Theory Views
theory Views
imports Main
begin
record 'e V_rec =
V :: "'e set"
N :: "'e set"
C :: "'e set"
abbreviation VrecV :: "'e V_rec ⇒ 'e set"
(‹V⇘_⇙› [100] 1000)
where
"V⇘v⇙ ≡ (V v)"
abbreviation VrecN :: "'e V_rec ⇒ 'e set"
(‹N⇘_⇙› [100] 1000)
where
"N⇘v⇙ ≡ (N v)"
abbreviation VrecC :: "'e V_rec ⇒ 'e set"
(‹C⇘_⇙› [100] 1000)
where
"C⇘v⇙ ≡ (C v)"
definition VN_disjoint :: "'e V_rec ⇒ bool"
where
"VN_disjoint v ≡ V⇘v⇙ ∩ N⇘v⇙ = {}"
definition VC_disjoint :: "'e V_rec ⇒ bool"
where
"VC_disjoint v ≡ V⇘v⇙ ∩ C⇘v⇙ = {}"
definition NC_disjoint :: "'e V_rec ⇒ bool"
where
"NC_disjoint v ≡ N⇘v⇙ ∩ C⇘v⇙ = {}"
definition V_valid :: "'e V_rec ⇒ bool"
where
"V_valid v ≡ VN_disjoint v ∧ VC_disjoint v ∧ NC_disjoint v"
definition isViewOn :: "'e V_rec ⇒ 'e set ⇒ bool"
where
"isViewOn 𝒱 E ≡ V_valid 𝒱 ∧ V⇘𝒱⇙ ∪ N⇘𝒱⇙ ∪ C⇘𝒱⇙ = E"
end