_not_empty)
apply (simp add: div_add1_eq1)
apply (simp add: mult.commute[of m])
apply (simp add: div_mult1_eq[of c m] div_eq_0_conv)
apply (subgoal_tac "c ≤ c * (m mod k)")
apply simp+
done
lemma iMODb_div_mod_gr0_not_ex__arith_aux1: "
⟦ (0::nat) < k; k < m; 0 < x1 ⟧ ⟹
x1 * m + x2 - x mod k + x3 + x mod k = x1 * m + x2 + x3"
apply (drule Suc_leI[of _ x1])
apply (drule mult_le_mono1[of "Suc 0" _ m])
apply (subgoal_tac "x mod k ≤ x1 * m")
prefer 2
apply (rule order_trans[OF mod_le_divisor], assumption)
apply (rule order_less_imp_le)
apply (rule order_less_le_trans)
apply simp+
done
lemma iMODb_div_mod_gr0_not_ex: "
⟦ 0 < k; k < m; 0 < m mod k; k ≤ c ⟧ ⟹
¬(∃r' m' c'. [r', mod m', c'] = [r, mod m, c] ⊘ k)"
apply (case_tac "r mod k = 0")
apply (simp add: iMODb_div_mod_gr0_is_0_not_ex0)
apply (rule ccontr, simp, elim exE conjE)
apply (frule_tac r'=r' and m'=m' and c'=c' and r=r and k=k and m=m and c=c
in iMODb_div_unique[OF _ less_imp_le], simp+)
apply clarsimp
apply (drule arg_cong[where f="Max"])
apply (simp add: iT_Max iT_Div_Max iT_Div_finite_iff iT_Div_not_empty iT_finite iT_not_empty)
apply (simp add: div_add1_eq[of r "m * c"])
apply (simp add: mult.commute[of _ c])
apply (clarsimp simp add: div_mult1_eq[of c m k])
apply (subgoal_tac "Suc 0 ≤ c * (m mod k) div k", simp)
apply (thin_tac "_ = 0")+
apply (drule div_le_mono[of k c k], simp)
apply (rule order_trans[of _ "c div k"], simp)
apply (rule div_le_mono, simp)
done
lemma iMOD_div_eq_imp_iMODb_div_eq: "
⟦ 0 < k; k ≤ m; [r', mod m'] = [r, mod m] ⊘ k ⟧ ⟹
[r', mod m', c] = [r, mod m, c] ⊘ k"
apply (subgoal_tac "r' = r div k")
prefer 2
apply (drule arg_cong[where f=iMin])
apply (simp add: iT_Div_Min iMOD_not_empty iMOD_Min)
apply clarsimp
apply (frule iMOD_div_right_strict_mono_on[of _ m r], assumption)
apply (frule card_image[OF strict_mono_on_imp_inj_on[OF iMODb_div_right_strict_mono_on[of k m r c]]], assumption)
apply (simp add: iMODb_card)
apply (subgoal_tac "r + m * c ∈ [r, mod m]")
prefer 2
apply (simp add: iMOD_iff)
apply (subgoal_tac "[r, mod m, c] = [ r, mod m ] ↓≤ (r + m * c)")
prefer 2
apply (simp add: iMOD_cut_le1)
apply (simp add: iT_Div_def)
apply (simp add: cut_le_image[symmetric])
apply (drule sym)
apply (simp add: iMOD_cut_le)
apply (simp add: linorder_not_le[of "r div k", symmetric])
apply (simp add: div_le_mono)
apply (case_tac "m' = 0")
apply (simp add: iMODb_mod_0_card)
apply (rule arg_cong[where f="λc. [r div k, mod m', c]"])
apply (simp add: iMODb_card)
done
lemma iMOD_div_unique: "
⟦ 0 < k; k ≤ m; [r', mod m'] = [r, mod m] ⊘ k ⟧ ⟹
r' = r div k ∧ m' = m div k"
apply (frule iMOD_div_eq_imp_iMODb_div_eq[of k m r' m' r k], assumption+)
apply (simp add: iMODb_div_unique[of k _ k])
done
lemma iMOD_div_mod_gr0_not_ex: "
⟦ 0 < k; k < m; 0 < m mod k ⟧ ⟹
¬ (∃r' m'. [r', mod m'] = [r, mod m] ⊘ k)"
apply (rule ccontr, clarsimp)
apply (frule_tac k=k and m=m and r'=r' and m'=m' and c=k
in iMOD_div_eq_imp_iMODb_div_eq[OF _ less_imp_le], assumption+)
apply (frule iMODb_div_mod_gr0_not_ex[of k m k r], simp+)
done
subsection ‹Interval cut operators with arithmetic interval operators›
lemma
iT_Plus_cut_le2: "(I ⊕ k) ↓≤ (t + k) = (I ↓≤ t) ⊕ k" and
iT_Plus_cut_less2: "(I ⊕ k) ↓< (t + k) = (I ↓< t) ⊕ k" and
iT_Plus_cut_ge2: "(I ⊕ k) ↓≥ (t + k) = (I ↓≥ t) ⊕ k" and
iT_Plus_cut_greater2: "(I ⊕ k) ↓> (t + k) = (I ↓> t) ⊕ k"
unfolding iT_Plus_def by fastforce+
lemma iT_Plus_cut_le: "
(I ⊕ k) ↓≤ t = (if t < k then {} else I ↓≤ (t - k) ⊕ k)"
apply (case_tac "t < k")
apply (simp add: cut_le_empty_iff iT_Plus_mem_iff)
apply (insert iT_Plus_cut_le2[of I k "t - k"], simp)
done
lemma iT_Plus_cut_less: "(I ⊕ k) ↓< t = I ↓< (t - k) ⊕ k"
apply (case_tac "t < k")
apply (simp add: cut_less_0_empty iT_Plus_empty cut_less_empty_iff iT_Plus_mem_iff)
apply (insert iT_Plus_cut_less2[of I k "t - k"], simp)
done
lemma iT_Plus_cut_ge: "(I ⊕ k) ↓≥ t = I ↓≥ (t - k) ⊕ k"
apply (case_tac "t < k")
apply (simp add: cut_ge_0_all cut_ge_all_iff iT_Plus_mem_iff)
apply (insert iT_Plus_cut_ge2[of I k "t - k"], simp)
done
lemma iT_Plus_cut_greater: "
(I ⊕ k) ↓> t = (if t < k then I ⊕ k else I ↓> (t - k) ⊕ k)"
apply (case_tac "t < k")
apply (simp add: cut_greater_all_iff iT_Plus_mem_iff)
apply (insert iT_Plus_cut_greater2[of I k "t - k"], simp)
done
lemma
iT_Mult_cut_le2: "0 < k ⟹ (I ⊗ k) ↓≤ (t * k) = (I ↓≤ t) ⊗ k" and
iT_Mult_cut_less2: "0 < k ⟹ (I ⊗ k) ↓< (t * k) = (I ↓< t) ⊗ k" and
iT_Mult_cut_ge2: "0 < k ⟹ (I ⊗ k) ↓≥ (t * k) = (I ↓≥ t) ⊗ k" and
iT_Mult_cut_greater2: "0 < k ⟹ (I ⊗ k) ↓> (t * k) = (I ↓> t) ⊗ k"
unfolding iT_Mult_def by fastforce+
lemma iT_Mult_cut_le: "
0 < k ⟹ (I ⊗ k) ↓≤ t = (I ↓≤ (t div k)) ⊗ k"
apply (clarsimp simp: set_eq_iff iT_Mult_mem_iff cut_le_mem_iff)
apply (rule conj_cong, simp)+
apply (rule iffI)
apply (simp add: div_le_mono)
apply (rule div_le_mod_le_imp_le, simp+)
done
lemma iT_Mult_cut_less: "
0 < k ⟹ (I ⊗ k) ↓< t =
(if t mod k = 0 then (I ↓< (t div k)) else I ↓< Suc (t div k)) ⊗ k"
apply (case_tac "t mod k = 0")
apply (clarsimp simp add: mult.commute[of k] iT_Mult_cut_less2 elim!: dvdE)
apply (clarsimp simp: set_eq_iff iT_Mult_mem_iff cut_less_mem_iff)
apply (rule conj_cong, simp)+
apply (subst less_Suc_eq_le)
apply (rule iffI)
apply (rule div_le_mono, simp)
apply (rule ccontr, simp add: linorder_not_less)
apply (drule le_imp_less_or_eq[of t], erule disjE)
apply (fastforce dest: less_mod_0_imp_div_less[of t _ k])
apply simp
done
lemma iT_Mult_cut_greater: "
0 < k ⟹ (I ⊗ k) ↓> t = (I ↓> (t div k)) ⊗ k"
apply (clarsimp simp: set_eq_iff iT_Mult_mem_iff cut_greater_mem_iff)
apply (rule conj_cong, simp)+
apply (rule iffI)
apply (simp add: less_mod_ge_imp_div_less)
apply (rule ccontr, simp add: linorder_not_less)
apply (fastforce dest: div_le_mono[of _ _ k])
done
lemma iT_Mult_cut_ge: "
0 < k ⟹ (I ⊗ k) ↓≥ t =
(if t mod k = 0 then (I ↓≥ (t div k)) else I ↓≥ Suc (t div k)) ⊗ k"
apply (case_tac "t mod k = 0")
apply (clarsimp simp add: mult.commute[of k] iT_Mult_cut_ge2 elim!: dvdE)
apply (clarsimp simp: set_eq_iff iT_Mult_mem_iff cut_ge_mem_iff)
apply (rule conj_cong, simp)+
apply (rule iffI)
apply (rule Suc_leI)
apply (simp add: le_mod_greater_imp_div_less)
apply (rule ccontr)
apply (drule Suc_le_lessD)
apply (simp add: linorder_not_le)
apply (fastforce dest: div_le_mono[OF order_less_imp_le, of _ t k])
done
lemma iT_Plus_neg_cut_le2: "k ≤ t ⟹ (I ⊕- k) ↓≤ (t - k) = (I ↓≤ t) ⊕- k"
apply (simp add: iT_Plus_neg_image_conv)
apply (simp add: i_cut_commute_disj[of "(↓≤)" "(↓≥)"])
apply (rule i_cut_image[OF sub_left_strict_mono_on])
apply (simp add: cut_ge_Int_conv)+
done
lemma iT_Plus_neg_cut_less2: "(I ⊕- k) ↓< (t - k) = (I ↓< t) ⊕- k"
apply (case_tac "t ≤ k")
apply (simp add: cut_less_0_empty)
apply (case_tac "I ↓< t = {}")
apply (simp add: iT_Plus_neg_empty)
apply (rule sym, rule iT_Plus_neg_Max_less_empty[OF nat_cut_less_finite])
apply (rule order_less_le_trans[OF cut_less_Max_less[OF nat_cut_less_finite]], assumption+)
apply (simp add: linorder_not_le iT_Plus_neg_image_conv)
apply (simp add: i_cut_commute_disj[of "(↓<)" "(↓≥)"])
apply (rule i_cut_image[OF sub_left_strict_mono_on])
apply (simp add: cut_ge_Int_conv)+
done
lemma iT_Plus_neg_cut_ge2: "(I ⊕- k) ↓≥ (t - k) = (I ↓≥ t) ⊕- k"
apply (case_tac "t ≤ k")
apply (simp add: cut_ge_0_all iT_Plus_neg_cut_eq)
apply (simp add: linorder_not_le iT_Plus_neg_image_conv)
apply (simp add: i_cut_commute_disj[of "(↓≥)" "(↓≥)"])
apply (rule i_cut_image[OF sub_left_strict_mono_on])
apply (simp add: cut_ge_Int_conv)+
done
lemma iT_Plus_neg_cut_greater2: "k ≤ t ⟹ (I ⊕- k) ↓> (t - k) = (I ↓> t) ⊕- k"
apply (simp add: iT_Plus_neg_image_conv)
apply (simp add: i_cut_commute_disj[of "(↓>)" "(↓≥)"])
apply (rule i_cut_image[OF sub_left_strict_mono_on])
apply (simp add: cut_ge_Int_conv)+
done
lemma iT_Plus_neg_cut_le: "(I ⊕- k) ↓≤ t = I ↓≤ (t + k) ⊕- k"
by (insert iT_Plus_neg_cut_le2[of k "t + k" I, OF le_add2], simp)
lemma iT_Plus_neg_cut_less: "(I ⊕- k) ↓< t = I ↓< (t + k) ⊕- k"
by (insert iT_Plus_neg_cut_less2[of I k "t + k"], simp)
lemma iT_Plus_neg_cut_ge: "(I ⊕- k) ↓≥ t = I ↓≥ (t + k) ⊕- k"
by (insert iT_Plus_neg_cut_ge2[of I k "t + k"], simp)
lemma iT_Plus_neg_cut_greater: "(I ⊕- k) ↓> t = I ↓> (t + k) ⊕- k"
by (insert iT_Plus_neg_cut_greater2[of k "t + k" I], simp)
lemma iT_Minus_cut_le2: "t ≤ k ⟹ (k ⊖ I) ↓≤ (k - t) = k ⊖ (I ↓≥ t)"
by (fastforce simp: i_cut_mem_iff iT_Minus_mem_iff)
lemma iT_Minus_cut_less2: "(k ⊖ I) ↓< (k - t) = k ⊖ (I ↓> t)"
by (fastforce simp: i_cut_mem_iff iT_Minus_mem_iff)
lemma iT_Minus_cut_ge2: "(k ⊖ I) ↓≥ (k - t) = k ⊖ (I ↓≤ t)"
by (fastforce simp: i_cut_mem_iff iT_Minus_mem_iff)
lemma iT_Minus_cut_greater2: "t ≤ k ⟹ (k ⊖ I) ↓> (k - t) = k ⊖ (I ↓< t)"
by (fastforce simp: i_cut_mem_iff iT_Minus_mem_iff)
lemma iT_Minus_cut_le: "(k ⊖ I) ↓≤ t = k ⊖ (I ↓≥ (k - t))"
by (fastforce simp: i_cut_mem_iff iT_Minus_mem_iff)
lemma iT_Minus_cut_less: "
(k ⊖ I) ↓< t = (if t ≤ k then k ⊖ (I ↓> (k - t)) else k ⊖ I)"
apply (case_tac "t ≤ k")
apply (cut_tac iT_Minus_cut_less2[of k I "k - t"], simp)
apply (fastforce simp: i_cut_mem_iff iT_Minus_mem_iff)
done
lemma iT_Minus_cut_ge: "
(k ⊖ I) ↓≥ t = (if t ≤ k then k ⊖ (I ↓≤ (k - t)) else {})"
apply (case_tac "t ≤ k")
apply (cut_tac iT_Minus_cut_ge2[of k I "k - t"], simp)
apply (fastforce simp: i_cut_mem_iff iT_Minus_mem_iff)
done
lemma iT_Minus_cut_greater: "(k ⊖ I) ↓> t = k ⊖ (I ↓< (k - t))"
apply (case_tac "t ≤ k")
apply (cut_tac iT_Minus_cut_greater2[of "k - t" k I], simp+)
apply (fastforce simp: i_cut_mem_iff iT_Minus_mem_iff)
done
lemma iT_Div_cut_le: "
0 < k ⟹ (I ⊘ k) ↓≤ t = I ↓≤ (t * k + (k - Suc 0)) ⊘ k"
apply (simp add: set_eq_iff i_cut_mem_iff iT_Div_mem_iff Bex_def)
apply (fastforce simp: div_le_conv)
done
lemma iT_Div_cut_less: "
0 < k ⟹ (I ⊘ k) ↓< t = I ↓< (t * k) ⊘ k"
apply (case_tac "t = 0")
apply (simp add: cut_less_0_empty iT_Div_empty)
apply (simp add: nat_cut_less_le_conv iT_Div_cut_le diff_mult_distrib)
done
lemma iT_Div_cut_ge: "
0 < k ⟹ (I ⊘ k) ↓≥ t = I ↓≥ (t * k) ⊘ k"
apply (simp add: set_eq_iff i_cut_mem_iff iT_Div_mem_iff Bex_def)
apply (fastforce simp: le_div_conv)
done
lemma iT_Div_cut_greater: "
0 < k ⟹ (I ⊘ k) ↓> t = I ↓> (t * k + (k - Suc 0)) ⊘ k"
by (simp add: nat_cut_ge_greater_conv[symmetric] iT_Div_cut_ge add.commute[of k])
lemma iT_Div_cut_le2: "
0 < k ⟹ (I ⊘ k) ↓≤ (t div k) = I ↓≤ (t - t mod k + (k - Suc 0)) ⊘ k"
by (frule iT_Div_cut_le[of k I "t div k"], simp add: div_mult_cancel)
lemma iT_Div_cut_less2: "
0 < k ⟹ (I ⊘ k) ↓< (t div k) = I ↓< (t - t mod k) ⊘ k"
by (frule iT_Div_cut_less[of k I "t div k"], simp add: div_mult_cancel)
lemma iT_Div_cut_ge2: "
0 < k ⟹ (I ⊘ k) ↓≥ (t div k) = I ↓≥ (t - t mod k) ⊘ k"
by (frule iT_Div_cut_ge[of k I "t div k"], simp add: div_mult_cancel)
lemma iT_Div_cut_greater2: "
0 < k ⟹ (I ⊘ k) ↓> (t div k) = I ↓> (t - t mod k + (k - Suc 0)) ⊘ k"
by (frule iT_Div_cut_greater[of k I "t div k"], simp add: div_mult_cancel)
subsection ‹‹inext› and ‹iprev› with interval operators›
lemma iT_Plus_inext: "inext (n + k) (I ⊕ k) = (inext n I) + k"
by (unfold iT_Plus_def, rule inext_image2[OF add_right_strict_mono])
lemma iT_Plus_iprev: "iprev (n + k) (I ⊕ k) = (iprev n I) + k"
by (unfold iT_Plus_def, rule iprev_image2[OF add_right_strict_mono])
lemma iT_Plus_inext2: "k ≤ n ⟹ inext n (I ⊕ k) = (inext (n - k) I) + k"
by (insert iT_Plus_inext[of "n - k" k I], simp)
lemma iT_Plus_prev2: "k ≤ n ⟹ iprev n (I ⊕ k) = (iprev (n - k) I) + k"
by (insert iT_Plus_iprev[of "n - k" k I], simp)
lemma iT_Mult_inext: "inext (n * k) (I ⊗ k) = (inext n I) * k"
apply (case_tac "I = {}")
apply (simp add: iT_Mult_empty inext_empty)
apply (case_tac "k = 0")
apply (simp add: iT_Mult_0 iTILL_0 inext_singleton)
apply (simp add: iT_Mult_def inext_image2[OF mult_right_strict_mono])
done
lemma iT_Mult_iprev: "iprev (n * k) (I ⊗ k) = (iprev n I) * k"
apply (case_tac "I = {}")
apply (simp add: iT_Mult_empty iprev_empty)
apply (case_tac "k = 0")
apply (simp add: iT_Mult_0 iTILL_0 iprev_singleton)
apply (simp add: iT_Mult_def iprev_image2[OF mult_right_strict_mono])
done
lemma iT_Mult_inext2_if: "
inext n (I ⊗ k) = (if n mod k = 0 then (inext (n div k) I) * k else n)"
apply (case_tac "I = {}")
apply (simp add: iT_Mult_empty inext_empty div_mult_cancel)
apply (case_tac "k = 0")
apply (simp add: iT_Mult_0 iTILL_0 inext_singleton)
apply (case_tac "n mod k = 0")
apply (clarsimp simp: mult.commute[of k] iT_Mult_inext elim!: dvdE)
apply (simp add: not_in_inext_fix iT_Mult_mem_iff)
done
lemma iT_Mult_iprev2_if: "
iprev n (I ⊗ k) = (if n mod k = 0 then (iprev (n div k) I) * k else n)"
apply (case_tac "I = {}")
apply (simp add: iT_Mult_empty iprev_empty div_mult_cancel)
apply (case_tac "k = 0")
apply (simp add: iT_Mult_0 iTILL_0 iprev_singleton)
apply (case_tac "n mod k = 0")
apply (clarsimp simp: mult.commute[of k] iT_Mult_iprev elim!: dvdE)
apply (simp add: not_in_iprev_fix iT_Mult_mem_iff)
done
corollary iT_Mult_inext2: "
n mod k = 0 ⟹ inext n (I ⊗ k) = (inext (n div k) I) * k"
by (simp add: iT_Mult_inext2_if)
corollary iT_Mult_iprev2: "
n mod k = 0 ⟹ iprev n (I ⊗ k) = (iprev (n div k) I) * k"
by (simp add: iT_Mult_iprev2_if)
lemma iT_Plus_neg_inext: "
k ≤ n ⟹ inext (n - k) (I ⊕- k) = inext n I - k"
apply (case_tac "I = {}")
apply (simp add: iT_Plus_neg_empty inext_empty)
apply (case_tac "n ∈ I")
apply (simp add: iT_Plus_neg_image_conv)
apply (rule subst[OF inext_cut_ge_conv, of k], simp)
apply (rule inext_image)
apply (simp add: cut_ge_mem_iff)
apply (subst cut_ge_Int_conv)
apply (rule strict_mono_on_subset[OF _ Int_lower2])
apply (rule sub_left_strict_mono_on)
apply (subgoal_tac "n - k ∉ I ⊕- k")
prefer 2
apply (simp add: iT_Plus_neg_mem_iff)
apply (simp add: not_in_inext_fix)
done
lemma iT_Plus_neg_iprev: "
iprev (n - k) (I ⊕- k) = iprev n (I ↓≥ k) - k"
apply (case_tac "I = {}")
apply (simp add: iT_Plus_neg_empty i_cut_empty iprev_empty)
apply (case_tac "n < k")
apply (simp add: iprev_le_iMin)
apply (simp add: order_trans[OF iprev_mono])
apply (simp add: linorder_not_less)
apply (case_tac "n ∈ I")
apply (frule iT_Plus_neg_mem_iff2[THEN iffD2, of _ _ I], assumption)
apply (simp add: iT_Plus_neg_image_conv)
apply (rule iprev_image)
apply (simp add: cut_ge_mem_iff)
apply (subst cut_ge_Int_conv)
apply (rule strict_mono_on_subset[OF _ Int_lower2])
apply (rule sub_left_strict_mono_on)
apply (frule cut_ge_not_in_imp[of _ _ k])
apply (subgoal_tac "n - k ∉ I ⊕- k")
prefer 2
apply (simp add: iT_Plus_neg_mem_iff)
apply (simp add: not_in_iprev_fix)
done
corollary iT_Plus_neg_inext2: "inext n (I ⊕- k) = inext (n + k) I - k"
by (insert iT_Plus_neg_inext[of k "n + k" I, OF le_add2], simp)
corollary iT_Plus_neg_iprev2: "iprev n (I ⊕- k) = iprev (n + k) (I ↓≥ k) - k"
by (insert iT_Plus_neg_iprev[of "n + k" k I], simp)
lemma iT_Minus_inext: "
⟦ k ⊖ I ≠ {}; n ≤ k ⟧ ⟹ inext (k - n) (k ⊖ I) = k - iprev n I"
apply (subgoal_tac "iMin I ≤ k")
prefer 2
apply (simp add: iT_Minus_empty_iff)
apply (subgoal_tac "I ↓≤ k ≠ {}")
prefer 2
apply (simp add: iT_Minus_empty_iff cut_le_Min_not_empty)
apply (case_tac "n ∈ I")
apply (simp add: iT_Minus_imirror_conv)
apply (simp add: iT_Plus_neg_inext2)
apply (subgoal_tac "n ≤ iMin I + Max (I ↓≤ k)")
prefer 2
apply (rule trans_le_add2)
apply (rule Max_ge[OF nat_cut_le_finite])
apply (simp add: cut_le_mem_iff)
apply (simp add: diff_add_assoc del: add_diff_assoc)
apply (subst add.commute[of k], subst iT_Plus_inext)
apply (simp add: cut_le_Min_eq[of I, symmetric])
apply (fold nat_mirror_def mirror_elem_def)
apply (simp add: inext_imirror_iprev_conv[OF nat_cut_le_finite])
apply (simp add: iprev_cut_le_conv)
apply (simp add: mirror_elem_def nat_mirror_def)
apply (frule iprev_mono[THEN order_trans, of n "iMin (I ↓≤ k) + Max (I ↓≤ k)" I])
apply simp
apply (subgoal_tac "k - n ∉ k ⊖ I")
prefer 2
apply (simp add: iT_Minus_mem_iff)
apply (simp add: not_in_inext_fix not_in_iprev_fix)
done
corollary iT_Minus_inext2: "
⟦ k ⊖ I ≠ {}; n ≤ k ⟧ ⟹ inext n (k ⊖ I) = k - iprev (k - n) I"
by (insert iT_Minus_inext[of k I "k - n"], simp)
lemma iT_Minus_iprev: "
⟦ k ⊖ I ≠ {}; n ≤ k ⟧ ⟹ iprev (k - n) (k ⊖ I) = k - inext n (I ↓≤ k)"
apply (subgoal_tac "I ↓≤ k ≠ {}")
prefer 2
apply (simp add: iT_Minus_empty_iff cut_le_Min_not_empty)
apply (subst iT_Minus_cut_eq[OF le_refl, of _ I, symmetric])
apply (insert iT_Minus_inext2[of k "k ⊖ (I ↓≤ k)" n])
apply (simp add: iT_Minus_Minus_cut_eq)
apply (rule diff_diff_cancel[symmetric])
apply (rule order_trans[OF iprev_mono])
apply simp
done
lemma iT_Minus_iprev2: "
⟦ k ⊖ I ≠ {}; n ≤ k ⟧ ⟹ iprev n (k ⊖ I) = k - inext (k - n) (I ↓≤ k)"
by (insert iT_Minus_iprev[of k I "k - n"], simp)
lemma iT_Plus_inext_nth: "I ≠ {} ⟹ (I ⊕ k) → n = (I → n) + k"
apply (induct n)
apply (simp add: iT_Plus_Min)
apply (simp add: iT_Plus_inext)
done
lemma iT_Plus_iprev_nth: "⟦ finite I; I ≠ {} ⟧ ⟹ (I ⊕ k) ← n = (I ← n) + k"
apply (induct n)
apply (simp add: iT_Plus_Max)
apply (simp add: iT_Plus_iprev)
done
lemma iT_Mult_inext_nth: "I ≠ {} ⟹ (I ⊗ k) → n = (I → n) * k"
apply (induct n)
apply (simp add: iT_Mult_Min)
apply (simp add: iT_Mult_inext)
done
lemma iT_Mult_iprev_nth: "⟦ finite I; I ≠ {} ⟧ ⟹ (I ⊗ k) ← n = (I ← n) * k"
apply (induct n)
apply (simp add: iT_Mult_Max)
apply (simp add: iT_Mult_iprev)
done
lemma iT_Plus_neg_inext_nth: "
I ⊕- k ≠ {} ⟹ (I ⊕- k) → n = (I ↓≥ k → n) - k"
apply (subgoal_tac "I ↓≥ k ≠ {}")
prefer 2
apply (simp add: cut_ge_not_empty_iff iT_Plus_neg_not_empty_iff)
apply (induct n)
apply (simp add: iT_Plus_neg_Min)
apply (simp add: iT_Plus_neg_cut_eq[of k k I, symmetric])
apply (rule iT_Plus_neg_inext)
apply (rule cut_ge_bound[of _ I])
apply (simp add: inext_nth_closed)
done
lemma iT_Plus_neg_iprev_nth: "
⟦ finite I; I ⊕- k ≠ {} ⟧ ⟹ (I ⊕- k) ← n = (I ↓≥ k ← n) - k"
apply (subgoal_tac "I ↓≥ k ≠ {}")
prefer 2
apply (simp add: cut_ge_not_empty_iff iT_Plus_neg_not_empty_iff)
apply (induct n)
apply (simp add: iT_Plus_neg_Max cut_ge_Max_eq)
apply (simp add: iT_Plus_neg_iprev)
done
lemma iT_Minus_inext_nth: "
k ⊖ I ≠ {} ⟹ (k ⊖ I) → n = k - ((I ↓≤ k) ← n)"
apply (subgoal_tac "I ↓≤ k ≠ {} ∧ I ≠ {} ∧ iMin I ≤ k")
prefer 2
apply (simp add: iT_Minus_empty_iff cut_le_Min_not_empty)
apply (elim conjE)
apply (induct n)
apply(simp add: iT_Minus_Min)
apply (simp add: iT_Minus_cut_eq[OF order_refl, of _ I, symmetric])
apply (rule iT_Minus_inext)
apply simp
apply (rule cut_le_bound, rule iprev_nth_closed[OF nat_cut_le_finite])
apply assumption
done
lemma iT_Minus_iprev_nth: "
k ⊖ I ≠ {} ⟹ (k ⊖ I) ← n = k - ((I ↓≤ k) → n)"
apply (subgoal_tac "I ↓≤ k ≠ {} ∧ I ≠ {} ∧ iMin I ≤ k")
prefer 2
apply (simp add: iT_Minus_empty_iff cut_le_Min_not_empty)
apply (elim conjE)
apply (induct n)
apply(simp add: iT_Minus_Max cut_le_Min_eq)
apply simp
apply (rule iT_Minus_iprev)
apply simp
apply (rule cut_le_bound, rule inext_nth_closed)
apply assumption
done
lemma iT_Div_ge_inext_nth: "
⟦ I ≠ {}; ∀x∈I. ∀y∈I. x < y ⟶ x + k ≤ y ⟧ ⟹
(I ⊘ k) → n = (I → n) div k"
apply (case_tac "k = 0")
apply (simp add: iT_Div_0 iTILL_0 inext_nth_singleton)
apply (simp add: iT_Div_def)
by (rule inext_nth_image[OF _ div_right_strict_mono_on])
lemma iT_Div_mod_inext_nth: "
⟦ I ≠ {}; ∀x∈I. ∀y∈I. x mod k = y mod k ⟧ ⟹
(I ⊘ k) → n = (I → n) div k"
apply (case_tac "k = 0")
apply (simp add: iT_Div_0 iTILL_0 inext_nth_singleton)
apply (simp add: iT_Div_def)
by (rule inext_nth_image[OF _ mod_eq_div_right_strict_mono_on])
lemma iT_Div_ge_iprev_nth: "
⟦ finite I; I ≠ {}; ∀x∈I. ∀y∈I. x < y ⟶ x + k ≤ y ⟧ ⟹
(I ⊘ k) ← n = (I ← n) div k"
apply (case_tac "k = 0")
apply (simp add: iT_Div_0 iTILL_0 iprev_nth_singleton)
apply (simp add: iT_Div_def)
by (rule iprev_nth_image[OF _ _ div_right_strict_mono_on])
lemma iT_Div_mod_iprev_nth: "
⟦ finite I; I ≠ {}; ∀x∈I. ∀y∈I. x mod k = y mod k ⟧ ⟹
(I ⊘ k) ← n = (I ← n) div k"
apply (case_tac "k = 0")
apply (simp add: iT_Div_0 iTILL_0 iprev_nth_singleton)
apply (simp add: iT_Div_def)
by (rule iprev_nth_image[OF _ _ mod_eq_div_right_strict_mono_on])
subsection ‹Cardinality of intervals with interval operators›
lemma iT_Plus_card: "card (I ⊕ k) = card I"
apply (unfold iT_Plus_def)
apply (rule card_image)
apply (rule inj_imp_inj_on)
apply (rule add_right_inj)
done
lemma iT_Mult_card: "0 < k ⟹ card (I ⊗ k) = card I"
apply (unfold iT_Mult_def)
apply (rule card_image)
apply (rule inj_imp_inj_on)
apply (rule mult_right_inj)
apply assumption
done
lemma iT_Plus_neg_card: "card (I ⊕- k) = card (I ↓≥ k)"
apply (simp add: iT_Plus_neg_image_conv)
apply (rule card_image)
apply (subst cut_ge_Int_conv)
apply (rule subset_inj_on[OF _ Int_lower2])
apply (rule sub_left_inj_on)
done
lemma iT_Plus_neg_card_le: "card (I ⊕- k) ≤ card I"
apply (simp add: iT_Plus_neg_card)
apply (case_tac "finite I")
apply (rule cut_ge_card, assumption)
apply (simp add: nat_cut_ge_finite_iff)
done
lemma iT_Minus_card: "card (k ⊖ I) = card (I ↓≤ k)"
apply (simp add: iT_Minus_image_conv)
apply (rule card_image)
apply (subst cut_le_Int_conv)
apply (rule subset_inj_on[OF _ Int_lower2])
apply (rule sub_right_inj_on)
done
lemma iT_Minus_card_le: "finite I ⟹ card (k ⊖ I) ≤ card I"
by (subst iT_Minus_card, rule cut_le_card)
lemma iT_Div_0_card_if: "
card (I ⊘ 0) = (if I ={} then 0 else Suc 0)"
by (fastforce simp: iT_Div_empty iT_Div_0 iTILL_0)
lemma Int_empty_sum:"
(∑k≤(n::nat). if {} ∩ (I k) = {} then 0 else Suc 0) = 0"
apply (rule sum_eq_0_iff[THEN iffD2])
apply (rule finite_atMost)
apply simp
done
lemma iT_Div_mod_partition_card:"
card (I ∩ [n * d…,d - Suc 0] ⊘ d) =
(if I ∩ [n * d…,d - Suc 0] = {} then 0 else Suc 0)"
apply (case_tac "d = 0")
apply (simp add: iIN_0 iTILL_0 iT_Div_0_if)
apply (split if_split, rule conjI)
apply (simp add: iT_Div_empty)
apply clarsimp
apply (subgoal_tac "I ∩ [n * d…,d - Suc 0] ⊘ d = {n}", simp)
apply (rule set_eqI)
apply (simp add: iT_Div_mem_iff Bex_def iIN_iff)
apply (rule iffI)
apply (clarsimp simp: le_less_imp_div)
apply (drule ex_in_conv[THEN iffD2], clarsimp simp: iIN_iff, rename_tac x')
apply (rule_tac x=x' in exI)
apply (simp add: le_less_imp_div)
done
lemma iT_Div_conv_count: "
0 < d ⟹ I ⊘ d = {k. I ∩ [k * d…,d - Suc 0] ≠ {}}"
apply (case_tac "I = {}")
apply (simp add: iT_Div_empty)
apply (rule set_eqI)
apply (simp add: iT_Div_mem_iff_Int)
done
lemma iT_Div_conv_count2: "
⟦ 0 < d; finite I; Max I div d ≤ n ⟧ ⟹
I ⊘ d = {k. k ≤ n ∧ I ∩ [k * d…,d - Suc 0] ≠ {}}"
apply (simp add: iT_Div_conv_count)
apply (rule set_eqI, simp)
apply (rule iffI)
apply simp
apply (rule ccontr)
apply (drule ex_in_conv[THEN iffD2], clarify, rename_tac x')
apply (clarsimp simp: linorder_not_le iIN_iff)
apply (drule order_le_less_trans, simp)
apply (drule div_less_conv[THEN iffD1, of _ "Max I"], simp)
apply (drule_tac x=x' in Max_ge, simp)
apply simp+
done
lemma mod_partition_count_Suc: "
{k. k ≤ Suc n ∧ I ∩ [k * d…,d - Suc 0] ≠ {}} =
{k. k ≤ n ∧ I ∩ [k * d…,d - Suc 0] ≠ {}} ∪
(if I ∩ [Suc n * d…,d - Suc 0] ≠ {} then {Suc n} else {})"
apply (rule set_eqI, rename_tac x)
apply (simp add: le_less[of _ "Suc n"] less_Suc_eq_le)
apply (simp add: conj_disj_distribR)
apply (intro conjI impI)
apply fastforce
apply (rule iffI, clarsimp+)
done
lemma iT_Div_card: "
⋀I.⟦ 0 < d; finite I; Max I div d ≤ n⟧ ⟹
card (I ⊘ d) = (∑k≤n.
if I ∩ [k * d…,d - Suc 0] = {} then 0 else Suc 0)"
apply (case_tac "I = {}")
apply (simp add: iT_Div_empty)
apply (simp add: iT_Div_conv_count2)
apply (induct n)
apply (simp add: div_eq_0_conv iIN_0_iTILL_conv)
apply (subgoal_tac "I ∩ […d - Suc 0] ≠ {}")
prefer 2
apply (simp add: ex_in_conv[symmetric], fastforce)
apply (simp add: card_1_singleton_conv)
apply (rule_tac x=0 in exI)
apply (rule set_eqI)
apply (simp add: ex_in_conv[symmetric], fastforce)
apply simp
apply (simp add: mod_partition_count_Suc)
apply (drule_tac x="I ∩ […n * d + d - Suc 0]" in meta_spec)
apply simp
apply (case_tac "I ∩ […n * d + d - Suc 0] = {}")
apply simp
apply (subgoal_tac "{k. k ≤ n ∧ I ∩ [k * d…,d - Suc 0] ≠ {}} = {}", simp)
apply (clarsimp, rename_tac x)
apply (subgoal_tac "I ∩ [x * d…,d - Suc 0] ⊆ I ∩ […n * d + d - Suc 0]", simp)
apply (rule Int_mono[OF order_refl])
apply (simp add: iIN_iTILL_subset_conv)
apply (simp add: diff_le_mono)
apply (subgoal_tac "Max (I ∩ […n * d + d - Suc 0]) div d ≤ n")
prefer 2
apply (simp add: div_le_conv add.commute[of d] iTILL_iff)
apply (subgoal_tac "⋀k. k ≤ n ⟹ […n * d + d - Suc 0] ∩ [k * d…,d - Suc 0] = [k * d…,d - Suc 0]")
prefer 2
apply (subst Int_commute)
apply (simp add: iTILL_def cut_le_Int_conv[symmetric])
apply (rule cut_le_Max_all[OF iIN_finite])
apply (simp add: iIN_Max diff_le_mono)
apply (simp add: Int_assoc)
apply (subgoal_tac "
{k. k ≤ n ∧ I ∩ ([…n * d + d - Suc 0] ∩ [k * d…,d - Suc 0]) ≠ {}} =
{k. k ≤ n ∧ I ∩ [k * d…,d - Suc 0] ≠ {}}")
prefer 2
apply (rule set_eqI, rename_tac x)
apply simp
apply (rule conj_cong, simp)
apply simp
apply simp
done
corollary iT_Div_card_Suc: "
⋀I.⟦ 0 < d; finite I; Max I div d ≤ n⟧ ⟹
card (I ⊘ d) = (∑k<Suc n.
if I ∩ [k * d…,d - Suc 0] = {} then 0 else Suc 0)"
by (simp add: lessThan_Suc_atMost iT_Div_card)
corollary iT_Div_Max_card: "⟦ 0 < d; finite I ⟧ ⟹
card (I ⊘ d) = (∑k≤Max I div d.
if I ∩ [k * d…,d - Suc 0] = {} then 0 else Suc 0)"
by (simp add: iT_Div_card)
lemma iT_Div_card_le: "0 < k ⟹ card (I ⊘ k) ≤ card I"
apply (case_tac "finite I")
apply (simp add: iT_Div_def card_image_le)
apply (simp add: iT_Div_finite_iff)
done
lemma iT_Div_card_inj_on: "
inj_on (λn. n div k) I ⟹ card (I ⊘ k) = card I"
by (unfold iT_Div_def, rule card_image)
lemma mod_Suc': "
0 < n ⟹ Suc m mod n = (if m mod n < n - Suc 0 then Suc (m mod n) else 0)"
apply (simp add: mod_Suc)
apply (intro conjI impI)
apply simp
apply (insert le_neq_trans[OF mod_less_divisor[THEN Suc_leI, of n m]], simp)
done
lemma div_Suc: "
0 < n ⟹ Suc m div n = (if Suc (m mod n) = n then Suc (m div n) else m div n)"
apply (drule Suc_leI, drule le_imp_less_or_eq)
apply (case_tac "n = Suc 0", simp)
apply (split if_split, intro conjI impI)
apply (rule_tac t="Suc m" and s="m + 1" in subst, simp)
apply (subst div_add1_eq2, simp+)
apply (insert le_neq_trans[OF mod_less_divisor[THEN Suc_leI, of n m]], simp)
apply (rule_tac t="Suc m" and s="m + 1" in subst, simp)
apply (subst div_add1_eq1, simp+)
done
lemma div_Suc': "
0 < n ⟹ Suc m div n = (if m mod n < n - Suc 0 then m div n else Suc (m div n))"
apply (simp add: div_Suc)
apply (intro conjI impI)
apply simp
apply (insert le_neq_trans[OF mod_less_divisor[THEN Suc_leI, of n m]], simp)
done
lemma iT_Div_card_ge_aux: "
⋀I. ⟦ 0 < d; finite I; Max I div d ≤ n ⟧ ⟹
card I div d + (if card I mod d = 0 then 0 else Suc 0) ≤ card (I ⊘ d)"
apply (induct n)
apply (case_tac "I = {}", simp)
apply (frule_tac m=d and n="Max I" and k=0 in div_le_conv[THEN iffD1, rule_format], assumption)
apply (simp del: Max_le_iff)
apply (subgoal_tac "I ⊘ d = {0}")
prefer 2
apply (rule set_eqI)
apply (simp add: iT_Div_mem_iff)
apply (rule iffI)
apply (fastforce simp: div_eq_0_conv')
apply fastforce
apply (simp add: iT_Div_singleton card_singleton del: Max_le_iff)
apply (drule Suc_le_mono[THEN iffD2, of _ "d - Suc 0"])
apply (drule order_trans[OF nat_card_le_Max])
apply (simp, intro conjI impI)
apply (drule div_le_mono[of _ d d])
apply simp
apply (subgoal_tac "card I ≠ d", simp)
apply clarsimp
apply (drule order_le_less[THEN iffD1], erule disjE)
apply simp
apply (rule_tac t=I and s="I ∩ […n * d + d - Suc 0] ∪ I ∩ [Suc n * d…,d - Suc 0]" in subst)
apply (simp add: Int_Un_distrib[symmetric] add.commute[of d])
apply (subst iIN_0_iTILL_conv[symmetric])
apply (simp add: iIN_union)
apply (rule Int_absorb2)
apply (simp add: iIN_0_iTILL_conv iTILL_def)
apply (case_tac "I = {}", simp)
apply (simp add: subset_atMost_Max_le_conv le_less_div_conv[symmetric] less_eq_le_pred[symmetric] add.commute[of d])
apply (cut_tac A="I ∩ […n * d + d - Suc 0]" and B="I ∩ [Suc n * d…,d - Suc 0]" in card_Un_disjoint)
apply simp
apply simp
apply (clarsimp simp: disjoint_iff_in_not_in1 iT_iff)
apply (case_tac "I ∩ […n * d + d - Suc 0] = {}")
apply (simp add: iT_Div_mod_partition_card del: mult_Suc)
apply (intro conjI impI)
apply (rule div_le_conv[THEN iffD2], assumption)
apply simp
apply (rule order_trans[OF Int_card2[OF iIN_finite]])
apply (simp add: iIN_card)
apply (cut_tac A=I and n="Suc n * d" and d="d - Suc 0" in Int_card2[OF iIN_finite, rule_format])
apply (simp add: iIN_card)
apply (drule order_le_less[THEN iffD1], erule disjE)
apply simp
apply simp
apply (subgoal_tac "Max (I ∩ […n * d + d - Suc 0]) div d ≤ n")
prefer 2
apply (rule div_le_conv[THEN iffD2], assumption)
apply (rule order_trans[OF Max_Int_le2[OF _ iTILL_finite]], assumption)
apply (simp add: iTILL_Max)
apply (simp only: iT_Div_Un)
apply (cut_tac A="I ∩ […n * d + d - Suc 0] ⊘ d" and B="I ∩ [Suc n * d…,d - Suc 0] ⊘ d" in card_Un_disjoint)
apply (simp add: iT_Div_finite_iff)
apply (simp add: iT_Div_finite_iff)
apply (subst iIN_0_iTILL_conv[symmetric])
apply (subst mod_partition_iT_Div_Int_one_segment, simp)
apply (cut_tac n=0 and d="n * d+d" and k=d and A=I in mod_partition_iT_Div_Int2, simp+)
apply (rule disjoint_iff_in_not_in1[THEN iffD2])
apply clarsimp
apply (simp add: iIN_div_mod_eq_0)
apply (simp add: mod_0_imp_sub_1_div_conv iIN_0_iTILL_conv iIN_0 iTILL_iff)
apply (simp only: iT_Div_mod_partition_card)
apply (subgoal_tac "finite (I ∩ […n * d + d - Suc 0])")
prefer 2
apply simp
apply simp
apply (intro conjI impI)
apply (rule add_le_divisor_imp_le_Suc_div)
apply (rule add_leD1, blast)
apply (rule Int_card2[OF iIN_finite, THEN le_trans])
apply (simp add: iIN_card)
apply (cut_tac A=I and n="Suc n * d" and d="d - Suc 0" in Int_card2[OF iIN_finite, rule_format])
apply (simp add: iIN_card)
apply (rule_tac y="let I=I ∩ […n * d + d - Suc 0] in
card I div d + (if card I mod d = 0 then 0 else Suc 0)" in order_trans)
prefer 2
apply (simp add: Let_def)
apply (unfold Let_def)
apply (split if_split, intro conjI impI)
apply (subgoal_tac "card (I ∩ [Suc n * d…,d - Suc 0]) ≠ d")
prefer 2
apply (rule ccontr, simp)
apply (simp add: div_add1_eq1_mod_0_left)
apply (simp add: add_le_divisor_imp_le_Suc_div)
done
lemma iT_Div_card_ge: "
card I div d + (if card I mod d = 0 then 0 else Suc 0) ≤ card (I ⊘ d)"
apply (case_tac "I = {}", simp)
apply (case_tac "finite I")
prefer 2
apply simp
apply (case_tac "d = 0")
apply (simp add: iT_Div_0 iTILL_0)
apply (simp add: iT_Div_card_ge_aux[OF _ _ order_refl])
done
corollary iT_Div_card_ge_div: "card I div d ≤ card (I ⊘ d)"
by (rule iT_Div_card_ge[THEN add_leD1])
text ‹
There is no better lower bound function @{term f} for @{term "(i ⊘ d)"}
with @{term "card i"} and @{term d} as arguments.›
lemma iT_Div_card_ge__is_maximal_lower_bound: "
∀I d. card I div d + (if card I mod d = 0 then 0 else Suc 0) ≤ f (card I) d ∧
f (card I) d ≤ card (I ⊘ d) ⟹
f (card (I::nat set)) d = card I div d + (if card I mod d = 0 then 0 else Suc 0)"
apply (case_tac "I = {}")
apply (erule_tac x=I in allE, erule_tac x=d in allE)
apply (simp add: iT_Div_empty)
apply (case_tac "d = 0")
apply (frule_tac x="{}" in spec, erule_tac x=I in allE)
apply (erule_tac x=d in allE, erule_tac x=d in allE)
apply (clarsimp simp: iT_Div_0 iTILL_card iT_Div_empty)
apply (rule order_antisym)
prefer 2
apply simp
apply (case_tac "finite I")
prefer 2
apply (erule_tac x=I in allE, erule_tac x=d in allE)
apply (simp add: iT_Div_finite_iff)
apply (erule_tac x="[…card I - Suc 0]" in allE, erule_tac x=d in allE, elim conjE)
apply (frule not_empty_card_gr0_conv[THEN iffD1], assumption)
apply (simp add: iTILL_card iTILL_div)
apply (intro conjI impI)
apply (simp add: mod_0_imp_sub_1_div_conv)
apply (subgoal_tac "d ≤ card I")
prefer 2
apply (clarsimp elim!: dvdE)
apply (drule div_le_mono[of d _ d])
apply simp
apply (case_tac "d = Suc 0", simp)
apply (simp add: div_diff1_eq1)
done
lemma iT_Plus_icard: "icard (I ⊕ k) = icard I"
by (simp add: iT_Plus_def icard_image)
lemma iT_Mult_icard: "0 < k ⟹ icard (I ⊗ k) = icard I"
apply (unfold iT_Mult_def)
apply (rule icard_image)
apply (rule inj_imp_inj_on)
apply (simp add: mult_right_inj)
done
lemma iT_Plus_neg_icard: "icard (I ⊕- k) = icard (I ↓≥ k)"
apply (case_tac "finite I")
apply (simp add: iT_Plus_neg_finite_iff cut_ge_finite icard_finite iT_Plus_neg_card)
apply (simp add: iT_Plus_neg_finite_iff nat_cut_ge_finite_iff)
done
lemma iT_Plus_neg_icard_le: "icard (I ⊕- k) ≤ icard I"
apply (case_tac "finite I")
apply (simp add: iT_Plus_neg_finite_iff icard_finite iT_Plus_neg_card_le)
apply simp
done
lemma iT_Minus_icard: "icard (k ⊖ I) = icard (I ↓≤ k)"
by (simp add: icard_finite iT_Minus_finite nat_cut_le_finite iT_Minus_card)
lemma iT_Minus_icard_le: "icard (k ⊖ I) ≤ icard I"
apply (case_tac "finite I")
apply (simp add: icard_finite iT_Minus_finite iT_Minus_card_le)
apply simp
done
lemma iT_Div_0_icard_if: "icard (I ⊘ 0) = enat (if I = {} then 0 else Suc 0)"
by (simp add: icard_finite iT_Div_0_finite iT_Div_0_card_if)
lemma iT_Div_mod_partition_icard: "
icard (I ∩ [n * d…,d - Suc 0] ⊘ d) =
enat (if I ∩ [n * d…,d - Suc 0] = {} then 0 else Suc 0)"
apply (subgoal_tac "finite (I ∩ [n * d…,d - Suc 0] ⊘ d)")
prefer 2
apply (case_tac "d = 0", simp add: iT_Div_0_finite)
apply (simp add: iT_Div_finite_iff iIN_finite)
apply (simp add: icard_finite iT_Div_mod_partition_card)
done
lemma iT_Div_icard: "
⟦ 0 < d; finite I ⟹ Max I div d ≤ n⟧ ⟹
icard (I ⊘ d) =
(if finite I then enat (∑k≤n. if I ∩ [k * d…,d - Suc 0] = {} then 0 else Suc 0) else ∞)"
by (simp add: icard_finite iT_Div_finite_iff iT_Div_card)
corollary iT_Div_Max_icard: "0 < d ⟹
icard (I ⊘ d) = (if finite I
then enat (∑k≤Max I div d. if I ∩ [k * d…,d - Suc 0] = {} then 0 else Suc 0) else ∞)"
by (simp add: iT_Div_icard)
lemma iT_Div_icard_le: "0 < k ⟹ icard (I ⊘ k) ≤ icard I"
apply (case_tac "finite I")
apply (simp add: iT_Div_finite_iff icard_finite iT_Div_card_le)
apply simp
done
lemma iT_Div_icard_inj_on: "inj_on (λn. n div k) I ⟹ icard (I ⊘ k) = icard I"
by (simp add: iT_Div_def icard_image)
lemma iT_Div_icard_ge: "icard I div (enat d) + enat (if icard I mod (enat d) = 0 then 0 else Suc 0) ≤ icard (I ⊘ d)"
apply (case_tac "d = 0")
apply (simp add: icard_finite iT_Div_0_finite)
apply (case_tac "icard I")
apply (fastforce simp: iT_Div_0_card_if)
apply (simp add: iT_Div_0_card_if icard_infinite_conv infinite_imp_nonempty)
apply (case_tac "finite I")
apply (simp add: iT_Div_finite_iff icard_finite iT_Div_card_ge)
apply (simp add: iT_Div_finite_iff)
done
corollary iT_Div_icard_ge_div: "icard I div (enat d) ≤ icard (I ⊘ d)"
by (rule iT_Div_icard_ge[THEN iadd_ileD1])
lemma iT_Div_icard_ge__is_maximal_lower_bound: "
∀I d. icard I div (enat d) + enat (if icard I mod (enat d) = 0 then 0 else Suc 0)
≤ f (icard I) d ∧
f (icard I) d ≤ icard (I ⊘ d) ⟹
f (icard (I::nat set)) d =
icard I div (enat d) + enat (if icard I mod (enat d) = 0 then 0 else Suc 0)"
apply (case_tac "d = 0")
apply (drule_tac x=I in spec, drule_tac x=d in spec, erule conjE)
apply (simp add: iT_Div_0_icard_if icard_0_eq[unfolded zero_enat_def])
apply (case_tac "finite I")
prefer 2
apply (drule_tac x=I in spec, drule_tac x=d in spec)
apply simp
apply simp
apply (frule_tac iT_Div_finite_iff[THEN iffD2], assumption)
apply (cut_tac f="λc d. the_enat (f (enat c) d)" and I=I and d=d in iT_Div_card_ge__is_maximal_lower_bound)
apply (intro allI, rename_tac I' d')
apply (subgoal_tac "⋀k. f 0 k = 0")
prefer 2
apply (drule_tac x="{}" in spec, drule_tac x=k in spec, erule conjE)
apply (simp add: iT_Div_empty)
apply (drule_tac x=I' in spec, drule_tac x=d' in spec, erule conjE)
apply (case_tac "d' = 0")
apply (simp add: idiv_by_0 imod_by_0 iT_Div_0_card_if iT_Div_0_icard_if)
apply (case_tac "I' = {}", simp)
apply (case_tac "finite I'")
apply (simp add: icard_finite)
apply simp
apply simp
apply (case_tac "finite I'")
apply (frule_tac I=I' and k=d' in iT_Div_finite_iff[THEN iffD2, rule_format], assumption)
apply (simp add: icard_finite)
apply (subgoal_tac "∃n. f (enat (card I')) d' = enat n")
prefer 2
apply (rule enat_ile, assumption)
apply clarsimp
apply (subgoal_tac "infinite (I' ⊘ d')")
prefer 2
apply (simp add: iT_Div_finite_iff)
apply simp
apply (drule_tac x=I in spec, drule_tac x=d in spec, erule conjE)
apply (simp add: icard_finite)
apply (subgoal_tac "∃n. f (enat (card I)) d = enat n")
prefer 2
apply (rule enat_ile, assumption)
apply clarsimp
done
subsection ‹Results about sets of intervals›
subsubsection ‹Set of intervals without and with empty interval›
definition iFROM_UN_set :: "(nat set) set"
where "iFROM_UN_set ≡ ⋃n. {[n…]}"
definition iTILL_UN_set :: "(nat set) set"
where "iTILL_UN_set ≡ ⋃n. {[…n]}"
definition iIN_UN_set :: "(nat set) set"
where "iIN_UN_set ≡ ⋃n d. {[n…,d]}"
definition iMOD_UN_set :: "(nat set) set"
where "iMOD_UN_set ≡ ⋃r m. {[r, mod m]}"
definition iMODb_UN_set :: "(nat set) set"
where "iMODb_UN_set ≡ ⋃r m c. {[r, mod m, c]}"
definition iFROM_set :: "(nat set) set"
where "iFROM_set ≡ {[n…] |n. True}"
definition iTILL_set :: "(nat set) set"
where "iTILL_set ≡ {[…n] |n. True}"
definition iIN_set :: "(nat set) set"
where "iIN_set ≡ {[n…,d] |n d. True}"
definition iMOD_set :: "(nat set) set"
where "iMOD_set ≡ {[r, mod m] |r m. True}"
definition iMODb_set :: "(nat set) set"
where "iMODb_set ≡ {[r, mod m, c] |r m c. True}"
definition iMOD2_set :: "(nat set) set"
where "iMOD2_set ≡ {[r, mod m] |r m. 2 ≤ m}"
definition iMODb2_set :: "(nat set) set"
where "iMODb2_set ≡ {[r, mod m, c] |r m c. 2 ≤ m ∧ 1 ≤ c}"
definition iMOD2_UN_set :: "(nat set) set"
where "iMOD2_UN_set ≡ ⋃r. ⋃m∈{2..}. {[r, mod m]}"
definition iMODb2_UN_set :: "(nat set) set"
where "iMODb2_UN_set ≡ ⋃r. ⋃m∈{2..}. ⋃c∈{1..}. {[r, mod m, c]}"
lemmas i_set_defs =
iFROM_set_def iTILL_set_def iIN_set_def
iMOD_set_def iMODb_set_def
iMOD2_set_def iMODb2_set_def
lemmas i_UN_set_defs =
iFROM_UN_set_def iTILL_UN_set_def iIN_UN_set_def
iMOD_UN_set_def iMODb_UN_set_def
iMOD2_UN_set_def iMODb2_UN_set_def
lemma iFROM_set_UN_set_eq: "iFROM_set = iFROM_UN_set"
by (fastforce simp: iFROM_set_def iFROM_UN_set_def)
lemma
iTILL_set_UN_set_eq: "iTILL_set = iTILL_UN_set" and
iIN_set_UN_set_eq: "iIN_set = iIN_UN_set" and
iMOD_set_UN_set_eq: "iMOD_set = iMOD_UN_set" and
iMODb_set_UN_set_eq: "iMODb_set = iMODb_UN_set"
by (fastforce simp: i_set_defs i_UN_set_defs)+
lemma iMOD2_set_UN_set_eq: "iMOD2_set = iMOD2_UN_set"
by (fastforce simp: i_set_defs i_UN_set_defs)
lemma iMODb2_set_UN_set_eq: "iMODb2_set = iMODb2_UN_set"
by (fastforce simp: i_set_defs i_UN_set_defs)
lemmas i_set_i_UN_set_sets_eq =
iFROM_set_UN_set_eq
iTILL_set_UN_set_eq
iIN_set_UN_set_eq
iMOD_set_UN_set_eq
iMODb_set_UN_set_eq
iMOD2_set_UN_set_eq
iMODb2_set_UN_set_eq
lemma iMOD2_set_iMOD_set_subset: "iMOD2_set ⊆ iMOD_set"
by (fastforce simp: i_set_defs)
lemma iMODb2_set_iMODb_set_subset: "iMODb2_set ⊆ iMODb_set"
by (fastforce simp: i_set_defs)
definition i_set :: "(nat set) set"
where "i_set ≡ iFROM_set ∪ iTILL_set ∪ iIN_set ∪ iMOD_set ∪ iMODb_set"
definition i_UN_set :: "(nat set) set"
where "i_UN_set ≡ iFROM_UN_set ∪ iTILL_UN_set ∪ iIN_UN_set ∪ iMOD_UN_set ∪ iMODb_UN_set"
text ‹Minimal definitions for @{term i_set} and @{term i_set}›
definition i_set_min :: "(nat set) set"
where "i_set_min ≡ iFROM_set ∪ iIN_set ∪ iMOD2_set ∪ iMODb2_set"
definition i_UN_set_min :: "(nat set) set"
where "i_UN_set_min ≡ iFROM_UN_set ∪ iIN_UN_set ∪ iMOD2_UN_set ∪ iMODb2_UN_set"
definition i_set0 :: "(nat set) set"
where "i_set0 ≡ insert {} i_set"
lemma i_set_i_UN_set_eq: "i_set = i_UN_set"
by (simp add: i_set_def i_UN_set_def i_set_i_UN_set_sets_eq)
lemma i_set_min_i_UN_set_min_eq: "i_set_min = i_UN_set_min"
by (simp add: i_set_min_def i_UN_set_min_def i_set_i_UN_set_sets_eq)
lemma i_set_min_eq: "i_set = i_set_min"
apply (unfold i_set_def i_set_min_def)
apply (rule equalityI)
apply (rule subsetI)
apply (simp add: i_set_defs)
apply (elim disjE)
apply blast
apply (fastforce simp: iIN_0_iTILL_conv[symmetric])
apply blast
apply (elim exE)
apply (case_tac "2 ≤ m", blast)
apply (simp add: nat_ge2_conv)
apply (fastforce simp: iMOD_0 iMOD_1)
apply (elim exE)
apply (case_tac "1 ≤ c")
apply (case_tac "2 ≤ m", fastforce)
apply (simp add: nat_ge2_conv)
apply (fastforce simp: iMODb_mod_0 iMODb_mod_1)
apply (fastforce simp: linorder_not_le less_Suc_eq_le iMODb_0)
apply (rule Un_mono)+
apply (simp_all add: iMOD2_set_iMOD_set_subset iMODb2_set_iMODb_set_subset)
done
corollary i_UN_set_i_UN_min_set_eq: "i_UN_set = i_UN_set_min"
by (simp add: i_set_min_eq i_set_i_UN_set_eq[symmetric] i_set_min_i_UN_set_min_eq[symmetric])
lemma i_set_min_is_minimal_let: "
let s1 = iFROM_set; s2= iIN_set; s3= iMOD2_set; s4= iMODb2_set in
s1 ∩ s2 = {} ∧ s1 ∩ s3 = {} ∧ s1 ∩ s4 = {} ∧
s2 ∩ s3 = {} ∧ s2 ∩ s4 = {} ∧ s3 ∩ s4 = {}"
apply (unfold Let_def i_set_defs, intro conjI)
apply (rule disjoint_iff_in_not_in1[THEN iffD2], clarsimp simp: iT_neq)+
done
lemmas i_set_min_is_minimal = i_set_min_is_minimal_let[simplified]
inductive_set i_set_ind:: "(nat set) set"
where
i_set_ind_FROM[intro!]: "[n…] ∈ i_set_ind"
| i_set_ind_TILL[intro!]: "[…n] ∈ i_set_ind"
| i_set_ind_IN[intro!]: "[n…,d] ∈ i_set_ind"
| i_set_ind_MOD[intro!]: "[r, mod m] ∈ i_set_ind"
| i_set_ind_MODb[intro!]: "[r, mod m, c] ∈ i_set_ind"
inductive_set i_set0_ind :: "(nat set) set"
where
i_set0_ind_empty[intro!] : "{} ∈ i_set0_ind"
| i_set0_ind_i_set[intro]: "I ∈ i_set_ind ⟹ I ∈ i_set0_ind"
text ‹
The introduction rule ‹i_set0_ind_i_set› is not declared a safe introduction rule,
because it would disturb the correct usage of the ‹safe› method.›
lemma i_set_ind_subset_i_set0_ind: "i_set_ind ⊆ i_set0_ind"
by (rule subsetI, rule i_set0_ind_i_set)
lemma
i_set0_ind_FROM[intro!] : "[n…] ∈ i_set0_ind" and
i_set0_ind_TILL[intro!] : "[…n] ∈ i_set0_ind" and
i_set0_ind_IN[intro!] : "[n…,d] ∈ i_set0_ind" and
i_set0_ind_MOD[intro!] : "[r, mod m] ∈ i_set0_ind" and
i_set0_ind_MODb[intro!] : "[r, mod m, c] ∈ i_set0_ind"
by (rule subsetD[OF i_set_ind_subset_i_set0_ind], rule i_set_ind.intros)+
lemmas i_set0_ind_intros2 =
i_set0_ind_empty
i_set0_ind_FROM
i_set0_ind_TILL
i_set0_ind_IN
i_set0_ind_MOD
i_set0_ind_MODb
lemma i_set_i_set_ind_eq: "i_set = i_set_ind"
apply (rule set_eqI, unfold i_set_def i_set_defs)
apply (rule iffI, blast)
apply (induct_tac x rule: i_set_ind.induct)
apply blast+
done
lemma i_set0_i_set0_ind_eq: "i_set0 = i_set0_ind"
apply (rule set_eqI, unfold i_set0_def)
apply (simp add: i_set_i_set_ind_eq)
apply (rule iffI)
apply blast
apply (rule_tac a=x in i_set0_ind.cases)
apply blast+
done
lemma i_set_imp_not_empty: "I ∈ i_set ⟹ I ≠ {}"
apply (simp add: i_set_i_set_ind_eq)
apply (induct I rule: i_set_ind.induct)
apply (rule iT_not_empty)+
done
lemma i_set0_i_set_mem_conv: "(I ∈ i_set0) = (I ∈ i_set ∨ I = {})"
apply (simp add: i_set_i_set_ind_eq i_set0_i_set0_ind_eq)
apply (rule iffI)
apply (rule i_set0_ind.cases[of I])
apply blast+
done
lemma i_set_i_set0_mem_conv: "(I ∈ i_set) = (I ∈ i_set0 ∧ I ≠ {})"
apply (insert i_set_imp_not_empty[of I])
apply (fastforce simp: i_set0_i_set_mem_conv)
done
lemma i_set0_i_set_conv: "i_set0 - {{}} = i_set"
by (fastforce simp: i_set_i_set0_mem_conv)
corollary i_set_subset_i_set0: "i_set ⊆ i_set0"
by (simp add: i_set0_i_set_conv[symmetric])
lemma i_set_singleton: "{a} ∈ i_set"
by (fastforce simp: i_set_def iIN_set_def iIN_0[symmetric])
lemma i_set0_singleton: "{a} ∈ i_set0"
apply (rule subsetD[OF i_set_subset_i_set0])
apply (simp add: iIN_0[symmetric] i_set_i_set_ind_eq i_set_ind.intros)
done
corollary
i_set_FROM[intro!] : "[n…] ∈ i_set" and
i_set_TILL[intro!] : "[…n] ∈ i_set" and
i_set_IN[intro!] : "[n…,d] ∈ i_set" and
i_set_MOD[intro!] : "[r, mod m] ∈ i_set" and
i_set_MODb[intro!] : "[r, mod m, c] ∈ i_set"
by (rule ssubst[OF i_set_i_set_ind_eq], rule i_set_ind.intros)+
lemmas i_set_intros =
i_set_FROM
i_set_TILL
i_set_IN
i_set_MOD
i_set_MODb
lemma
i_set0_empty[intro!]: "{} ∈ i_set0" and
i_set0_FROM[intro!] : "[n…] ∈ i_set0" and
i_set0_TILL[intro!] : "[…n] ∈ i_set0" and
i_set0_IN[intro!] : "[n…,d] ∈ i_set0" and
i_set0_MOD[intro!] : "[r, mod m] ∈ i_set0" and
i_set0_MODb[intro!] : "[r, mod m, c] ∈ i_set0"
by (rule ssubst[OF i_set0_i_set0_ind_eq], rule i_set0_ind_intros2)+
lemmas i_set0_intros =
i_set0_empty
i_set0_FROM
i_set0_TILL
i_set0_IN
i_set0_MOD
i_set0_MODb
lemma i_set_infinite_as_iMOD:"
⟦ I ∈ i_set; infinite I ⟧ ⟹ ∃r m. I = [r, mod m]"
apply (simp add: i_set_i_set_ind_eq)
apply (induct I rule: i_set_ind.induct)
apply (simp_all add: iT_finite)
apply (rule_tac x=n in exI, rule_tac x="Suc 0" in exI, simp add: iMOD_1)
apply blast
done
lemma i_set_finite_as_iMODb:"
⟦ I ∈ i_set; finite I ⟧ ⟹ ∃r m c. I = [r, mod m, c]"
apply (simp add: i_set_i_set_ind_eq)
apply (induct I rule: i_set_ind.induct)
apply (simp add: iT_infinite)
apply (rule_tac x=0 in exI, rule_tac x="Suc 0" in exI, rule_tac x=n in exI)
apply (simp add: iMODb_mod_1 iIN_0_iTILL_conv)
apply (rule_tac x=n in exI, rule_tac x="Suc 0" in exI, rule_tac x=d in exI)
apply (simp add: iMODb_mod_1)
apply (case_tac "m = 0")
apply (rule_tac x=r in exI, rule_tac x="Suc 0" in exI, rule_tac x=0 in exI)
apply (simp add: iMOD_0 iIN_0 iMODb_0)
apply (simp add: iT_infinite)
apply blast
done
lemma i_set_as_iMOD_iMODb: "
I ∈ i_set ⟹ (∃r m. I = [r, mod m]) ∨ (∃r m c. I = [r, mod m, c])"
by (blast intro: i_set_finite_as_iMODb i_set_infinite_as_iMOD)
subsubsection ‹Interval sets are closed under cutting›
lemma i_set_cut_le_ge_closed_disj: "
⟦ I ∈ i_set; t ∈ I; cut_op = (↓≤) ∨ cut_op = (↓≥) ⟧ ⟹
cut_op I t ∈ i_set"
apply (simp add: i_set_i_set_ind_eq)
apply (induct rule: i_set_ind.induct)
apply safe
apply (simp_all add: iT_cut_le1 iT_cut_ge1 i_set_ind.intros iMODb_iff)
done
corollary
i_set_cut_le_closed: "⟦ I ∈ i_set; t ∈ I ⟧ ⟹ I ↓≤ t ∈ i_set" and
i_set_cut_ge_closed: "⟦ I ∈ i_set; t ∈ I ⟧ ⟹ I ↓≥ t ∈ i_set"
by (simp_all add: i_set_cut_le_ge_closed_disj)
lemmas i_set_cut_le_ge_closed = i_set_cut_le_closed i_set_cut_ge_closed
lemma i_set0_cut_closed_disj: "
⟦ I ∈ i_set0;
cut_op = (↓≤) ∨ cut_op = (↓≥) ∨
cut_op = (↓<) ∨ cut_op = (↓>) ⟧ ⟹
cut_op I t ∈ i_set0"
apply (simp add: i_set0_i_set0_ind_eq)
apply (induct rule: i_set0_ind.induct)
apply (rule ssubst[OF set_restriction_empty, where P="λx. x ∈ i_set0_ind"])
apply (rule i_cut_set_restriction_disj[of cut_op], blast)
apply blast
apply blast
apply (induct_tac I rule: i_set_ind.induct)
apply safe
apply (simp_all add: iT_cut_le iT_cut_ge iT_cut_less iT_cut_greater i_set0_ind_intros2)
done
corollary
i_set0_cut_le_closed: "I ∈ i_set0 ⟹ I ↓≤ t ∈ i_set0" and
i_set0_cut_less_closed: "I ∈ i_set0 ⟹ I ↓< t ∈ i_set0" and
i_set0_cut_ge_closed: "I ∈ i_set0 ⟹ I ↓≥ t ∈ i_set0" and
i_set0_cut_greater_closed: "I ∈ i_set0 ⟹ I ↓> t ∈ i_set0"
by (simp_all add: i_set0_cut_closed_disj)
lemmas i_set0_cut_closed =
i_set0_cut_le_closed
i_set0_cut_less_closed
i_set0_cut_ge_closed
i_set0_cut_greater_closed
subsubsection ‹Interval sets are closed under addition and multiplication›
lemma i_set_Plus_closed: "I ∈ i_set ⟹ I ⊕ k ∈ i_set"
apply (simp add: i_set_i_set_ind_eq)
apply (induct rule: i_set_ind.induct)
apply (simp_all add: iT_add i_set_ind.intros)
done
lemma i_set_Mult_closed: "I ∈ i_set ⟹ I ⊗ k ∈ i_set"
apply (case_tac "k = 0")
apply (simp add: i_set_imp_not_empty iT_Mult_0_if i_set_intros)
apply (simp add: i_set_i_set_ind_eq)
apply (induct rule: i_set_ind.induct)
apply (simp_all add: iT_mult i_set_ind.intros)
done
lemma i_set0_Plus_closed: "I ∈ i_set0 ⟹ I ⊕ k ∈ i_set0"
apply (simp add: i_set0_i_set0_ind_eq)
apply (induct I rule: i_set0_ind.induct)
apply (simp add: iT_Plus_empty i_set0_ind_empty)
apply (rule subsetD[OF i_set_ind_subset_i_set0_ind])
apply (simp add: i_set_i_set_ind_eq[symmetric] i_set_Plus_closed)
done
lemma i_set0_Mult_closed: "I ∈ i_set0 ⟹ I ⊗ k ∈ i_set0"
apply (simp add: i_set0_i_set0_ind_eq)
apply (induct I rule: i_set0_ind.induct)
apply (simp add: iT_Mult_empty i_set0_ind_empty)
apply (rule subsetD[OF i_set_ind_subset_i_set0_ind])
apply (simp add: i_set_i_set_ind_eq[symmetric] i_set_Mult_closed)
done
subsubsection ‹Interval sets are closed with certain conditions under subtraction›
lemma i_set_Plus_neg_closed: "
⟦ I ∈ i_set; ∃x∈I. k ≤ x ⟧ ⟹ I ⊕- k ∈ i_set"
apply (simp add: i_set_i_set_ind_eq)
apply (induct rule: i_set_ind.induct)
apply (fastforce simp: iT_iff iT_add_neg)+
done
lemma i_set_Minus_closed: "
⟦ I ∈ i_set; iMin I ≤ k ⟧ ⟹ k ⊖ I ∈ i_set"
apply (simp add: i_set_i_set_ind_eq)
apply (induct rule: i_set_ind.induct)
apply (fastforce simp: iT_Min iT_sub)+
done
lemma i_set0_Plus_neg_closed: "I ∈ i_set0 ⟹ I ⊕- k ∈ i_set0"
apply (simp add: i_set0_i_set0_ind_eq)
apply (induct rule: i_set0_ind.induct)
apply (fastforce simp: iT_Plus_neg_empty)
apply (induct_tac I rule: i_set_ind.induct)
apply (fastforce simp: iT_add_neg)+
done
lemma i_set0_Minus_closed: "I ∈ i_set0 ⟹ k ⊖ I ∈ i_set0"
apply (simp add: i_set0_i_set0_ind_eq)
apply (induct rule: i_set0_ind.induct)
apply (simp add: iT_Minus_empty i_set0_ind_empty)
apply (induct_tac I rule: i_set_ind.induct)
apply (fastforce simp: iT_sub)+
done
lemmas i_set_IntOp_closed =
i_set_Plus_closed
i_set_Mult_closed
i_set_Plus_neg_closed
i_set_Minus_closed
lemmas i_set0_IntOp_closed =
i_set0_Plus_closed
i_set0_Mult_closed
i_set0_Plus_neg_closed
i_set0_Minus_closed
subsubsection ‹Interval sets are not closed under division›
lemma iMOD_div_mod_gr0_not_in_i_set: "
⟦ 0 < k; k < m; 0 < m mod k ⟧ ⟹ [r, mod m] ⊘ k ∉ i_set"
apply (rule ccontr, simp)
apply (drule i_set_infinite_as_iMOD)
apply (simp add: iT_Div_finite_iff iMOD_infinite)
apply (elim exE, rename_tac r' m')
apply (frule iMOD_div_mod_gr0_not_ex[of k m r], assumption+)
apply fastforce
done
lemma iMODb_div_mod_gr0_not_in_i_set: "
⟦ 0 < k; k < m; 0 < m mod k; k ≤ c ⟧ ⟹ [r, mod m, c] ⊘ k ∉ i_set"
apply (rule ccontr, simp)
apply (drule i_set_finite_as_iMODb)
apply (simp add: iT_Div_finite_iff iMODb_finite)
apply (elim exE, rename_tac r' m' c')
apply (frule iMODb_div_mod_gr0_not_ex[of k m c r], assumption+)
apply fastforce
done
lemma "[0, mod 3] ⊘ 2 ∉ i_set"
by (rule iMOD_div_mod_gr0_not_in_i_set, simp+)
lemma i_set_Div_not_closed: "Suc 0 < k ⟹ ∃I∈i_set. I ⊘ k ∉ i_set"
apply (rule_tac x="[0, mod (Suc k)]" in bexI)
apply (rule iMOD_div_mod_gr0_not_in_i_set)
apply (simp_all add: mod_Suc i_set_MOD)
done
lemma i_set0_Div_not_closed: "Suc 0 < k ⟹ ∃I∈i_set0. I ⊘ k ∉ i_set0"
apply (frule i_set_Div_not_closed, erule bexE)
apply (rule_tac x=I in bexI)
apply (simp add: i_set0_def iT_Div_not_empty i_set_imp_not_empty)
apply (rule subsetD[OF i_set_subset_i_set0], assumption)
done
subsubsection ‹Sets of intervals closed under division›
inductive_set NatMultiples :: "nat set ⇒ nat set"
for F :: "nat set"
where
NatMultiples_Factor: "k ∈ F ⟹ k ∈ NatMultiples F"
| NatMultiples_Product: "⟦ k ∈ F; m ∈ NatMultiples F ⟧ ⟹ k * m ∈ NatMultiples F"
lemma NatMultiples_ex_divisor: "m ∈ NatMultiples F ⟹ ∃k∈F. m mod k = 0"
apply (induct m rule: NatMultiples.induct)
apply (rule_tac x=k in bexI, simp+)+
done
lemma NatMultiples_product_factor: "⟦ a ∈ F; b ∈ F ⟧ ⟹ a * b ∈ NatMultiples F"
by (drule NatMultiples_Factor[of b], rule NatMultiples_Product)
lemma NatMultiples_product_factor_multiple: "
⟦ a ∈ F; b ∈ NatMultiples F ⟧ ⟹ a * b ∈ NatMultiples F"
by (rule NatMultiples_Product)
lemma NatMultiples_product_multiple_factor: "
⟦ a ∈ NatMultiples F; b ∈ F ⟧ ⟹ a * b ∈ NatMultiples F"
by (simp add: mult.commute[of a] NatMultiples_Product)
lemma NatMultiples_product_multiple: "
⟦ a ∈ NatMultiples F; b ∈ NatMultiples F ⟧ ⟹ a * b ∈ NatMultiples F"
apply (induct a rule: NatMultiples.induct)
apply (simp add: NatMultiples_Product)
apply (simp add: mult.assoc[of _ _ b] NatMultiples_Product)
done
text ‹Subset of @{term i_set} containing only continuous intervals, i. e., without @{term iMOD} and @{term iMODb}.›
inductive_set i_set_cont :: "(nat set) set"
where
i_set_cont_FROM[intro]: "[n…] ∈ i_set_cont"
| i_set_cont_TILL[intro]: "[…n] ∈ i_set_cont"
| i_set_cont_IN[intro]: "[n…,d] ∈ i_set_cont"
definition i_set0_cont :: "(nat set) set"
where "i_set0_cont ≡ insert {} i_set_cont"
lemma i_set_cont_subset_i_set: "i_set_cont ⊆ i_set"
apply (unfold subset_eq, rule ballI, rename_tac x)
apply (rule_tac a=x in i_set_cont.cases)
apply blast+
done
lemma i_set0_cont_subset_i_set0: "i_set0_cont ⊆ i_set0"
apply (unfold i_set0_cont_def i_set0_def)
apply (rule insert_mono)
apply (rule i_set_cont_subset_i_set)
done
text ‹Minimal definition of @{term i_set_cont}›
inductive_set i_set_cont_min :: "(nat set) set"
where
i_set_cont_FROM[intro]: "[n…] ∈ i_set_cont_min"
| i_set_cont_IN[intro]: "[n…,d] ∈ i_set_cont_min"
definition i_set0_cont_min :: "(nat set) set"
where "i_set0_cont_min ≡ insert {} i_set_cont_min"
lemma i_set_cont_min_eq: "i_set_cont = i_set_cont_min"
apply (rule set_eqI, rule iffI)
apply (rename_tac x, rule_tac a=x in i_set_cont.cases)
apply (fastforce simp: iIN_0_iTILL_conv[symmetric])+
apply (rename_tac x, rule_tac a=x in i_set_cont_min.cases)
apply blast+
done
text ‹‹inext› and ‹iprev› with continuous intervals›
lemma i_set_cont_inext: "
⟦ I ∈ i_set_cont; n ∈ I; finite I ⟹ n < Max I ⟧ ⟹ inext n I = Suc n"
apply (simp add: i_set_cont_min_eq)
apply (rule i_set_cont_min.cases, assumption)
apply (simp_all add: iT_finite iT_Max iT_inext_if iT_iff)
done
lemma i_set_cont_iprev: "
⟦ I ∈ i_set_cont; n ∈ I; iMin I < n ⟧ ⟹ iprev n I = n - Suc 0"
apply (simp add: i_set_cont_min_eq)
apply (rule i_set_cont_min.cases, assumption)
apply (simp_all add: iT_iprev_if iT_Min iT_iff)
done
lemma i_set_cont_inext__less: "
⟦ I ∈ i_set_cont; n ∈ I; n < n0; n0 ∈ I ⟧ ⟹ inext n I = Suc n"
apply (case_tac "finite I")
apply (rule i_set_cont_inext, assumption+)
apply (rule order_less_le_trans[OF _ Max_ge], assumption+)
apply (rule i_set_cont.cases, assumption)
apply (simp_all add: iT_finite iT_inext)
done
lemma i_set_cont_iprev__greater: "
⟦ I ∈ i_set_cont; n ∈ I; n0 < n; n0 ∈ I ⟧ ⟹ iprev n I = n - Suc 0"
apply (rule i_set_cont_iprev, assumption+)
apply (rule order_le_less_trans[OF iMin_le, of n0], assumption+)
done
text ‹Sets of modulo intervals›
inductive_set i_set_mult :: "nat ⇒ (nat set) set"
for k :: nat
where
i_set_mult_FROM[intro!]: "[n…] ∈ i_set_mult k"
| i_set_mult_TILL[intro!]: "[…n] ∈ i_set_mult k"
| i_set_mult_IN[intro!]: "[n…,d] ∈ i_set_mult k"
| i_set_mult_MOD[intro!]: "[r, mod m * k] ∈ i_set_mult k"
| i_set_mult_MODb[intro!]: "[r, mod m * k, c] ∈ i_set_mult k"
definition i_set0_mult :: "nat ⇒ (nat set) set"
where "i_set0_mult k ≡ insert {} (i_set_mult k)"
lemma
i_set0_mult_empty[intro!]: "{} ∈ i_set0_mult k" and
i_set0_mult_FROM[intro!] : "[n…] ∈ i_set0_mult k" and
i_set0_mult_TILL[intro!] : "[…n] ∈ i_set0_mult k" and
i_set0_mult_IN[intro!] : "[n…,d] ∈ i_set0_mult k" and
i_set0_mult_MOD[intro!] : "[r, mod m * k] ∈ i_set0_mult k" and
i_set0_mult_MODb[intro!] : "[r, mod m * k, c] ∈ i_set0_mult k"
by (simp_all add: i_set0_mult_def i_set_mult.intros)
lemmas i_set0_mult_intros =
i_set0_mult_empty
i_set0_mult_FROM
i_set0_mult_TILL
i_set0_mult_IN
i_set0_mult_MOD
i_set0_mult_MODb
lemma i_set_mult_subset_i_set0_mult: "i_set_mult k ⊆ i_set0_mult k"
by (unfold i_set0_mult_def, rule subset_insertI)
lemma i_set_mult_subset_i_set: "i_set_mult k ⊆ i_set"
apply (clarsimp simp: subset_iff)
apply (rule_tac a=t in i_set_mult.cases[of _ k])
apply (simp_all add: i_set_intros)
done
lemma i_set0_mult_subset_i_set0: "i_set0_mult k ⊆ i_set0"
apply (simp add: i_set0_mult_def i_set0_empty)
apply (rule order_trans[OF _ i_set_subset_i_set0, OF i_set_mult_subset_i_set])
done
lemma i_set_mult_0_eq_i_set_cont: "i_set_mult 0 = i_set_cont"
apply (rule set_eqI, rule iffI)
apply (rename_tac x, rule_tac a=x in i_set_mult.cases[of _ 0])
apply (simp_all add: i_set_cont.intros iMOD_0 iMODb_mod_0)
apply (rename_tac x, rule_tac a=x in i_set_cont.cases)
apply (simp_all add: i_set_mult.intros)
done
lemma i_set0_mult_0_eq_i_set0_cont: "i_set0_mult 0 = i_set0_cont"
by (simp add: i_set0_mult_def i_set0_cont_def i_set_mult_0_eq_i_set_cont)
lemma i_set_mult_1_eq_i_set: "i_set_mult (Suc 0) = i_set"
apply (rule set_eqI, rule iffI)
apply (rename_tac x, induct_tac x rule: i_set_mult.induct[of _ 1])
apply (simp_all add: i_set_intros)
apply (simp add: i_set_i_set_ind_eq)
apply (rename_tac x, induct_tac x rule: i_set_ind.induct)
apply (simp_all add: i_set_mult.intros)
apply (rule_tac t=m and s="m * Suc 0" in subst, simp, rule i_set_mult.intros)+
done
lemma i_set0_mult_1_eq_i_set0: "i_set0_mult (Suc 0) = i_set0"
by (simp add: i_set0_mult_def i_set0_def i_set_mult_1_eq_i_set)
lemma i_set_mult_imp_not_empty: "I ∈ i_set_mult k ⟹ I ≠ {}"
by (induct I rule: i_set_mult.induct, simp_all add: iT_not_empty)
lemma iMOD_in_i_set_mult_imp_divisor_mod_0: "
⟦ m ≠ Suc 0; [r, mod m] ∈ i_set_mult k ⟧ ⟹ m mod k = 0"
apply (case_tac "m = 0", simp)
apply (rule i_set_mult.cases[of "[r, mod m]" k], assumption)
apply (blast dest: iFROM_iMOD_neq)
apply (blast dest: iTILL_iMOD_neq)
apply (blast dest: iIN_iMOD_neq)
apply (simp add: iMOD_eq_conv)
apply (blast dest: iMOD_iMODb_neq)
done
lemma
divisor_mod_0_imp_iMOD_in_i_set_mult: "m mod k = 0 ⟹ [r, mod m] ∈ i_set_mult k" and
divisor_mod_0_imp_iMODb_in_i_set_mult: "m mod k = 0 ⟹ [r, mod m, c] ∈ i_set_mult k"
by (auto simp add: ac_simps)
lemma iMOD_in_i_set_mult__divisor_mod_0_conv: "
m ≠ Suc 0 ⟹ ([r, mod m] ∈ i_set_mult k) = (m mod k = 0)"
apply (rule iffI)
apply (simp add: iMOD_in_i_set_mult_imp_divisor_mod_0)
apply (simp add: divisor_mod_0_imp_iMOD_in_i_set_mult)
done
lemma i_set_mult_neq1_subset_i_set: "k ≠ Suc 0 ⟹ i_set_mult k ⊂ i_set"
apply (rule psubsetI, rule i_set_mult_subset_i_set)
apply (simp add: set_eq_iff)
apply (drule neq_iff[THEN iffD1], erule disjE)
apply (simp add: i_set_mult_0_eq_i_set_cont)
apply (thin_tac "k = 0")
apply (rule_tac x="[0, mod 2]" in exI)
apply (rule ccontr)
apply (simp add: i_set_intros)
apply (drule i_set_cont.cases[where P=False])
apply (drule sym, simp add: iT_neq)+
apply simp
apply (rule_tac x="[0, mod Suc k]" in exI)
apply (rule ccontr)
apply (simp add: i_set_intros)
apply (insert iMOD_in_i_set_mult_imp_divisor_mod_0[of "Suc k" 0 k])
apply (simp add: mod_Suc)
done
lemma mod_0_imp_i_set_mult_subset: "
a mod b = 0 ⟹ i_set_mult a ⊆ i_set_mult b"
apply (auto simp add: ac_simps elim!: dvdE)
apply (rule_tac a=x and k="k * b" in i_set_mult.cases)
apply (simp_all add: i_set_mult.intros mult.assoc[symmetric])
done
lemma i_set_mult_subset_imp_mod_0: "
⟦ a ≠ Suc 0; (i_set_mult a ⊆ i_set_mult b) ⟧ ⟹ a mod b = 0"
apply (simp add: subset_iff)
apply (erule_tac x="[0, mod a]" in allE)
apply (simp add: divisor_mod_0_imp_iMOD_in_i_set_mult)
apply (simp add: iMOD_in_i_set_mult_imp_divisor_mod_0[of _ 0 b])
done
lemma i_set_mult_subset_conv: "
a ≠ Suc 0 ⟹ (i_set_mult a ⊆ i_set_mult b) = (a mod b = 0)"
apply (rule iffI)
apply (simp add: i_set_mult_subset_imp_mod_0)
apply (simp add: mod_0_imp_i_set_mult_subset)
done
lemma i_set_mult_mod_0_div: "
⟦ I ∈ i_set_mult k; k mod d = 0 ⟧ ⟹ I ⊘ d ∈ i_set_mult (k div d)"
apply (case_tac "d = 0")
apply (simp add: iT_Div_0[OF i_set_mult_imp_not_empty] i_set_mult.intros)
apply (induct I rule: i_set_mult.induct)
apply (simp_all add: iT_div i_set_mult.intros)
apply (simp_all add: iMOD_div iMODb_div mod_0_imp_mod_mult_left_0 mod_0_imp_div_mult_left_eq i_set_mult.intros)
done
text ‹Intervals from @{term "i_set_mult k"} remain in @{term i_set} after division by @{term d} a divisor of @{term k}.›
corollary i_set_mult_mod_0_div_i_set: "
⟦ I ∈ i_set_mult k; k mod d = 0 ⟧ ⟹ I ⊘ d ∈ i_set"
by (rule subsetD[OF i_set_mult_subset_i_set[of "k div d"]], rule i_set_mult_mod_0_div)
corollary i_set_mult_div_self_i_set: "
I ∈ i_set_mult k ⟹ I ⊘ k ∈ i_set"
by (simp add: i_set_mult_mod_0_div_i_set)
lemma i_set_mod_0_mult_in_i_set_mult: "
⟦ I ∈ i_set; m mod k = 0 ⟧ ⟹ I ⊗ m ∈ i_set_mult k"
apply (case_tac "m = 0")
apply (simp add: iT_Mult_0 i_set_imp_not_empty i_set_mult.intros)
apply (clarsimp simp: mult.commute[of k] elim!: dvdE)
apply (simp add: i_set_i_set_ind_eq)
apply (rule_tac a=I in i_set_ind.cases)
apply (simp_all add: iT_mult mult.assoc[symmetric] i_set_mult.intros)
done
lemma i_set_self_mult_in_i_set_mult: "
I ∈ i_set ⟹ I ⊗ k ∈ i_set_mult k"
by (rule i_set_mod_0_mult_in_i_set_mult[OF _ mod_self])
lemma i_set_mult_mod_gr0_div_not_in_i_set:"
⟦ 0 < k; 0 < d; 0 < k mod d ⟧ ⟹ ∃I∈i_set_mult k. I ⊘ d ∉ i_set"
apply (case_tac "d = Suc 0", simp)
apply (frule iMOD_div_mod_gr0_not_ex[of d "Suc d * k" 0])
apply (rule Suc_le_lessD, rule gr0_imp_self_le_mult1, assumption)
apply simp
apply (rule_tac x="[0, mod Suc d * k]" in bexI)
apply (rule ccontr, simp)
apply (frule i_set_infinite_as_iMOD)
apply (simp add: iT_Div_finite_iff iMOD_infinite)
apply fastforce
apply (simp add: i_set_mult.intros del: mult_Suc)
done
lemma i_set0_mult_mod_0_div: "
⟦ I ∈ i_set0_mult k; k mod d = 0 ⟧ ⟹ I ⊘ d ∈ i_set0_mult (k div d)"
apply (simp add: i_set0_mult_def)
apply (elim disjE)
apply (simp add: iT_Div_empty)
apply (simp add: i_set_mult_mod_0_div)
done
corollary i_set0_mult_mod_0_div_i_set0: "
⟦ I ∈ i_set0_mult k; k mod d = 0 ⟧ ⟹ I ⊘ d ∈ i_set0"
by (rule subsetD[OF i_set0_mult_subset_i_set0[of "k div d"]], rule i_set0_mult_mod_0_div)
corollary i_set0_mult_div_self_i_set0: "
I ∈ i_set0_mult k ⟹ I ⊘ k ∈ i_set0"
by (simp add: i_set0_mult_mod_0_div_i_set0)
lemma i_set0_mod_0_mult_in_i_set0_mult: "
⟦ I ∈ i_set0; m mod k = 0 ⟧ ⟹ I ⊗ m ∈ i_set0_mult k"
apply (simp add: i_set0_def)
apply (erule disjE)
apply (simp add: iT_Mult_empty i_set0_mult_empty)
apply (rule subsetD[OF i_set_mult_subset_i_set0_mult])
apply (simp add: i_set_mod_0_mult_in_i_set_mult)
done
lemma i_set0_self_mult_in_i_set0_mult: "
I ∈ i_set0 ⟹ I ⊗ k ∈ i_set0_mult k"
by (simp add: i_set0_mod_0_mult_in_i_set0_mult)
lemma i_set0_mult_mod_gr0_div_not_in_i_set0:"
⟦ 0 < k; 0 < d; 0 < k mod d ⟧ ⟹ ∃I∈i_set0_mult k. I ⊘ d ∉ i_set0"
apply (frule i_set_mult_mod_gr0_div_not_in_i_set[of k d], assumption+)
apply (erule bexE, rename_tac I, rule_tac x=I in bexI)
apply (simp add: i_set0_def iT_Div_not_empty i_set_mult_imp_not_empty)
apply (simp add: subsetD[OF i_set_mult_subset_i_set0_mult])
done
end