Theory LazyList_Operations
section ‹Some Operations on Lazy Lists›
theory LazyList_Operations
imports "Coinductive.Coinductive_List" List_Filtermap
begin
text ‹ This theory defines some operations for lazy lists, and proves their basic properties. ›
subsection ‹Preliminaries›
lemma enat_ls_minius_1: "enat i < j - 1 ⟹ enat i < j"
by (metis co.enat.exhaust eSuc_minus_1 idiff_0 iless_Suc_eq less_imp_le)
abbreviation LNil_abbr (‹[[]]›) where "LNil_abbr ≡ LNil"
abbreviation LCons_abbr (infixr ‹$› 65) where "x $ xs ≡ LCons x xs"
abbreviation lnever :: "('a ⇒ bool) ⇒ 'a llist ⇒ bool" where "lnever U ≡ llist_all (λ a. ¬ U a)"
syntax
"_llist" :: "args => 'a llist" (‹[[(_)]]›)
syntax_consts
"_llist" == LCons
translations
"[[x, xs]]" == "x $ [[xs]]"
"[[x]]" == "x $ [[]]"
declare llist_of_eq_LNil_conv[simp]
declare lmap_eq_LNil[simp]
declare llength_ltl[simp]
subsection ‹More properties of operators from the Coinductive library›
lemma lnth_lconcat:
assumes "i < llength (lconcat xss)"
shows "∃j<llength xss. ∃k<llength (lnth xss j). lnth (lconcat xss) i = lnth (lnth xss j) k"
using assms lnth_lconcat_conv by blast
lemma lnth_0_lset: "xs ≠ [[]] ⟹ lnth xs 0 ∈ lset xs"
by (metis llist.set_sel(1) lnth_0_conv_lhd lnull_def)
lemma lconcat_eq_LNil_iff: "lconcat xss = [[]] ⟷ (∀xs∈lset xss. xs = [[]])"
by (metis lnull_def lnull_lconcat mem_Collect_eq subset_eq)
lemma llast_last_llist_of: "lfinite xs ⟹ llast xs = last (list_of xs)"
by (metis llast_llist_of llist_of_list_of)
lemma lappend_llist_of_inj:
"length xs = length ys ⟹
lappend (llist_of xs) as = lappend (llist_of ys) bs ⟷ xs = ys ∧ as = bs"
apply(induct xs ys arbitrary: as bs rule: list_induct2) by auto
lemma llist_all_lnth: "llist_all P xs = (∀n<llength xs. P (lnth xs n))"
by (metis in_lset_conv_lnth llist.pred_set)
lemma llist_eq_cong:
assumes "llength xs = llength ys" "⋀i. i < llength xs ⟹ lnth xs i = lnth ys i"
shows "xs = ys"
proof-
have "llength xs = llength ys ∧ (∀i. i < llength xs ⟶ lnth xs i = lnth ys i)"
using assms by auto
thus ?thesis apply(coinduct rule: llist.coinduct)
by simp (metis lhd_conv_lnth linorder_not_less llength_eq_0 lnth_beyond lnth_ltl)
qed
lemma llist_cases: "llength xs = ∞ ∨ (∃ys. xs = llist_of ys)"
by (metis llist_of_list_of not_lfinite_llength)
lemma llist_all_lappend: "lfinite xs ⟹
llist_all pred (lappend xs ys) ⟷ llist_all pred xs ∧ llist_all pred ys"
unfolding llist.pred_set by (auto simp add: in_lset_lappend_iff)
lemma llist_all_lappend_llist_of:
"llist_all pred (lappend (llist_of xs) ys) ⟷ list_all pred xs ∧ llist_all pred ys"
by (metis lfinite_llist_of list_all_iff llist.pred_set llist_all_lappend lset_llist_of)
lemma llist_all_conduct:
"X xs ⟹
(⋀xs. X xs ⟹ ¬ lnull xs ⟹ P (lhd xs) ∧ (X (ltl xs) ∨ llist_all P (ltl xs))) ⟹
llist_all P xs"
unfolding llist.pred_rel apply(coinduct rule: llist_all2_coinduct[of "λxs ys. X xs ∧ xs = ys"])
by (auto simp: eq_onp_same_args)
lemma lfilter_lappend_llist_of:
"lfilter P (lappend (llist_of xs) ys) = lappend (llist_of (filter P xs)) (lfilter P ys)"
by simp
lemma ldrop_Suc: "n < llength xs ⟹ ldrop (enat n) xs = LCons (lnth xs n) (ldrop (enat (Suc n)) xs)"
apply(rule llist_eq_cong)
subgoal apply(subst llength_ldrop) apply simp apply(subst llength_ldrop)
using llist_cases[of xs] by (auto simp: eSuc_enat)
subgoal for i apply(subst lnth_ldrop)
subgoal by (metis add.commute ldrop_eq_LNil ldrop_ldrop linorder_not_less)
subgoal apply(subst lnth_LCons)
by (metis ‹⟦enat n < llength xs; enat i < llength (ldrop (enat n) xs)⟧ ⟹
enat n + enat i < llength xs› ldrop_enat ldropn_Suc_conv_ldropn lnth_LCons lnth_ldrop) . .
lemma lappend_ltake_lnth_ldrop: "n < llength xs ⟹
lappend (ltake (enat n) xs) (LCons (lnth xs n) (ldrop (enat (Suc n)) xs)) = xs"
by (simp add: ldrop_enat ldropn_Suc_conv_ldropn)
lemma ltake_eq_LNil: "ltake i tr = [[]] ⟷ i = 0 ∨ tr = [[]]"
by (metis LNil_eq_ltake_iff)
lemma ex_llength_infty:
"∃a. llength a = ∞ ∧ lhd a = 0"
by (meson lhd_iterates llength_iterates)
lemma repeat_not_Nil[simp]: "repeat a ≠ [[]]"
by (metis lfinite_LNil lfinite_iterates)
subsection ‹A convenient adaptation of the lazy-list corecursor ›
definition ccorec_llist :: "('a ⇒ bool) ⇒ ('a ⇒ 'b) ⇒ ('a ⇒ bool) ⇒ ('a ⇒ 'b llist) ⇒ ('a ⇒ 'a) ⇒ 'a ⇒ 'b llist"
where "ccorec_llist isn h ec e t ≡
corec_llist isn (λa. if ec a then lhd (e a) else h a) ec (λa. case e a of b $ a' ⇒ a') t"
lemma llist_ccorec_LNil: "isn a ⟹ ccorec_llist isn h ec e t a = [[]]"
unfolding ccorec_llist_def llist.corec(1) by auto
lemma llist_ccorec_LCons:
"¬ lnull (e a) ⟹ ¬ isn a ⟹
ccorec_llist isn h ec e t a = (if ec a then e a else h a $ ccorec_llist isn h ec e t (t a))"
unfolding ccorec_llist_def llist.corec(2)
by (cases " e a", auto simp: lnull_def)
lemmas llist_ccorec = llist_ccorec_LNil llist_ccorec_LCons
subsection ‹Multi-step coinduction for llist equality ›
text ‹In this principle, the coinductive step can consume any non-empty list, not
just single elements. ›
proposition llist_lappend_coind:
assumes P: "P lxs lxs'"
and lappend:
"⋀lxs lxs'. P lxs lxs' ⟹
lxs = lxs' ∨
(∃ys llxs llxs'. ys ≠ [] ∧
lxs = lappend (llist_of ys) llxs ∧ lxs' = lappend (llist_of ys) llxs' ∧
P llxs llxs')"
shows "lxs = lxs'"
proof-
have l1: "llength lxs ≤ llength lxs'"
proof(cases "lfinite lxs'")
case False thus ?thesis by (simp add: not_lfinite_llength)
next
case True
then obtain xs' where lxs': "lxs' = llist_of xs'"
by (metis llist_of_list_of)
show ?thesis using P unfolding lxs' proof(induct xs' arbitrary: lxs rule: length_induct)
case (1 xs' lxs)
show ?case using lappend[OF 1(2)] apply(elim disjE exE conjE)
subgoal by simp
subgoal for ys llxs llxs' using 1(1)[rule_format, of "list_of llxs'" llxs]
by simp (metis length_append length_greater_0_conv less_add_same_cancel2
lfinite_lappend lfinite_llist_of list_of_lappend list_of_llist_of llength_llist_of llist_of_list_of) .
qed
qed
have l2: "llength lxs' ≤ llength lxs"
proof(cases "lfinite lxs")
case False thus ?thesis by (simp add: not_lfinite_llength)
next
case True
then obtain xs where lxs: "lxs = llist_of xs"
by (metis llist_of_list_of)
show ?thesis using P unfolding lxs proof(induct xs arbitrary: lxs' rule: length_induct)
case (1 xs lxs')
show ?case using lappend[OF 1(2)] apply(elim disjE exE conjE)
subgoal by simp
subgoal for ys llxs llxs' using 1(1)[rule_format, of "list_of llxs" llxs']
by simp (metis length_append length_greater_0_conv less_add_same_cancel2
lfinite_lappend lfinite_llist_of list_of_lappend list_of_llist_of llength_llist_of llist_of_list_of) .
qed
qed
from l1 l2 have l: "llength lxs = llength lxs'" by simp
show ?thesis proof(rule llist_eq_cong)
show "llength lxs = llength lxs'" by fact
next
fix i assume i: "enat i < llength lxs"
show "lnth lxs i = lnth lxs' i"
using P l i proof(induct i arbitrary: lxs lxs' rule: less_induct)
case (less i lxs lxs')
show ?case using lappend[OF less(2)] proof(elim disjE exE conjE)
fix ys llxs llxs'
assume ys: "ys ≠ []" and P: " P llxs llxs'"
and lxs: "lxs = lappend (llist_of ys) llxs"
and lxs': "lxs' = lappend (llist_of ys) llxs'"
show "lnth lxs i = lnth lxs' i"
proof(cases "i < length ys")
case True
hence "lnth lxs i = ys ! i" "lnth lxs' i = ys ! i" unfolding lxs lxs'
by (auto simp: lnth_lappend_llist_of)
thus ?thesis by simp
next
case False
then obtain j where i: "i = length ys + j"
using le_Suc_ex not_le_imp_less by blast
hence j: "j < llength lxs" "j < llength lxs'"
by (metis dual_order.strict_trans enat_ord_simps(2)
length_greater_0_conv less.prems(2,3) less_add_same_cancel2 ys)+
hence 0: "lnth lxs i = lnth llxs j" "lnth lxs' i = lnth llxs' j" unfolding lxs lxs'
unfolding i by (auto simp: lnth_lappend_llist_of)
show ?thesis unfolding 0 apply(rule less(1)[rule_format, of j llxs llxs'])
subgoal by (simp add: i ys)
subgoal by (simp add: P)
subgoal using less.prems(2) lxs lxs' by auto
subgoal by (metis enat_add_mono i less.prems(3) llength_lappend llength_llist_of lxs plus_enat_simps(1)) .
qed
qed auto
qed
qed
qed
subsection ‹Interval lazy lists›
text ‹The list of all naturals between a natural and an extended-natural›
primcorec betw :: "nat ⇒ enat ⇒ nat llist" where
"betw i n = (if i ≥ n then LNil else i $ betw (Suc i) n)"
lemma betw_more_simps:
"¬ n ≤ i ⟹ betw i n = i $ betw (Suc i) n"
using betw.ctr(2) enat_ord_simps(1) by blast
lemma lhd_betw: "i < n ⟹ lhd (betw i n) = i"
by fastforce
lemma not_lfinite_betw_infty: "¬ lfinite (betw i ∞)"
proof-
{fix js assume "lfinite js" "js = betw i ∞"
hence False
apply (induct arbitrary: i)
subgoal by (metis betw.disc(2) enat_ord_code(5) llist.disc(1))
subgoal by (metis betw.sel(2) enat_ord_code(5) llist.sel(3)) .
}
thus ?thesis by auto
qed
lemma llength_betw_infty[simp]: "llength (betw i ∞) = ∞"
using not_lfinite_betw_infty not_lfinite_llength by blast
lemma llength_betw: "llength (betw i n) = n - i"
apply(cases n)
subgoal for nn apply simp apply(induct "nn-i" arbitrary: i, auto)
apply (simp add: zero_enat_def)
by (metis betw.ctr(2) diff_Suc_1 diff_Suc_eq_diff_pred diff_commute
eSuc_enat enat_ord_simps(1) less_le_not_le llength_LCons zero_less_Suc zero_less_diff)
subgoal by simp .
lemma lfinite_betw_not_infty: "n < ∞ ⟹ lfinite (betw i n)"
using lfinite_conv_llength_enat llength_betw by fastforce
lemma lfinite_betw_enat: "lfinite (betw i (enat n))"
using lfinite_conv_llength_enat llength_betw by fastforce
lemma lnth_betw: "enat j < n - i ⟹ lnth (betw i n) j = i + j"
apply(induct j arbitrary: i, auto)
apply (metis betw.ctr(1) betw.disc_iff(1) betw.simps(3) enat_0 llength_LNil
llength_betw lnth_0_conv_lhd zero_less_iff_neq_zero)
by (metis Suc_ile_eq add_Suc betw.ctr(1) betw.ctr(2) betw.disc(2) betw.sel(2) iless_Suc_eq
llength_LCons llength_LNil llength_betw lnth_ltl not_less_zero)
subsection ‹Function builders for lazy lists›
text ‹Building an llist from a function, more precisely from its values
between 0 and a given extended natural n›
definition "build n f ≡ lmap f (betw 0 n)"
lemma llength_build[simp]: "llength (build n f) = n"
by (simp add: build_def llength_betw)
lemma lnth_build[simp]: "i < n ⟹ lnth (build n f) i = f i"
by (simp add: build_def llength_betw lnth_betw)
lemma build_lnth[simp]: "build (llength xs) (lnth xs) = xs"
by (metis (mono_tags, lifting) llength_build llist.rel_eq llist_all2_all_lnthI lnth_build)
lemma build_eq_LNil[simp]: "build n f = [[]] ⟷ n = 0"
by (metis llength_build llength_eq_0 lnull_def)
subsection ‹The butlast (reverse tail) operation›
definition lbutlast :: "'a llist ⇒ 'a llist" where
"lbutlast sl ≡ if lfinite sl then llist_of (butlast (list_of sl)) else sl"
lemma llength_lbutlast_lfinite[simp]:
"sl ≠ [[]] ⟹ lfinite sl ⟹ llength (lbutlast sl) = llength sl - 1"
unfolding lbutlast_def
by simp (metis One_nat_def idiff_enat_enat length_list_of one_enat_def)
lemma llength_lbutlast_not_lfinite[simp]:
"¬ lfinite sl ⟹ llength (lbutlast sl) = ∞"
unfolding lbutlast_def using not_lfinite_llength by auto
lemma lbutlast_LNil[simp]:
"lbutlast [[]] = [[]]"
unfolding lbutlast_def by auto
lemma lbutlast_singl[simp]:
"lbutlast [[s]] = [[]]"
unfolding lbutlast_def by auto
lemma lbutlast_lfinite[simp]:
"lfinite sl ⟹ lbutlast sl = llist_of (butlast (list_of sl))"
unfolding lbutlast_def by auto
lemma lbutlast_Cons[simp]: "tr ≠ [[]] ⟹ lbutlast (s $ tr) = s $ lbutlast tr"
unfolding lbutlast_def using llist_of_list_of by fastforce
lemma llist_of_butlast: "llist_of (butlast xs) = lbutlast (llist_of xs)"
by simp
lemma lprefix_lbutlast: "lprefix xs ys ⟹ lprefix (lbutlast xs) (lbutlast ys)"
apply(cases "lfinite xs")
subgoal apply(cases "lfinite ys")
subgoal
by simp (smt (verit, ccfv_threshold) butlast_append lfinite_lappend list_of_lappend
lprefix_conv_lappend prefix_append prefix_order.eq_iff prefixeq_butlast)
subgoal by (metis lbutlast_def llist_of_list_of lprefix_llist_of lprefix_trans prefixeq_butlast) .
by (simp add: not_lfinite_lprefix_conv_eq)
lemma lbutlast_lappend:
assumes "(ys::'a llist) ≠ [[]]" shows "lbutlast (lappend xs ys) = lappend xs (lbutlast ys)"
proof-
{fix us vs :: "'a llist"
assume "∃ xs ys. ys ≠ [[]] ∧ us = lbutlast (lappend xs ys) ∧ vs = lappend xs (lbutlast ys)"
hence "us = vs"
apply(coinduct rule: llist.coinduct)
by (smt (z3) eq_LConsD lappend.disc_iff(2) lappend_code(2) lappend_eq_LNil_iff lappend_lnull1
lappend_snocL1_conv_LCons2 lbutlast_Cons lbutlast_singl lhd_LCons lhd_LCons_ltl lnull_def
lnull_lprefix lprefix_code(2) ltl_simps(1) ltl_simps(2) not_lnull_conv)
}
thus ?thesis using assms by blast
qed
lemma lbutlast_llist_of: "lbutlast (llist_of xs) = llist_of (butlast xs)"
by auto
lemma butlast_list_of: "lfinite xs ⟹ butlast (list_of xs) = list_of (lbutlast xs)"
by simp
lemma butlast_length_le1[simp]: "llength xs ≤ Suc 0 ⟹ lbutlast xs = [[]]"
by (metis One_nat_def antisym_conv2 enat_ile epred_1 epred_conv_minus
iless_Suc_eq lbutlast_LNil le_zero_eq lfinite_conv_llength_enat llength_eq_0
llength_lbutlast_lfinite lnull_def one_eSuc one_enat_def)
lemma llength_lbutlast[simp]: "llength (lbutlast tr) = llength tr - 1"
by (metis idiff_0 idiff_infinity lbutlast_LNil llength_LNil llength_lbutlast_lfinite
llength_lbutlast_not_lfinite not_lfinite_llength)
lemma lnth_lbutlast: "i < llength xs - 1 ⟹ lnth (lbutlast xs) i = lnth xs i"
unfolding lbutlast_def
by simp (metis enat_ord_simps(2) llength_lbutlast llength_llist_of llist_of_butlast
llist_of_list_of nth_butlast nth_list_of)
subsection ‹Consecutive-elements sublists›
definition "lsublist xs ys ≡ ∃us vs. lfinite us ∧ ys = lappend us (lappend xs vs)"
lemma lsublist_refl: "lsublist xs xs"
by (metis lappend_LNil2 lappend_code(1) lfinite_LNil lsublist_def)
lemma lsublist_trans:
assumes "lsublist xs ys" and "lsublist ys zs" shows "lsublist xs zs"
using assms unfolding lsublist_def
by (metis lappend_assoc lfinite_lappend)
lemma lnth_lconcat_lsublist:
assumes xs: "xs = lconcat (lmap llist_of xss)" and "i < llength xss"
shows "lsublist (llist_of (lnth xss i)) xs"
unfolding lsublist_def
apply(rule exI[of _ "lconcat (lmap llist_of (ltake i xss))"])
apply(rule exI[of _ "lconcat (lmap llist_of (ldrop (Suc i) xss))"])
apply simp
by (metis (no_types, lifting) assms lappend_inf
lappend_ltake_ldrop lconcat_lappend lconcat_simps(2) ldrop_enat ldrop_lmap
ldropn_Suc_conv_ldropn linorder_neq_iff llength_lmap llength_ltake lmap_lappend_distrib
lnth_lmap min_def order_less_imp_le)
lemma lnth_lconcat_lsublist2:
assumes xs: "xs = lconcat (lmap llist_of xss)" and "Suc i < llength xss"
shows "lsublist (llist_of (append (lnth xss i) (lnth xss (Suc i)))) xs"
proof -
have llen_Suc: ‹enat (Suc i) < llength xss›
by (simp add: assms(2))
then have unfold_Suc_llist_of: ‹llist_of (lnth xss (Suc i)) = lnth (lmap llist_of xss) (Suc i)›
by (rule lnth_lmap[symmetric])
have ldropn_Suc_complex:‹(llist_of (lnth xss (Suc i)) $ ldrop (enat (Suc (Suc i))) (lmap llist_of xss)) = ldropn (Suc i) (lmap llist_of xss)›
unfolding unfold_Suc_llist_of
unfolding ldrop_enat lconcat_simps(2)[symmetric]
apply (rule ldropn_Suc_conv_ldropn)
by (simp add: llen_Suc)
have llen: ‹enat i < llength xss›
using llen_Suc Suc_ile_eq nless_le by auto
then have unfold_llist_of: ‹llist_of (lnth xss i) = lnth (lmap llist_of xss) i›
by (rule lnth_lmap[symmetric])
have ldropn_complex:‹(llist_of (lnth xss i) $ ldropn (Suc i) (lmap llist_of xss)) = ldropn i (lmap llist_of xss)›
unfolding unfold_llist_of
unfolding ldrop_enat lconcat_simps(2)[symmetric]
apply (rule ldropn_Suc_conv_ldropn)
by (simp add: llen)
show ?thesis
unfolding lsublist_def
apply(rule exI[of _ "lconcat (lmap llist_of (ltake i xss))"])
apply(rule exI[of _ "lconcat (lmap llist_of (ldrop (Suc (Suc i)) xss))"])
unfolding xs
by simp (metis enat.simps(3) enat_ord_simps(4) lappend_assoc
lappend_llist_of_llist_of lappend_ltake_enat_ldropn lconcat_LCons
lconcat_lappend ldrop_lmap ldropn_Suc_complex ldropn_complex
lfinite_ltake ltake_lmap)
qed
lemma lnth_lconcat_lconcat_lsublist:
assumes xs: "xs = lappend (lconcat (lmap llist_of xss)) ys" and "i < llength xss"
shows "lsublist (llist_of (lnth xss i)) xs"
by (metis assms lappend_assoc lnth_lconcat_lsublist lsublist_def xs)
lemma lnth_lconcat_lconcat_lsublist2:
assumes xs: "xs = lappend (lconcat (lmap llist_of xss)) ys" and "Suc i < llength xss"
shows "lsublist (llist_of (append (lnth xss i) (lnth xss (Suc i)))) xs"
by (metis assms lappend_assoc lnth_lconcat_lsublist2 lsublist_def xs)
lemma su_lset_lconcat_llist_of:
assumes "xs ∈ lset xss"
shows "set xs ⊆ lset (lconcat (lmap llist_of xss))"
using in_lset_lappend_iff
by (metis assms in_lset_conv_lnth lnth_lconcat_lsublist lset_llist_of lsublist_def subsetI)
lemma lsublist_lnth_lconcat: "i < llength tr1s ⟹ lsublist (llist_of (lnth tr1s i)) (lconcat (lmap llist_of tr1s))"
by (meson lnth_lconcat_lsublist)
lemma lsublist_lset:
"lsublist xs ys ⟹ lset xs ⊆ lset ys"
by (metis in_lset_lappend_iff lsublist_def subsetI)
lemma lsublist_LNil:
"lsublist xs ys ⟹ ys = LNil ⟹ xs = LNil"
by (metis LNil_eq_lappend_iff lsublist_def)
subsection ‹Take-until and drop-until›
definition ltakeUntil :: "('a ⇒ bool) ⇒ 'a llist ⇒ 'a list" where
"ltakeUntil pred xs ≡
list_of (lappend (ltakeWhile (λx. ¬ pred x) xs) [[lhd (ldropWhile (λx. ¬ pred x) xs)]])"
definition ldropUntil :: "('a ⇒ bool) ⇒ 'a llist ⇒ 'a llist" where
"ldropUntil pred xs ≡ ltl (ldropWhile (λx. ¬ pred x) xs)"
lemma lappend_ltakeUntil_ldropUntil:
"∃x∈lset xs. pred x ⟹ lappend (llist_of (ltakeUntil pred xs)) (ldropUntil pred xs) = xs"
by (simp add: lappend_snocL1_conv_LCons2 ldropUntil_def lfinite_ltakeWhile ltakeUntil_def)
lemma ltakeUntil_not_Nil:
assumes "∃x∈lset xs. pred x"
shows "ltakeUntil pred xs ≠ []"
by (simp add: assms lfinite_ltakeWhile list_of_lappend ltakeUntil_def)
lemma ltakeUntil_ex_butlast:
assumes "∃x∈lset xs. pred x" "y ∈ set (butlast (ltakeUntil pred xs))"
shows "¬ pred y"
using assms unfolding ltakeUntil_def
by (metis (mono_tags, lifting) butlast_snoc lfinite_LConsI lfinite_LNil lfinite_ltakeWhile
list_of_LCons list_of_LNil list_of_lappend llist_of_list_of lset_llist_of lset_ltakeWhileD)
lemma ltakeUntil_never_butlast:
assumes "∃x∈lset xs. pred x"
shows "never pred (butlast (ltakeUntil pred xs))"
using Ball_set assms ltakeUntil_ex_butlast by fastforce
lemma ltakeUntil_last:
assumes "∃x∈lset xs. pred x"
shows "pred (last (ltakeUntil pred xs))"
using assms unfolding ltakeUntil_def
by (metis lfinite_LConsI lfinite_LNil lfinite_lappend lfinite_ltakeWhile lhd_ldropWhile
llast_lappend_LCons llast_llist_of llast_singleton llist_of_list_of)
lemma ltakeUntil_last_butlast:
assumes "∃x∈lset xs. pred x"
shows "ltakeUntil pred xs = append (butlast (ltakeUntil pred xs)) [last (ltakeUntil pred xs)]"
by (simp add: assms ltakeUntil_not_Nil)
lemma ltakeUntil_LCons1[simp]: "∃x∈lset xs. pred x ⟹ ¬ pred x ⟹ ltakeUntil pred (LCons x xs) = x # ltakeUntil pred xs"
unfolding ltakeUntil_def
by simp (metis lfinite_LConsI lfinite_LNil lfinite_lappend lfinite_ltakeWhile list_of_LCons)
lemma ldropUntil_LCons1[simp]: "∃x∈lset xs. pred x ⟹ ¬ pred x ⟹
ldropUntil pred (LCons x xs) = ldropUntil pred xs"
by (simp add: ldropUntil_def)
lemma ltakeUntil_LCons2[simp]: "∃x∈lset xs. pred x ⟹ pred x ⟹ ltakeUntil pred (LCons x xs) = [x]"
unfolding ltakeUntil_def by auto
lemma ldropUntil_LCons2[simp]: "∃x∈lset xs. pred x ⟹ pred x ⟹ ldropUntil pred (LCons x xs) = xs"
unfolding ldropUntil_def by auto
lemma ltakeUntil_tl1[simp]:
"∃x∈lset xs. pred x ⟹ ¬ pred (lhd xs) ⟹ ltakeUntil pred (ltl xs) = tl (ltakeUntil pred xs)"
by (smt (verit, ccfv_SIG) eq_LConsD list.sel(3) lset_cases ltakeUntil_LCons1)
lemma ldropUntil_tl1[simp]:
"∃x∈lset xs. pred x ⟹ ¬ pred (lhd xs) ⟹ ldropUntil pred (ltl xs) = ldropUntil pred xs"
by (metis bex_empty ldropUntil_def ldropWhile_LCons llist.exhaust_sel llist.set(1))
lemma ltakeUntil_tl2[simp]:
"xs ≠ [[]] ⟹ pred (lhd xs) ⟹ tl (ltakeUntil pred xs) = []"
by (metis lappend_code(1) lfinite_LNil list.sel(3) list_of_LCons list_of_LNil ltakeUntil_def ltakeWhile_eq_LNil_iff)
lemma ldropUntil_tl2[simp]:
"xs ≠ [[]] ⟹ pred (lhd xs) ⟹ ldropUntil pred xs = ltl xs"
by (metis lappend_code(1) lappend_ltakeWhile_ldropWhile ldropUntil_def ltakeWhile_eq_LNil_iff)
lemma LCons_lfilter_ldropUntil: "y $ ys = lfilter pred xs ⟹ ys = lfilter pred (ldropUntil pred xs)"
unfolding ldropUntil_def
by (metis (mono_tags, lifting) comp_apply eq_LConsD ldropWhile_cong lfilter_eq_LCons)
lemma length_ltakeUntil_ge_0:
assumes "∃x∈lset xs. pred x"
shows "length (ltakeUntil pred xs) > 0"
using ltakeUntil_not_Nil[OF assms] by auto
lemma length_ltakeUntil_eq_1:
assumes "∃x∈lset xs. pred x"
shows "length (ltakeUntil pred xs) = Suc 0 ⟷ pred (lhd xs)"
proof-
obtain x xss where xs: "xs = LCons x xss"
using assms by (cases xs, auto)
hence x: "x = lhd xs" by auto
show ?thesis unfolding xs
using ltakeUntil_LCons2[OF assms, of x] x
by (smt (verit, del_insts) assms diff_Suc_1 eq_LConsD lappend_ltakeUntil_ldropUntil
length_Suc_conv_rev length_butlast length_tl length_ltakeUntil_ge_0 list.size(3) lnth_0
lnth_lappend_llist_of ltakeUntil_last ltakeUntil_last_butlast ltakeUntil_tl2 nth_append_length xs)
qed
lemma length_ltakeUntil_Suc:
assumes "∃x∈lset xs. pred x" "¬ pred (lhd xs)"
shows "length (ltakeUntil pred xs) = Suc (length (ltakeUntil pred (ltl xs)))"
proof-
obtain x xss where xs: "xs = LCons x xss"
using assms by (cases xs, auto)
hence x: "x = lhd xs" and xss: "xss = ltl xs" by auto
hence 0: "∃x∈lset xss. pred x"
by (metis assms(1) assms(2) insertE lset_LCons xs)
show ?thesis unfolding xs
unfolding ltakeUntil_LCons1[OF 0 assms(2), unfolded x[symmetric]] by simp
qed
subsection ‹Splitting a lazy list according to the points where a predicate is satisfied ›
primcorec lsplit :: "('a ⇒ bool) ⇒ 'a llist ⇒ 'a list llist" where
"lsplit pred xs =
(if (∃x∈lset xs. pred x)
then LCons (ltakeUntil pred xs) (lsplit pred (ldropUntil pred xs))
else [[]])"
declare lsplit.ctr[simp]
lemma infinite_split[simp]:
"infinite {x ∈ lset xs. pred x} ⟹ lsplit pred xs = LCons (ltakeUntil pred xs) (lsplit pred (ldropUntil pred xs))"
using lsplit.ctr(2) not_finite_existsD by force
lemma lconcat_lsplit_not_lfinite:
"¬ lfinite (lfilter pred xs) ⟹ xs = lconcat (lmap llist_of (lsplit pred xs))"
apply(coinduction arbitrary: xs) apply safe
subgoal by simp
subgoal by simp (metis (full_types) image_subset_iff llist.set_sel(1) lnull_imp_lfinite lnull_lfilter
lnull_llist_of lsplit.simps(2) lsplit.simps(3) ltakeUntil_not_Nil mem_Collect_eq)
subgoal by (smt (verit) lappend_ltakeUntil_ldropUntil lhd_lappend lhd_lconcat llist.map_disc_iff
llist.map_sel(1) llist_of.simps(1) llist_of_inject
lnull_def lnull_imp_lfinite lnull_lfilter lsplit.simps(2) lsplit.simps(3) ltakeUntil_not_Nil)
subgoal for xs apply(subgoal_tac "xs ≠ [[]]")
subgoal apply(subgoal_tac "¬ lfinite (lfilter pred (ltl xs)) ∧ (∃x∈lset xs. pred x)")
subgoal apply(cases "pred (lhd xs)")
subgoal by simp (meson ltakeUntil_not_Nil)
subgoal apply(rule exI[of _ "ltl xs"], safe)
subgoal apply(subst ltl_lconcat)
subgoal by auto
subgoal by (metis llist.map_sel(1) lnull_llist_of lsplit.disc(2) lsplit.simps(3) ltakeUntil_not_Nil)
subgoal unfolding ltl_lmap apply(subst lsplit.sel(2))
subgoal by auto
subgoal using ltakeUntil_tl1 ltl_lappend ltl_lconcat ltl_llist_of ltl_lmap ltl_simps(2)
by (smt (verit) lconcat_LCons ldropUntil_tl1 lhd_LCons_ltl
llist.map_disc_iff llist.map_sel(1) lnull_imp_lfinite lnull_lfilter
lsplit.ctr(2) lsplit.disc_iff(2) lsplit.simps(3)) . . . .
subgoal by (metis diverge_lfilter_LNil lfilter_LCons lfinite.simps lhd_LCons_ltl) .
subgoal by auto . .
lemma lfinite_lsplit:
assumes "lfinite (lfilter pred xs)"
shows "lfinite (lsplit pred xs)"
proof-
{fix ys assume "lfinite ys" "ys = lfilter pred xs"
hence ?thesis proof(induct arbitrary: xs)
case lfinite_LNil
then show ?case by (metis lfilter_empty_conv lnull_imp_lfinite lsplit.disc(1))
next
case (lfinite_LConsI ys y xs)
then show ?case apply(cases "∃x∈lset xs. pred x")
subgoal by simp (meson LCons_lfilter_ldropUntil)
subgoal using lnull_imp_lfinite lsplit.disc(1) by blast .
qed
}
thus ?thesis using assms by auto
qed
lemma lconcat_lsplit_lfinite:
assumes "lfinite (lfilter pred xs)"
shows "∃ys. xs = lappend (lconcat (lmap llist_of (lsplit pred xs))) ys ∧ (∀y∈lset ys. ¬ pred y)"
proof-
{fix ys assume "lfinite ys" "ys = lfilter pred xs"
hence ?thesis proof(induct arbitrary: xs)
case lfinite_LNil
then show ?case
by (metis lappend_code(1) lconcat_LNil llist.disc(1) llist.simps(12) lnull_lfilter lsplit.ctr(1))
next
case (lfinite_LConsI ys y xs)
then show ?case apply(cases "∃x∈lset xs. pred x")
subgoal by simp (smt (verit) LCons_lfilter_ldropUntil lappend_assoc lappend_ltakeUntil_ldropUntil)
subgoal by simp .
qed
}
thus ?thesis using assms by auto
qed
lemma lconcat_lsplit:
"∃ys. xs = lappend (lconcat (lmap llist_of (lsplit pred xs))) ys ∧ (∀y∈lset ys. ¬ pred y)"
proof(cases "lfinite (lfilter pred xs)")
case True
show ?thesis using lconcat_lsplit_lfinite[OF True] .
next
case False
show ?thesis apply(rule exI[of _ LNil])
using lconcat_lsplit_not_lfinite[OF False] by simp
qed
lemma lsublist_lsplit:
assumes "i < llength (lsplit pred xs)"
shows "lsublist (llist_of (lnth (lsplit pred xs) i)) xs"
by (metis assms lconcat_lsplit lnth_lconcat_lconcat_lsublist)
lemma lsublist_lsplit2:
assumes "Suc i < llength (lsplit pred xs)"
shows "lsublist (llist_of (append (lnth (lsplit pred xs) i) (lnth (lsplit pred xs) (Suc i)))) xs"
by (metis assms lconcat_lsplit lnth_lconcat_lconcat_lsublist2)
lemma lsplit_main:
"llist_all (λzs. zs ≠ [] ∧ list_all (λz. ¬ pred z) (butlast zs) ∧ pred (last zs))
(lsplit pred xs)"
proof-
{fix ys assume "∃xs. ys = (lsplit pred xs)"
hence "llist_all (λzs. zs ≠ [] ∧ list_all (λz. ¬ pred z) (butlast zs) ∧ pred (last zs)) ys"
apply(coinduct rule: llist_all_conduct[where X = "λys. ∃xs. ys = (lsplit pred xs)"])
apply safe
subgoal by simp (meson ltakeUntil_not_Nil)
subgoal by simp (metis ltakeUntil_never_butlast)
subgoal by simp (meson ltakeUntil_last)
subgoal by auto .
}
thus ?thesis by auto
qed
lemma lsplit_main_lset:
assumes "ys ∈ lset (lsplit pred xs)"
shows "ys ≠ [] ∧
list_all (λz. ¬ pred z) (butlast ys) ∧
pred (last ys)"
using assms lsplit_main[of pred] unfolding llist.pred_set by auto
lemma lsplit_main_lnth:
assumes "i < llength (lsplit pred xs)"
shows "lnth (lsplit pred xs) i ≠ [] ∧
list_all (λz. ¬ pred z) (butlast (lnth (lsplit pred xs) i)) ∧
pred (last (lnth (lsplit pred xs) i))"
using assms lsplit_main[of pred] unfolding llist_all_lnth by auto
lemma hd_lhd_lsplit: "∃x∈lset xs. pred x ⟹ hd (lhd (lsplit pred xs)) = lhd xs"
by (metis lappend_ltakeUntil_ldropUntil lhd_lappend lhd_llist_of lnull_llist_of lsplit.simps(3) ltakeUntil_not_Nil)
lemma lprefix_lsplit:
assumes "∃x∈lset xs. pred x"
shows "lprefix (llist_of (lhd (lsplit pred xs))) xs"
by (metis assms lappend_ltakeUntil_ldropUntil lprefix_lappend lsplit.simps(3))
lemma lprefix_lsplit_lbutlast:
assumes "∃x∈lset xs. pred x"
shows "lprefix (llist_of (butlast (lhd (lsplit pred xs)))) (lbutlast xs)"
using lprefix_lsplit[OF assms] unfolding llist_of_butlast
using lprefix_lbutlast by blast
lemma set_lset_lsplit:
assumes "ys ∈ lset (lsplit pred xs)"
shows "set ys ⊆ lset xs"
proof-
have "set ys ⊆ lset (lconcat (lmap llist_of (lsplit pred xs)))"
using su_lset_lconcat_llist_of[OF assms ] .
also have "… ⊆ lset xs"
by (metis lconcat_lsplit lset_lappend1)
finally show ?thesis .
qed
lemma set_lnth_lsplit:
assumes "i < llength (lsplit pred xs)"
shows "set (lnth (lsplit pred xs) i) ⊆ lset xs"
by (meson assms in_lset_conv_lnth set_lset_lsplit)
subsection ‹The split remainder ›
definition "lsplitRemainder pred xs ≡ SOME ys. xs = lappend (lconcat (lmap llist_of (lsplit pred xs))) ys ∧ (∀y∈lset ys. ¬ pred y)"
lemma lsplitRemainder:
"xs = lappend (lconcat (lmap llist_of (lsplit pred xs))) (lsplitRemainder pred xs) ∧
(∀y∈lset (lsplitRemainder pred xs). ¬ pred y)"
unfolding lsplitRemainder_def apply(rule someI_ex) using lconcat_lsplit .
lemmas lsplit_lsplitRemainder = lsplitRemainder[THEN conjunct1]
lemmas lset_lsplitRemainder = lsplitRemainder[THEN conjunct2, rule_format]
subsection ‹The first index for which a predicate holds (if any) ›
definition firstHolds where
"firstHolds pred xs ≡ length (ltakeUntil pred xs) - 1"
lemma firstHolds_eq_0:
assumes "∃x∈lset xs. pred x"
shows "firstHolds pred xs = 0 ⟷ pred (lhd xs)"
using assms unfolding firstHolds_def
by (metis Suc_pred diff_Suc_1 length_ltakeUntil_eq_1 length_ltakeUntil_ge_0)
lemma firstHolds_eq_0':
assumes "¬ lnever pred xs"
shows "firstHolds pred xs = 0 ⟷ pred (lhd xs)"
apply(rule firstHolds_eq_0)
using assms by (simp add: llist.pred_set)
lemma firstHolds_Suc:
assumes "∃x∈lset xs. pred x" and "¬ pred (lhd xs)"
shows "firstHolds pred xs = Suc (firstHolds pred (ltl xs))"
using assms unfolding firstHolds_def
by (smt (verit, best) Suc_pred diff_Suc_1 length_greater_0_conv length_ltakeUntil_Suc
length_ltakeUntil_eq_1 list.size(3))
lemma firstHolds_Suc':
assumes "¬ lnever pred xs" and "¬ pred (lhd xs)"
shows "firstHolds pred xs = Suc (firstHolds pred (ltl xs))"
apply(rule firstHolds_Suc) using assms by (auto simp: llist.pred_set)
lemma firstHolds_append:
assumes "¬ lnever pred xs" and "never pred ys"
shows "firstHolds pred (lappend (llist_of ys) xs) = length ys + firstHolds pred xs"
using assms by (induct ys) (auto simp add: llist_all_lappend_llist_of firstHolds_Suc')
subsection ‹The first index for which the list in a lazy-list of lists is non-empty›
definition firstNC where
"firstNC xss ≡ firstHolds (λxs. xs ≠ []) xss"
lemma firstNC_eq_0:
assumes "∃xs∈lset xss. xs ≠ []"
shows "firstNC xss = 0 ⟷ lhd xss ≠ []"
using assms unfolding firstNC_def
by (simp add: firstHolds_eq_0)
lemma firstNC_Suc:
assumes "∃xs∈lset xss. xs ≠ []" and "lhd xss = []"
shows "firstNC xss = Suc (firstNC (ltl xss))"
using assms unfolding firstNC_def by (simp add: firstHolds_Suc)
lemma firstNC_LCons_notNil: "xs ≠ [] ⟹ firstNC (xs $ xss) = 0"
by (simp add: firstNC_eq_0)
lemma firstNC_LCons_Nil:
"(∃ys∈lset xss. ys ≠ []) ⟹ xs = [] ⟹ firstNC (xs $ xss) = Suc (firstNC xss)"
by (simp add: firstNC_Suc)
end