Theory Uniqueness_Hermite
section ‹Generalization of the statement about the uniqueness of the Hermite normal form›
theory Uniqueness_Hermite
imports Hermite.Hermite
begin
instance int :: bezout_ring_div
proof qed
lemma map_matrix_rat_of_int_mult:
shows "map_matrix rat_of_int (A**B) = (map_matrix rat_of_int A)**(map_matrix rat_of_int B)"
unfolding map_matrix_def matrix_matrix_mult_def by auto
lemma det_map_matrix:
fixes A :: "int^'n::mod_type^'n::mod_type"
shows "det (map_matrix rat_of_int A) = rat_of_int (det A)"
unfolding map_matrix_def unfolding Determinants.det_def by auto
lemma inv_Z_imp_inv_Q:
fixes A :: "int^'n::mod_type^'n::mod_type"
assumes inv_A: "invertible A"
shows "invertible (map_matrix rat_of_int A)"
proof -
have "is_unit (det A)" using inv_A invertible_iff_is_unit by blast
hence "is_unit (det (map_matrix rat_of_int A))"
by (simp add: det_map_matrix dvd_if_abs_eq)
thus ?thesis using invertible_iff_is_unit by blast
qed
lemma upper_triangular_Z_eq_Q:
"upper_triangular (map_matrix rat_of_int A) = upper_triangular A"
unfolding upper_triangular_def by auto
lemma invertible_and_upper_diagonal_not0:
fixes H :: "int^'n::mod_type^'n::mod_type"
assumes inv_H: "invertible (map_matrix rat_of_int H)" and up_H: "upper_triangular H"
shows "H $ i $ i ≠ 0"
proof -
let ?RAT_H = "(map_matrix rat_of_int H)"
have up_RAT_H: "upper_triangular ?RAT_H"
using up_H unfolding upper_triangular_def by auto
have "is_unit (det ?RAT_H)" using inv_H using invertible_iff_is_unit by blast
hence "?RAT_H $ i $ i ≠ 0" using inv_H up_RAT_H is_unit_diagonal
by (metis not_is_unit_0)
thus ?thesis by auto
qed
lemma diagonal_least_nonzero:
fixes H :: "int^'n::mod_type^'n::mod_type"
assumes H: "Hermite associates residues H"
and inv_H: "invertible (map_matrix rat_of_int H)" and up_H: "upper_triangular H"
shows "(LEAST n. H $ i $ n ≠ 0) = i"
proof (rule Least_equality)
show "H $ i $ i ≠ 0" by (rule invertible_and_upper_diagonal_not0[OF inv_H up_H])
fix y
assume Hiy: "H $ i $ y ≠ 0"
show "i ≤ y"
using up_H unfolding upper_triangular_def
by (metis (poly_guards_query) Hiy not_less)
qed
lemma diagonal_in_associates:
fixes H :: "int^'n::mod_type^'n::mod_type"
assumes H: "Hermite associates residues H"
and inv_H: "invertible (map_matrix rat_of_int H)" and up_H: "upper_triangular H"
shows "H $ i $ i ∈ associates"
proof -
have "H $ i $ i ≠ 0" by (rule invertible_and_upper_diagonal_not0[OF inv_H up_H])
hence "¬ is_zero_row i H" unfolding is_zero_row_def is_zero_row_upt_k_def ncols_def by auto
thus ?thesis using H unfolding Hermite_def unfolding diagonal_least_nonzero[OF H inv_H up_H]
by auto
qed
lemma above_diagonal_in_residues:
fixes H :: "int^'n::mod_type^'n::mod_type"
assumes H: "Hermite associates residues H"
and inv_H: "invertible (map_matrix rat_of_int H)" and up_H: "upper_triangular H"
and j_i: "j<i"
shows "H $ j $ (LEAST n. H $ i $ n ≠ 0) ∈ residues (H $ i $ (LEAST n. H $ i $ n ≠ 0))"
proof -
have "H $ i $ i ≠ 0" by (rule invertible_and_upper_diagonal_not0[OF inv_H up_H])
hence "¬ is_zero_row i H" unfolding is_zero_row_def is_zero_row_upt_k_def ncols_def by auto
thus ?thesis using H j_i unfolding Hermite_def unfolding diagonal_least_nonzero[OF H inv_H up_H]
by auto
qed
lemma Hermite_unique_generalized:
fixes K::"int^'n::mod_type^'n::mod_type"
assumes A_PH: "A = P ** H"
and A_QK: "A = Q ** K"
and inv_A: "invertible (map_matrix rat_of_int A)"
and inv_P: "invertible P"
and inv_Q: "invertible Q"
and H: "Hermite associates residues H"
and K: "Hermite associates residues K"
shows "H = K"
proof -
let ?RAT = "map_matrix rat_of_int"
have cs_residues: "Complete_set_residues residues" using H unfolding Hermite_def by simp
have inv_H: "invertible (?RAT H)"
proof -
have "?RAT A = ?RAT P ** ?RAT H" using A_PH map_matrix_rat_of_int_mult by blast
thus ?thesis
by (metis inv_A invertible_left_inverse matrix_inv(1) matrix_mul_assoc)
qed
have inv_K: "invertible (?RAT K)"
proof -
have "?RAT A = ?RAT Q ** ?RAT K" using A_QK map_matrix_rat_of_int_mult by blast
thus ?thesis
by (metis inv_A invertible_left_inverse matrix_inv(1) matrix_mul_assoc)
qed
define U where "U = (matrix_inv P)**Q"
have inv_U: "invertible U"
by (metis U_def inv_P inv_Q invertible_def invertible_mult matrix_inv_left matrix_inv_right)
have H_UK: "H = U ** K" using A_PH A_QK inv_P
by (metis U_def matrix_inv_left matrix_mul_assoc matrix_mul_lid)
have "Determinants.det K *k U = H ** adjugate K"
unfolding H_UK matrix_mul_assoc[symmetric] mult_adjugate_det matrix_mul_mat ..
have upper_triangular_H: "upper_triangular H"
by (metis H Hermite_def echelon_form_imp_upper_triagular)
have upper_triangular_K: "upper_triangular K"
by (metis K Hermite_def echelon_form_imp_upper_triagular)
have upper_triangular_U: "upper_triangular U"
proof -
have U_H_K: "?RAT U = (?RAT H) ** (matrix_inv (?RAT K))"
by (metis H_UK inv_K map_matrix_rat_of_int_mult matrix_inv(2) matrix_mul_assoc matrix_mul_rid)
have up_inv_RAT_K: "upper_triangular (matrix_inv (?RAT K))" using upper_triangular_inverse
by (simp add: upper_triangular_inverse inv_K upper_triangular_K upper_triangular_Z_eq_Q)
have "upper_triangular (?RAT U)" unfolding U_H_K
by (rule upper_triangular_mult[OF _ up_inv_RAT_K],
auto simp add: upper_triangular_H upper_triangular_Z_eq_Q)
thus ?thesis using upper_triangular_Z_eq_Q by auto
qed
have unit_det_U: "is_unit (det U)" by (metis inv_U invertible_iff_is_unit)
have is_unit_diagonal_U: "(∀i. is_unit (U $ i $ i))"
by (rule is_unit_diagonal[OF upper_triangular_U unit_det_U])
have Uii_1: "(∀i. (U $ i $ i) = 1)" and Hii_Kii: "(∀i. (H $ i $ i) = (K $ i $ i))"
proof (auto)
fix i
have Hii: "H $ i $ i ∈ associates"
by (rule diagonal_in_associates[OF H inv_H upper_triangular_H])
have Kii: "K $ i $ i ∈ associates"
by (rule diagonal_in_associates[OF K inv_K upper_triangular_K])
have ass_Hii_Kii: "normalize (H $ i $ i) = normalize (K $ i $ i)"
by (metis H_UK is_unit_diagonal_U normalize_mult_unit_left upper_triangular_K upper_triangular_U upper_triangular_mult_diagonal)
show Hii_eq_Kii: "H $ i $ i = K $ i $ i"
by (metis Hermite_def Hii K Kii ass_Hii_Kii in_Ass_not_associated)
have "H $ i $ i = U $ i $ i * K $ i $ i"
by (metis H_UK upper_triangular_K upper_triangular_U upper_triangular_mult_diagonal)
thus "U $ i $ i = 1" unfolding Hii_eq_Kii mult_cancel_right1
using inv_K invertible_and_upper_diagonal_not0 upper_triangular_K by blast
qed
have zero_above: "∀j s. j≥1 ∧ j < ncols A - to_nat s ⟶ U $ s $ (s + from_nat j) = 0"
proof (clarify)
fix j s assume "1 ≤ j" and "j < ncols A - (to_nat (s::'n))"
thus "U $ s $ (s + from_nat j) = 0"
proof (induct j rule: less_induct)
fix p
assume induct_step: "(⋀y. y < p ⟹ 1 ≤ y ⟹ y < ncols A - to_nat s ⟹ U $ s $ (s + from_nat y) = 0)"
and p1: "1 ≤ p" and p2: "p < ncols A - to_nat s"
have s_less: "s < s + from_nat p" using p1 p2 unfolding ncols_def
by (metis One_nat_def add.commute add_diff_cancel_right' add_lessD1 add_to_nat_def
from_nat_to_nat_id less_diff_conv neq_iff not_le
to_nat_from_nat_id to_nat_le zero_less_Suc)
show "U $ s $ (s + from_nat p) = 0"
proof -
have UNIV_rw: "UNIV = insert s (UNIV-{s})" by auto
have UNIV_s_rw: "UNIV-{s} = insert (s + from_nat p) ((UNIV-{s}) - {s + from_nat p})"
using p1 p2 s_less unfolding ncols_def by (auto simp: algebra_simps)
have sum_rw: "(∑k∈UNIV-{s}. U $ s $ k * K $ k $ (s + from_nat p))
= U $ s $ (s + from_nat p) * K $ (s + from_nat p) $ (s + from_nat p)
+ (∑k∈(UNIV-{s})-{s + from_nat p}. U $ s $ k * K $ k $ (s + from_nat p))"
using UNIV_s_rw sum.insert by (metis (erased, lifting) Diff_iff finite singletonI)
have sum_0: "(∑k∈(UNIV-{s})-{s + from_nat p}. U $ s $ k * K $ k $ (s + from_nat p)) = 0"
proof (rule sum.neutral, rule)
fix x assume x: "x ∈ UNIV - {s} - {s + from_nat p}"
show "U $ s $ x * K $ x $ (s + from_nat p) = 0"
proof (cases "x<s")
case True
thus ?thesis using upper_triangular_U unfolding upper_triangular_def
by auto
next
case False
hence x_g_s: "x>s" using x by (metis Diff_iff neq_iff singletonI)
show ?thesis
proof (cases "x<s+from_nat p")
case True
define a where "a = to_nat x - to_nat s"
from x_g_s have "to_nat s < to_nat x" by (rule to_nat_mono)
hence xa: "x=s+(from_nat a)" unfolding a_def add_to_nat_def
by (simp add: less_imp_diff_less to_nat_less_card algebra_simps to_nat_from_nat_id)
have "U $ s $ x =0"
proof (unfold xa, rule induct_step)
show a_p: "a<p" unfolding a_def using p2 unfolding ncols_def
proof -
have "x < from_nat (to_nat s + to_nat (from_nat p::'n))"
by (metis (no_types) True add_to_nat_def)
hence "to_nat x - to_nat s < to_nat (from_nat p::'n)"
by (simp add: add.commute less_diff_conv2 less_imp_le to_nat_le x_g_s)
thus "to_nat x - to_nat s < p"
by (metis (no_types) from_nat_eq_imp_eq from_nat_to_nat_id le_less_trans
less_imp_le not_le to_nat_less_card)
qed
show "1 ≤ a"
by (auto simp add: a_def p1 p2) (metis Suc_leI to_nat_mono x_g_s zero_less_diff)
show "a < ncols A - to_nat s" using a_p p2 by auto
qed
thus ?thesis by simp
next
case False
hence "x>s+from_nat p" using x_g_s x by auto
thus ?thesis using upper_triangular_K unfolding upper_triangular_def
by auto
qed
qed
qed
have "H $ s $ (s + from_nat p) = (∑k∈UNIV. U $ s $ k * K $ k $ (s + from_nat p))"
unfolding H_UK matrix_matrix_mult_def by auto
also have "... = (∑k∈insert s (UNIV-{s}). U $ s $ k * K $ k $ (s + from_nat p))"
using UNIV_rw by simp
also have "... = U $ s $ s * K $ s $ (s + from_nat p)
+ (∑k∈UNIV-{s}. U $ s $ k * K $ k $ (s + from_nat p))"
by (rule sum.insert, simp_all)
also have "... = U $ s $ s * K $ s $ (s + from_nat p)
+ U $ s $ (s + from_nat p) * K $ (s + from_nat p) $ (s + from_nat p)"
unfolding sum_rw sum_0 by simp
finally have H_s_sp: "H $ s $ (s + from_nat p)
= U $ s $ (s + from_nat p) * K $ (s + from_nat p) $ (s + from_nat p) + K $ s $ (s + from_nat p)"
using Uii_1 by auto
hence cong_HK: "cong (H $ s $ (s + from_nat p)) (K $ s $ (s + from_nat p)) (K $ (s+from_nat p) $ (s + from_nat p))"
unfolding cong_def by auto
have H_s_sp_residues: "(H $ s $ (s + from_nat p)) ∈ residues (K $ (s+from_nat p) $ (s + from_nat p))"
using above_diagonal_in_residues[OF H inv_H upper_triangular_H s_less]
unfolding diagonal_least_nonzero[OF H inv_H upper_triangular_H]
by (metis Hii_Kii)
have K_s_sp_residues: "(K $ s $ (s + from_nat p)) ∈ residues (K $ (s+from_nat p) $ (s + from_nat p))"
using above_diagonal_in_residues[OF K inv_K upper_triangular_K s_less]
unfolding diagonal_least_nonzero[OF K inv_K upper_triangular_K] .
have Hs_sp_Ks_sp: "(H $ s $ (s + from_nat p)) = (K $ s $ (s + from_nat p))"
using cong_HK in_Res_not_congruent[OF cs_residues H_s_sp_residues K_s_sp_residues]
by fast
have "K $ (s + from_nat p) $ (s + from_nat p) ≠ 0"
using inv_K invertible_and_upper_diagonal_not0 upper_triangular_K by blast
thus ?thesis unfolding from_nat_1 using H_s_sp unfolding Hs_sp_Ks_sp by auto
qed
qed
qed
have "U = mat 1"
proof (unfold mat_def vec_eq_iff, auto)
fix ia show "U $ ia $ ia = 1" using Uii_1 by simp
fix i assume i_ia: "i ≠ ia"
show "U $ i $ ia = 0"
proof (cases "ia<i")
case True
thus ?thesis using upper_triangular_U unfolding upper_triangular_def by auto
next
case False
hence i_less_ia: "i<ia" using i_ia by auto
define a where "a = to_nat ia - to_nat i"
have ia_eq: "ia = i + from_nat a" unfolding a_def
by (metis i_less_ia a_def add_to_nat_def dual_order.strict_iff_order from_nat_to_nat_id
le_add_diff_inverse less_imp_diff_less to_nat_from_nat_id to_nat_less_card to_nat_mono)
have "1 ≤ a" unfolding a_def
by (metis diff_is_0_eq i_less_ia less_one not_less to_nat_mono)
moreover have "a < ncols A - to_nat i"
unfolding a_def ncols_def
by (metis False diff_less_mono not_less to_nat_less_card to_nat_mono')
ultimately show ?thesis using zero_above unfolding ia_eq by blast
qed
qed
thus ?thesis using H_UK matrix_mul_lid by fast
qed
end