Theory Signed_Modulo
section ‹Signed Modulo Operation›
theory Signed_Modulo
imports
Berlekamp_Zassenhaus.Poly_Mod
Sqrt_Babylonian.Sqrt_Babylonian_Auxiliary
begin
text ‹The upcoming definition of symmetric modulo
is different to the HOL-Library-Signed\_Division.smod, since
here the modulus will be in range $\{-m/2,...,m/2\}$,
whereas there -1 symmod m = m - 1.
The advantage of have range $\{-m/2,...,m/2\}$ is that small negative
numbers are represented by small numbers.
One limitation is that the symmetric modulo is only working properly,
if the modulus is a positive number.›
definition sym_mod :: "int ⇒ int ⇒ int" (infixl ‹symmod› 70) where
"sym_mod x y = poly_mod.inv_M y (x mod y)"
lemma sym_mod_code[code]: "sym_mod x y = (let m = x mod y
in if m + m ≤ y then m else m - y)"
unfolding sym_mod_def poly_mod.inv_M_def Let_def ..
lemma sym_mod_zero[simp]: "n symmod 0 = n" "n > 0 ⟹ 0 symmod n = 0"
unfolding sym_mod_def poly_mod.inv_M_def by auto
lemma sym_mod_range:
‹x symmod y ∈ {- ((y - 1) div 2) .. y div 2}› if ‹y > 0›
proof -
from that have ‹x mod y < y›
by (rule pos_mod_bound)
then have ‹x mod y - y < 0›
by simp
moreover from that have ‹- ((y - 1) div 2) ≤ 0› ‹0 ≤ x mod y›
by simp_all
then have ‹- ((y - 1) div 2) ≤ x mod y›
by (rule order_trans)
ultimately show ?thesis
by (auto simp add: sym_mod_def poly_mod.inv_M_def)
qed
text ‹The range is optimal in the sense that exactly y elements can be represented.›
lemma card_sym_mod_range: "y > 0 ⟹ card {- ((y - 1) div 2) .. y div 2} = y"
by simp
lemma sym_mod_abs: "y > 0 ⟹ ¦x symmod y¦ < y"
"y ≥ 1 ⟹ ¦x symmod y¦ ≤ y div 2"
using sym_mod_range[of y x] by auto
lemma sym_mod_sym_mod[simp]: "x symmod y symmod y = x symmod (y :: int)"
unfolding sym_mod_def using poly_mod.M_def poly_mod.M_inv_M_id by auto
lemma sym_mod_diff_eq: "(a symmod c - b symmod c) symmod c = (a - b) symmod c"
unfolding sym_mod_def
by (metis mod_diff_cong mod_mod_trivial poly_mod.M_def poly_mod.M_inv_M_id)
lemma sym_mod_sym_mod_cancel: "c dvd b ⟹ a symmod b symmod c = a symmod c"
using mod_mod_cancel[of c b] unfolding sym_mod_def
by (metis poly_mod.M_def poly_mod.M_inv_M_id)
lemma sym_mod_diff_right_eq: "(a - b symmod c) symmod c = (a - b) symmod c"
using sym_mod_diff_eq by (metis sym_mod_sym_mod)
lemma sym_mod_mult_right_eq: "a * (b symmod c) symmod c = a * b symmod c"
unfolding sym_mod_def by (metis poly_mod.M_def poly_mod.M_inv_M_id mod_mult_right_eq)
lemma dvd_imp_sym_mod_0 [simp]:
"b symmod a = 0" if "a > 0" "a dvd b"
unfolding sym_mod_def poly_mod.inv_M_def using that by simp
lemma sym_mod_0_imp_dvd [dest!]:
"b dvd a" if "a symmod b = 0"
using that apply (simp add: sym_mod_def poly_mod.inv_M_def not_le split: if_splits)
using pos_mod_bound [of b a] apply auto
done
definition sym_div :: "int ⇒ int ⇒ int" (infixl ‹symdiv› 70) where
"sym_div x y = (let d = x div y; m = x mod y in
if m + m ≤ y then d else d + 1)"
lemma of_int_mod_integer: "(of_int (x mod y) :: integer) = (of_int x :: integer) mod (of_int y)"
using integer_of_int_eq_of_int modulo_integer.abs_eq by presburger
lemma sym_div_code[code]:
"sym_div x y = (let yy = integer_of_int y in
(case divmod_integer (integer_of_int x) yy
of (d, m) ⇒ if m + m ≤ yy then int_of_integer d else (int_of_integer (d + 1))))"
unfolding sym_div_def Let_def divmod_integer_def split
apply (rule if_cong, subst of_int_le_iff[symmetric], unfold of_int_add)
by (subst (1 2) of_int_mod_integer, auto)
lemma sym_mod_sym_div: assumes y: "y > 0" shows "x symmod y = x - sym_div x y * y"
proof -
let ?z = "x - y * (x div y)"
let ?u = "y * (x div y)"
have "x = y * (x div y) + x mod y" using y by simp
hence id: "x mod y = ?z" by linarith
have "x symmod y = poly_mod.inv_M y ?z" unfolding sym_mod_def id by auto
also have "… = (if ?z + ?z ≤ y then ?z else ?z - y)" unfolding poly_mod.inv_M_def ..
also have "… = x - (if (x mod y) + (x mod y) ≤ y then x div y else x div y + 1) * y"
by (simp add: algebra_simps id)
also have "(if (x mod y) + (x mod y) ≤ y then x div y else x div y + 1) = sym_div x y"
unfolding sym_div_def Let_def ..
finally show ?thesis .
qed
lemma dvd_sym_div_mult_right [simp]:
"(a symdiv b) * b = a" if "b > 0" "b dvd a"
using sym_mod_sym_div[of b a] that by simp
lemma dvd_sym_div_mult_left [simp]:
"b * (a symdiv b) = a" if "b > 0" "b dvd a"
using dvd_sym_div_mult_right[OF that] by (simp add: ac_simps)
end