Theory BasicSecurityPredicates
theory BasicSecurityPredicates
imports Views "../Basics/Projection"
begin
definition areTracesOver :: "('e list) set ⇒ 'e set ⇒ bool "
where
"areTracesOver Tr E ≡
∀ τ ∈ Tr. (set τ) ⊆ E"
type_synonym 'e BSP = "'e V_rec ⇒ (('e list) set) ⇒ bool"
definition BSP_valid :: "'e BSP ⇒ bool"
where
"BSP_valid bsp ≡
∀𝒱 Tr E. ( isViewOn 𝒱 E ∧ areTracesOver Tr E )
⟶ (∃ Tr'. Tr' ⊇ Tr ∧ bsp 𝒱 Tr')"
definition R :: "'e BSP"
where
"R 𝒱 Tr ≡
∀τ∈Tr. ∃τ'∈Tr. τ' ↿ C⇘𝒱⇙ = [] ∧ τ' ↿ V⇘𝒱⇙ = τ ↿ V⇘𝒱⇙"
lemma BSP_valid_R: "BSP_valid R"
proof -
{
fix 𝒱::"('e V_rec)"
fix Tr E
assume "isViewOn 𝒱 E"
and "areTracesOver Tr E"
let ?Tr'="{t. (set t) ⊆ E}"
have "?Tr'⊇ Tr"
by (meson Ball_Collect ‹areTracesOver Tr E› areTracesOver_def)
moreover
have "R 𝒱 ?Tr'"
proof -
{
fix τ
assume "τ ∈ {t. (set t) ⊆ E}"
let ?τ'="τ↿(V⇘𝒱⇙)"
have "?τ' ↿ C⇘𝒱⇙ = [] ∧ ?τ' ↿ V⇘𝒱⇙ = τ ↿ V⇘𝒱⇙"
using ‹isViewOn 𝒱 E› disjoint_projection projection_idempotent
unfolding isViewOn_def V_valid_def VC_disjoint_def by metis
moreover
from ‹τ ∈ {t. (set t) ⊆ E}› have "?τ' ∈ ?Tr'" using ‹isViewOn 𝒱 E›
unfolding isViewOn_def
by (simp add: list_subset_iff_projection_neutral projection_commute)
ultimately
have " ∃τ'∈{t. set t ⊆ E}. τ' ↿ C⇘𝒱⇙ = [] ∧ τ' ↿ V⇘𝒱⇙ = τ ↿ V⇘𝒱⇙"
by auto
}
thus ?thesis unfolding R_def
by auto
qed
ultimately
have "∃ Tr'. Tr' ⊇ Tr ∧ R 𝒱 Tr'"
by auto
}
thus ?thesis
unfolding BSP_valid_def by auto
qed
definition D :: "'e BSP"
where
"D 𝒱 Tr ≡
∀α β. ∀c∈C⇘𝒱⇙. ((β @ [c] @ α) ∈ Tr ∧ α↿C⇘𝒱⇙ = [])
⟶ (∃α' β'. ((β' @ α') ∈ Tr ∧ α'↿V⇘𝒱⇙ = α↿V⇘𝒱⇙ ∧ α'↿C⇘𝒱⇙ = []
∧ β'↿(V⇘𝒱⇙ ∪ C⇘𝒱⇙) = β↿(V⇘𝒱⇙ ∪ C⇘𝒱⇙)))"
lemma BSP_valid_D: "BSP_valid D"
proof -
{
fix 𝒱::"('e V_rec)"
fix Tr E
assume "isViewOn 𝒱 E"
and "areTracesOver Tr E"
let ?Tr'="{t. (set t) ⊆ E}"
have "?Tr'⊇ Tr"
by (meson Ball_Collect ‹areTracesOver Tr E› areTracesOver_def)
moreover
have "D 𝒱 ?Tr'"
unfolding D_def by auto
ultimately
have "∃ Tr'. Tr' ⊇ Tr ∧ D 𝒱 Tr'"
by auto
}
thus ?thesis
unfolding BSP_valid_def by auto
qed
definition I :: "'e BSP"
where
"I 𝒱 Tr ≡
∀α β. ∀c∈C⇘𝒱⇙. ((β @ α) ∈ Tr ∧ α↿C⇘𝒱⇙ = [])
⟶ (∃α' β'. ((β' @ [c] @ α') ∈ Tr ∧ α'↿V⇘𝒱⇙ = α↿V⇘𝒱⇙ ∧ α'↿C⇘𝒱⇙ = []
∧ β'↿(V⇘𝒱⇙ ∪ C⇘𝒱⇙) = β↿(V⇘𝒱⇙ ∪ C⇘𝒱⇙)))"
lemma BSP_valid_I: "BSP_valid I"
proof -
{
fix 𝒱::"('e V_rec)"
fix Tr E
assume "isViewOn 𝒱 E"
and "areTracesOver Tr E"
let ?Tr'="{t. (set t) ⊆ E}"
have "?Tr'⊇ Tr"
by (meson Ball_Collect ‹areTracesOver Tr E› areTracesOver_def)
moreover
have "I 𝒱 ?Tr'" using ‹isViewOn 𝒱 E›
unfolding isViewOn_def I_def by auto
ultimately
have "∃ Tr'. Tr' ⊇ Tr ∧ I 𝒱 Tr'"
by auto
}
thus ?thesis
unfolding BSP_valid_def by auto
qed
type_synonym 'e Rho = "'e V_rec ⇒ 'e set"
definition
Adm :: "'e V_rec ⇒ 'e Rho ⇒ ('e list) set ⇒ 'e list ⇒ 'e ⇒ bool"
where
"Adm 𝒱 ρ Tr β e ≡
∃γ. ((γ @ [e]) ∈ Tr ∧ γ↿(ρ 𝒱) = β↿(ρ 𝒱))"
definition IA :: "'e Rho ⇒ 'e BSP"
where
"IA ρ 𝒱 Tr ≡
∀α β. ∀c∈C⇘𝒱⇙. ((β @ α) ∈ Tr ∧ α↿C⇘𝒱⇙ = [] ∧ (Adm 𝒱 ρ Tr β c))
⟶ (∃ α' β'. ((β' @ [c] @ α') ∈ Tr) ∧ α'↿V⇘𝒱⇙ = α↿V⇘𝒱⇙
∧ α'↿C⇘𝒱⇙ = [] ∧ β'↿(V⇘𝒱⇙ ∪ C⇘𝒱⇙) = β↿(V⇘𝒱⇙ ∪ C⇘𝒱⇙))"
lemma BSP_valid_IA: "BSP_valid (IA ρ) "
proof -
{
fix 𝒱 :: "('a V_rec)"
fix Tr E
assume "isViewOn 𝒱 E"
and "areTracesOver Tr E"
let ?Tr'="{t. (set t) ⊆ E}"
have "?Tr'⊇ Tr"
by (meson Ball_Collect ‹areTracesOver Tr E› areTracesOver_def)
moreover
have "IA ρ 𝒱 ?Tr'" using ‹isViewOn 𝒱 E›
unfolding isViewOn_def IA_def by auto
ultimately
have "∃ Tr'. Tr' ⊇ Tr ∧ IA ρ 𝒱 Tr'"
by auto
}
thus ?thesis
unfolding BSP_valid_def by auto
qed
definition BSD :: "'e BSP"
where
"BSD 𝒱 Tr ≡
∀α β. ∀c∈C⇘𝒱⇙. ((β @ [c] @ α) ∈ Tr ∧ α↿C⇘𝒱⇙ = [])
⟶ (∃α'. ((β @ α') ∈ Tr ∧ α'↿V⇘𝒱⇙ = α↿V⇘𝒱⇙ ∧ α'↿C⇘𝒱⇙ = []))"
lemma BSP_valid_BSD: "BSP_valid BSD"
proof -
{
fix 𝒱::"('e V_rec)"
fix Tr E
assume "isViewOn 𝒱 E"
and "areTracesOver Tr E"
let ?Tr'="{t. (set t) ⊆ E}"
have "?Tr'⊇ Tr"
by (meson Ball_Collect ‹areTracesOver Tr E› areTracesOver_def)
moreover
have "BSD 𝒱 ?Tr'"
unfolding BSD_def by auto
ultimately
have "∃ Tr'. Tr' ⊇ Tr ∧ BSD 𝒱 Tr'"
by auto
}
thus ?thesis
unfolding BSP_valid_def by auto
qed
definition BSI :: "'e BSP"
where
"BSI 𝒱 Tr ≡
∀α β. ∀c∈C⇘𝒱⇙. ((β @ α) ∈ Tr ∧ α↿C⇘𝒱⇙ = [])
⟶ (∃α'. ((β @ [c] @ α') ∈ Tr ∧ α'↿V⇘𝒱⇙ = α↿V⇘𝒱⇙ ∧ α'↿C⇘𝒱⇙ = []))"
lemma BSP_valid_BSI: "BSP_valid BSI"
proof -
{
fix 𝒱::"('e V_rec)"
fix Tr E
assume "isViewOn 𝒱 E"
and "areTracesOver Tr E"
let ?Tr'="{t. (set t) ⊆ E}"
have "?Tr'⊇ Tr"
by (meson Ball_Collect ‹areTracesOver Tr E› areTracesOver_def)
moreover
have "BSI 𝒱 ?Tr'" using ‹isViewOn 𝒱 E›
unfolding isViewOn_def BSI_def by auto
ultimately
have "∃ Tr'. Tr' ⊇ Tr ∧ BSI 𝒱 Tr'"
by auto
}
thus ?thesis
unfolding BSP_valid_def by auto
qed
definition BSIA :: "'e Rho ⇒ 'e BSP"
where
"BSIA ρ 𝒱 Tr ≡
∀α β. ∀c∈C⇘𝒱⇙. ((β @ α) ∈ Tr ∧ α↿C⇘𝒱⇙ = [] ∧ (Adm 𝒱 ρ Tr β c))
⟶ (∃α'. ((β @ [c] @ α') ∈ Tr ∧ α'↿V⇘𝒱⇙ = α↿V⇘𝒱⇙ ∧ α'↿C⇘𝒱⇙ = []))"
lemma BSP_valid_BSIA: "BSP_valid (BSIA ρ) "
proof -
{
fix 𝒱 :: "('a V_rec)"
fix Tr E
assume "isViewOn 𝒱 E"
and "areTracesOver Tr E"
let ?Tr'="{t. (set t) ⊆ E}"
have "?Tr'⊇ Tr"
by (meson Ball_Collect ‹areTracesOver Tr E› areTracesOver_def)
moreover
have "BSIA ρ 𝒱 ?Tr'" using ‹isViewOn 𝒱 E›
unfolding isViewOn_def BSIA_def by auto
ultimately
have "∃ Tr'. Tr' ⊇ Tr ∧ BSIA ρ 𝒱 Tr'"
by auto
}
thus ?thesis
unfolding BSP_valid_def by auto
qed
record 'e Gamma =
Nabla :: "'e set"
Delta :: "'e set"
Upsilon :: "'e set"
abbreviation GammaNabla :: "'e Gamma ⇒ 'e set"
(‹∇⇘_⇙› [100] 1000)
where
"∇⇘Γ⇙ ≡ (Nabla Γ)"
abbreviation GammaDelta :: "'e Gamma ⇒ 'e set"
(‹Δ⇘_⇙› [100] 1000)
where
"Δ⇘Γ⇙ ≡ (Delta Γ)"
abbreviation GammaUpsilon :: "'e Gamma ⇒ 'e set"
(‹Υ⇘_⇙› [100] 1000)
where
"Υ⇘Γ⇙ ≡ (Upsilon Γ)"
definition FCD :: "'e Gamma ⇒ 'e BSP"
where
"FCD Γ 𝒱 Tr ≡
∀α β. ∀c∈(C⇘𝒱⇙ ∩ Υ⇘Γ⇙). ∀v∈(V⇘𝒱⇙ ∩ ∇⇘Γ⇙).
((β @ [c,v] @ α) ∈ Tr ∧ α ↿ C⇘𝒱⇙ = [])
⟶ (∃α'. ∃δ'. (set δ') ⊆ (N⇘𝒱⇙ ∩ Δ⇘Γ⇙)
∧ ((β @ δ' @ [v] @ α') ∈ Tr
∧ α'↿V⇘𝒱⇙ = α↿V⇘𝒱⇙ ∧ α'↿C⇘𝒱⇙ = []))"
lemma BSP_valid_FCD: "BSP_valid (FCD Γ)"
proof -
{
fix 𝒱::"('a V_rec)"
fix Tr E
assume "isViewOn 𝒱 E"
and "areTracesOver Tr E"
let ?Tr'="{t. (set t) ⊆ E}"
have "?Tr'⊇ Tr"
by (meson Ball_Collect ‹areTracesOver Tr E› areTracesOver_def)
moreover
have "FCD Γ 𝒱 ?Tr'"
proof -
{
fix α β c v
assume "c ∈ C⇘𝒱⇙ ∩ Υ⇘Γ⇙"
and "v ∈V⇘𝒱⇙ ∩ ∇⇘Γ⇙"
and "β @ [c ,v] @ α ∈ ?Tr'"
and "α ↿ C⇘𝒱⇙ = []"
let ?α'="α" and ?δ'="[]"
from ‹β @ [c ,v] @ α ∈ ?Tr'› have "β @ ?δ' @ [v] @ ?α' ∈ ?Tr'"
by auto
hence "(set ?δ') ⊆ (N⇘𝒱⇙ ∩ Δ⇘Γ⇙) ∧ ((β @ ?δ' @ [v] @ ?α') ∈ ?Tr'
∧ ?α' ↿ V⇘𝒱⇙ = α ↿ V⇘𝒱⇙ ∧ ?α' ↿ C⇘𝒱⇙ = [])"
using ‹isViewOn 𝒱 E› ‹α ↿ C⇘𝒱⇙ = []›
unfolding isViewOn_def ‹α ↿ C⇘𝒱⇙ = []› by auto
hence "∃α'. ∃δ'. (set δ') ⊆ (N⇘𝒱⇙ ∩ Δ⇘Γ⇙) ∧ ((β @ δ' @ [v] @ α') ∈ ?Tr'
∧ α' ↿ V⇘𝒱⇙ = α ↿ V⇘𝒱⇙ ∧ α' ↿ C⇘𝒱⇙ = [])"
by blast
}
thus ?thesis
unfolding FCD_def by auto
qed
ultimately
have "∃ Tr'. Tr' ⊇ Tr ∧ FCD Γ 𝒱 Tr'"
by auto
}
thus ?thesis
unfolding BSP_valid_def by auto
qed
definition FCI :: "'e Gamma ⇒ 'e BSP"
where
"FCI Γ 𝒱 Tr ≡
∀α β. ∀c∈(C⇘𝒱⇙ ∩ Υ⇘Γ⇙). ∀v∈(V⇘𝒱⇙ ∩ ∇⇘Γ⇙).
((β @ [v] @ α) ∈ Tr ∧ α↿C⇘𝒱⇙ = [])
⟶ (∃α'. ∃δ'. (set δ') ⊆ (N⇘𝒱⇙ ∩ Δ⇘Γ⇙)
∧ ((β @ [c] @ δ' @ [v] @ α') ∈ Tr
∧ α'↿V⇘𝒱⇙ = α↿V⇘𝒱⇙ ∧ α'↿C⇘𝒱⇙ = []))"
lemma BSP_valid_FCI: "BSP_valid (FCI Γ)"
proof -
{
fix 𝒱::"('a V_rec)"
fix Tr E
assume "isViewOn 𝒱 E"
and "areTracesOver Tr E"
let ?Tr'="{t. (set t) ⊆ E}"
have "?Tr'⊇ Tr"
by (meson Ball_Collect ‹areTracesOver Tr E› areTracesOver_def)
moreover
have "FCI Γ 𝒱 ?Tr'"
proof -
{
fix α β c v
assume "c ∈ C⇘𝒱⇙ ∩ Υ⇘Γ⇙"
and "v ∈V⇘𝒱⇙ ∩ ∇⇘Γ⇙"
and "β @ [v] @ α ∈ ?Tr'"
and "α ↿ C⇘𝒱⇙ = []"
let ?α'="α" and ?δ'="[]"
from ‹c ∈ C⇘𝒱⇙ ∩ Υ⇘Γ⇙› have" c ∈ E"
using ‹isViewOn 𝒱 E›
unfolding isViewOn_def by auto
with ‹β @ [v] @ α ∈ ?Tr'› have "β @ [c] @ ?δ' @ [v] @ ?α' ∈ ?Tr'"
by auto
hence "(set ?δ') ⊆ (N⇘𝒱⇙ ∩ Δ⇘Γ⇙) ∧ ((β @ [c] @ ?δ' @ [v] @ ?α') ∈ ?Tr'
∧ ?α' ↿ V⇘𝒱⇙ = α ↿ V⇘𝒱⇙ ∧ ?α' ↿ C⇘𝒱⇙ = [])"
using ‹isViewOn 𝒱 E› ‹α ↿ C⇘𝒱⇙ = []› unfolding isViewOn_def ‹α ↿ C⇘𝒱⇙ = []› by auto
hence
"∃α'. ∃δ'. (set δ') ⊆ (N⇘𝒱⇙ ∩ Δ⇘Γ⇙) ∧ ((β @ [c] @ δ' @ [v] @ α') ∈ ?Tr'
∧ α' ↿ V⇘𝒱⇙ = α ↿ V⇘𝒱⇙ ∧ α' ↿ C⇘𝒱⇙ = [])"
by blast
}
thus ?thesis
unfolding FCI_def by auto
qed
ultimately
have "∃ Tr'. Tr' ⊇ Tr ∧ FCI Γ 𝒱 Tr'"
by auto
}
thus ?thesis
unfolding BSP_valid_def by auto
qed
definition FCIA :: "'e Rho ⇒ 'e Gamma ⇒ 'e BSP"
where
"FCIA ρ Γ 𝒱 Tr ≡
∀α β. ∀c∈(C⇘𝒱⇙ ∩ Υ⇘Γ⇙). ∀v∈(V⇘𝒱⇙ ∩ ∇⇘Γ⇙).
((β @ [v] @ α) ∈ Tr ∧ α↿C⇘𝒱⇙ = [] ∧ (Adm 𝒱 ρ Tr β c))
⟶ (∃α'. ∃δ'. (set δ') ⊆ (N⇘𝒱⇙ ∩ Δ⇘Γ⇙)
∧ ((β @ [c] @ δ' @ [v] @ α') ∈ Tr
∧ α'↿V⇘𝒱⇙ = α↿V⇘𝒱⇙ ∧ α'↿C⇘𝒱⇙ = []))"
lemma BSP_valid_FCIA: "BSP_valid (FCIA ρ Γ) "
proof -
{
fix 𝒱 :: "('a V_rec)"
fix Tr E
assume "isViewOn 𝒱 E"
and "areTracesOver Tr E"
let ?Tr'="{t. (set t) ⊆ E}"
have "?Tr'⊇ Tr"
by (meson Ball_Collect ‹areTracesOver Tr E› areTracesOver_def)
moreover
have "FCIA ρ Γ 𝒱 ?Tr'"
proof -
{
fix α β c v
assume "c ∈ C⇘𝒱⇙ ∩ Υ⇘Γ⇙"
and "v ∈V⇘𝒱⇙ ∩ ∇⇘Γ⇙"
and "β @ [v] @ α ∈ ?Tr'"
and "α ↿ C⇘𝒱⇙ = []"
let ?α'="α" and ?δ'="[]"
from ‹c ∈ C⇘𝒱⇙ ∩ Υ⇘Γ⇙› have" c ∈ E"
using ‹isViewOn 𝒱 E› unfolding isViewOn_def by auto
with ‹β @ [v] @ α ∈ ?Tr'› have "β @ [c] @ ?δ' @ [v] @ ?α' ∈ ?Tr'"
by auto
hence "(set ?δ') ⊆ (N⇘𝒱⇙ ∩ Δ⇘Γ⇙) ∧ ((β @ [c] @ ?δ' @ [v] @ ?α') ∈ ?Tr'
∧ ?α' ↿ V⇘𝒱⇙ = α ↿ V⇘𝒱⇙ ∧ ?α' ↿ C⇘𝒱⇙ = [])"
using ‹isViewOn 𝒱 E› ‹α ↿ C⇘𝒱⇙ = []›
unfolding isViewOn_def ‹α ↿ C⇘𝒱⇙ = []› by auto
hence
"∃α'. ∃δ'. (set δ') ⊆ (N⇘𝒱⇙ ∩ Δ⇘Γ⇙) ∧ ((β @ [c] @ δ' @ [v] @ α') ∈ ?Tr'
∧ α' ↿ V⇘𝒱⇙ = α ↿ V⇘𝒱⇙ ∧ α' ↿ C⇘𝒱⇙ = [])"
by blast
}
thus ?thesis
unfolding FCIA_def by auto
qed
ultimately
have "∃ Tr'. Tr' ⊇ Tr ∧ FCIA ρ Γ 𝒱 Tr'"
by auto
}
thus ?thesis
unfolding BSP_valid_def by auto
qed
definition SR :: "'e BSP"
where
"SR 𝒱 Tr ≡ ∀τ∈Tr. τ ↿ (V⇘𝒱⇙ ∪ N⇘𝒱⇙) ∈ Tr"
lemma "BSP_valid SR"
proof -
{
fix 𝒱::"('e V_rec)"
fix Tr E
assume "isViewOn 𝒱 E"
and "areTracesOver Tr E"
let ?Tr'="{t. ∃τ ∈ Tr. t=τ↿(V⇘𝒱⇙ ∪ N⇘𝒱⇙)} ∪ Tr"
have "?Tr'⊇ Tr"
by blast
moreover
have "SR 𝒱 ?Tr'" unfolding SR_def
proof
fix τ
assume "τ ∈ ?Tr'"
{
from ‹τ ∈ ?Tr'› have "(∃t∈Tr. τ = t ↿ (V⇘𝒱⇙ ∪ N⇘𝒱⇙)) ∨ τ ∈ Tr"
by auto
hence "τ ↿ (V⇘𝒱⇙ ∪ N⇘𝒱⇙) ∈ ?Tr'"
proof
assume "∃t∈Tr. τ = t ↿(V⇘𝒱⇙ ∪ N⇘𝒱⇙)"
hence "∃t∈Tr. τ ↿ (V⇘𝒱⇙ ∪ N⇘𝒱⇙)= t ↿(V⇘𝒱⇙ ∪ N⇘𝒱⇙)"
using projection_idempotent by metis
thus ?thesis
by auto
next
assume "τ ∈ Tr"
thus ?thesis
by auto
qed
}
thus "τ ↿ (V⇘𝒱⇙ ∪ N⇘𝒱⇙) ∈ ?Tr'"
by auto
qed
ultimately
have "∃ Tr'. Tr' ⊇ Tr ∧ SR 𝒱 Tr'"
by auto
}
thus ?thesis
unfolding BSP_valid_def by auto
qed
definition SD :: "'e BSP"
where
"SD 𝒱 Tr ≡
∀α β. ∀c∈C⇘𝒱⇙. ((β @ [c] @ α) ∈ Tr ∧ α↿C⇘𝒱⇙ = []) ⟶ β @ α ∈ Tr"
lemma "BSP_valid SD"
proof -
{
fix 𝒱::"('e V_rec)"
fix Tr E
assume "isViewOn 𝒱 E"
and "areTracesOver Tr E"
let ?Tr'="{t. (set t) ⊆ E}"
have "?Tr'⊇ Tr" by (meson Ball_Collect ‹areTracesOver Tr E› areTracesOver_def)
moreover
have "SD 𝒱 ?Tr'" unfolding SD_def by auto
ultimately
have "∃ Tr'. Tr' ⊇ Tr ∧ SD 𝒱 Tr'" by auto
}
thus ?thesis unfolding BSP_valid_def by auto
qed
definition SI :: "'e BSP"
where
"SI 𝒱 Tr ≡
∀α β. ∀c∈C⇘𝒱⇙. ((β @ α) ∈ Tr ∧ α ↿ C⇘𝒱⇙ = []) ⟶ β @ [c] @ α ∈ Tr"
lemma "BSP_valid SI"
proof -
{
fix 𝒱::"('a V_rec)"
fix Tr E
assume "isViewOn 𝒱 E"
and "areTracesOver Tr E"
let ?Tr'="{t. (set t) ⊆ E}"
have "?Tr'⊇ Tr"
by (meson Ball_Collect ‹areTracesOver Tr E› areTracesOver_def)
moreover
have "SI 𝒱 ?Tr'"
using ‹isViewOn 𝒱 E›
unfolding isViewOn_def SI_def by auto
ultimately
have "∃ Tr'. Tr' ⊇ Tr ∧ SI 𝒱 Tr'"
by auto
}
thus ?thesis
unfolding BSP_valid_def by auto
qed
definition SIA :: "'e Rho ⇒ 'e BSP"
where
"SIA ρ 𝒱 Tr ≡
∀α β. ∀c∈C⇘𝒱⇙. ((β @ α) ∈ Tr ∧ α ↿ C⇘𝒱⇙ = [] ∧ (Adm 𝒱 ρ Tr β c))
⟶ (β @ [c] @ α) ∈ Tr"
lemma "BSP_valid (SIA ρ) "
proof -
{
fix 𝒱 :: "('a V_rec)"
fix Tr E
assume "isViewOn 𝒱 E"
and "areTracesOver Tr E"
let ?Tr'="{t. (set t) ⊆ E}"
have "?Tr'⊇ Tr"
by (meson Ball_Collect ‹areTracesOver Tr E› areTracesOver_def)
moreover
have "SIA ρ 𝒱 ?Tr'"
using ‹isViewOn 𝒱 E›
unfolding isViewOn_def SIA_def by auto
ultimately
have "∃ Tr'. Tr' ⊇ Tr ∧ SIA ρ 𝒱 Tr'"
by auto
}
thus ?thesis
unfolding BSP_valid_def by auto
qed
end