Theory HOL-Library.FSet
section ‹Type of finite sets defined as a subtype of sets›
theory FSet
imports Main Countable
begin
subsection ‹Definition of the type›
typedef 'a fset = "{A :: 'a set. finite A}" morphisms fset Abs_fset
by auto
setup_lifting type_definition_fset
subsection ‹Basic operations and type class instantiations›
instantiation fset :: (finite) finite
begin
instance by (standard; transfer; simp)
end
instantiation fset :: (type) "{bounded_lattice_bot, distrib_lattice, minus}"
begin
lift_definition bot_fset :: "'a fset" is "{}" parametric empty_transfer by simp
lift_definition less_eq_fset :: "'a fset ⇒ 'a fset ⇒ bool" is subset_eq parametric subset_transfer
.
definition less_fset :: "'a fset ⇒ 'a fset ⇒ bool" where "xs < ys ≡ xs ≤ ys ∧ xs ≠ (ys::'a fset)"
lemma less_fset_transfer[transfer_rule]:
includes lifting_syntax
assumes [transfer_rule]: "bi_unique A"
shows "((pcr_fset A) ===> (pcr_fset A) ===> (=)) (⊂) (<)"
unfolding less_fset_def[abs_def] psubset_eq[abs_def] by transfer_prover
lift_definition sup_fset :: "'a fset ⇒ 'a fset ⇒ 'a fset" is union parametric union_transfer
by simp
lift_definition inf_fset :: "'a fset ⇒ 'a fset ⇒ 'a fset" is inter parametric inter_transfer
by simp
lift_definition minus_fset :: "'a fset ⇒ 'a fset ⇒ 'a fset" is minus parametric Diff_transfer
by simp
instance
by (standard; transfer; auto)+
end
abbreviation fempty :: "'a fset" (‹{||}›) where "{||} ≡ bot"
abbreviation fsubset_eq :: "'a fset ⇒ 'a fset ⇒ bool" (infix ‹|⊆|› 50) where "xs |⊆| ys ≡ xs ≤ ys"
abbreviation fsubset :: "'a fset ⇒ 'a fset ⇒ bool" (infix ‹|⊂|› 50) where "xs |⊂| ys ≡ xs < ys"
abbreviation funion :: "'a fset ⇒ 'a fset ⇒ 'a fset" (infixl ‹|∪|› 65) where "xs |∪| ys ≡ sup xs ys"
abbreviation finter :: "'a fset ⇒ 'a fset ⇒ 'a fset" (infixl ‹|∩|› 65) where "xs |∩| ys ≡ inf xs ys"
abbreviation fminus :: "'a fset ⇒ 'a fset ⇒ 'a fset" (infixl ‹|-|› 65) where "xs |-| ys ≡ minus xs ys"
instantiation fset :: (equal) equal
begin
definition "HOL.equal A B ⟷ A |⊆| B ∧ B |⊆| A"
instance by intro_classes (auto simp add: equal_fset_def)
end
instantiation fset :: (type) conditionally_complete_lattice
begin
context includes lifting_syntax
begin
lemma right_total_Inf_fset_transfer:
assumes [transfer_rule]: "bi_unique A" and [transfer_rule]: "right_total A"
shows "(rel_set (rel_set A) ===> rel_set A)
(λS. if finite (⋂S ∩ Collect (Domainp A)) then ⋂S ∩ Collect (Domainp A) else {})
(λS. if finite (Inf S) then Inf S else {})"
by transfer_prover
lemma Inf_fset_transfer:
assumes [transfer_rule]: "bi_unique A" and [transfer_rule]: "bi_total A"
shows "(rel_set (rel_set A) ===> rel_set A) (λA. if finite (Inf A) then Inf A else {})
(λA. if finite (Inf A) then Inf A else {})"
by transfer_prover
lift_definition Inf_fset :: "'a fset set ⇒ 'a fset" is "λA. if finite (Inf A) then Inf A else {}"
parametric right_total_Inf_fset_transfer Inf_fset_transfer by simp
lemma Sup_fset_transfer:
assumes [transfer_rule]: "bi_unique A"
shows "(rel_set (rel_set A) ===> rel_set A) (λA. if finite (Sup A) then Sup A else {})
(λA. if finite (Sup A) then Sup A else {})" by transfer_prover
lift_definition Sup_fset :: "'a fset set ⇒ 'a fset" is "λA. if finite (Sup A) then Sup A else {}"
parametric Sup_fset_transfer by simp
lemma finite_Sup: "∃z. finite z ∧ (∀a. a ∈ X ⟶ a ≤ z) ⟹ finite (Sup X)"
by (auto intro: finite_subset)
lemma transfer_bdd_below[transfer_rule]: "(rel_set (pcr_fset (=)) ===> (=)) bdd_below bdd_below"
by auto
end
instance
proof
fix x z :: "'a fset"
fix X :: "'a fset set"
{
assume "x ∈ X" "bdd_below X"
then show "Inf X |⊆| x" by transfer auto
next
assume "X ≠ {}" "(⋀x. x ∈ X ⟹ z |⊆| x)"
then show "z |⊆| Inf X" by transfer (clarsimp, blast)
next
assume "x ∈ X" "bdd_above X"
then obtain z where "x ∈ X" "(⋀x. x ∈ X ⟹ x |⊆| z)"
by (auto simp: bdd_above_def)
then show "x |⊆| Sup X"
by transfer (auto intro!: finite_Sup)
next
assume "X ≠ {}" "(⋀x. x ∈ X ⟹ x |⊆| z)"
then show "Sup X |⊆| z" by transfer (clarsimp, blast)
}
qed
end
instantiation fset :: (finite) complete_lattice
begin
lift_definition top_fset :: "'a fset" is UNIV parametric right_total_UNIV_transfer UNIV_transfer
by simp
instance
by (standard; transfer; auto)
end
instantiation fset :: (finite) complete_boolean_algebra
begin
lift_definition uminus_fset :: "'a fset ⇒ 'a fset" is uminus
parametric right_total_Compl_transfer Compl_transfer by simp
instance
by (standard; transfer) (simp_all add: Inf_Sup Diff_eq)
end
abbreviation fUNIV :: "'a::finite fset" where "fUNIV ≡ top"
abbreviation fuminus :: "'a::finite fset ⇒ 'a fset" (‹|-| _› [81] 80) where "|-| x ≡ uminus x"
declare top_fset.rep_eq[simp]
subsection ‹Other operations›
lift_definition finsert :: "'a ⇒ 'a fset ⇒ 'a fset" is insert parametric Lifting_Set.insert_transfer
by simp
syntax
"_fset" :: "args => 'a fset" (‹(‹indent=2 notation=‹mixfix finite set enumeration››{|_|})›)
syntax_consts
"_fset" ⇌ finsert
translations
"{|x, xs|}" == "CONST finsert x {|xs|}"
"{|x|}" == "CONST finsert x {||}"
abbreviation fmember :: "'a ⇒ 'a fset ⇒ bool" (infix ‹|∈|› 50) where
"x |∈| X ≡ x ∈ fset X"
abbreviation not_fmember :: "'a ⇒ 'a fset ⇒ bool" (infix ‹|∉|› 50) where
"x |∉| X ≡ x ∉ fset X"
context
begin
qualified abbreviation Ball :: "'a fset ⇒ ('a ⇒ bool) ⇒ bool" where
"Ball X ≡ Set.Ball (fset X)"
alias fBall = FSet.Ball
qualified abbreviation Bex :: "'a fset ⇒ ('a ⇒ bool) ⇒ bool" where
"Bex X ≡ Set.Bex (fset X)"
alias fBex = FSet.Bex
end
syntax (input)
"_fBall" :: "pttrn ⇒ 'a fset ⇒ bool ⇒ bool" (‹(‹indent=3 notation=‹binder finite !››! (_/|:|_)./ _)› [0, 0, 10] 10)
"_fBex" :: "pttrn ⇒ 'a fset ⇒ bool ⇒ bool" (‹(‹indent=3 notation=‹binder finite ?››? (_/|:|_)./ _)› [0, 0, 10] 10)
"_fBex1" :: "pttrn ⇒ 'a fset ⇒ bool ⇒ bool" (‹(‹indent=3 notation=‹binder finite ?!››?! (_/:_)./ _)› [0, 0, 10] 10)
syntax
"_fBall" :: "pttrn ⇒ 'a fset ⇒ bool ⇒ bool" (‹(‹indent=3 notation=‹binder finite ∀››∀(_/|∈|_)./ _)› [0, 0, 10] 10)
"_fBex" :: "pttrn ⇒ 'a fset ⇒ bool ⇒ bool" (‹(‹indent=3 notation=‹binder finite ∃››∃(_/|∈|_)./ _)› [0, 0, 10] 10)
"_fBnex" :: "pttrn ⇒ 'a fset ⇒ bool ⇒ bool" (‹(‹indent=3 notation=‹binder finite ∄››∄(_/|∈|_)./ _)› [0, 0, 10] 10)
"_fBex1" :: "pttrn ⇒ 'a fset ⇒ bool ⇒ bool" (‹(‹indent=3 notation=‹binder finite ∃!››∃!(_/|∈|_)./ _)› [0, 0, 10] 10)
syntax_consts
"_fBall" "_fBnex" ⇌ fBall and
"_fBex" ⇌ fBex and
"_fBex1" ⇌ Ex1
translations
"∀x|∈|A. P" ⇌ "CONST FSet.Ball A (λx. P)"
"∃x|∈|A. P" ⇌ "CONST FSet.Bex A (λx. P)"
"∄x|∈|A. P" ⇌ "CONST fBall A (λx. ¬ P)"
"∃!x|∈|A. P" ⇀ "∃!x. x |∈| A ∧ P"
typed_print_translation ‹
[(\<^const_syntax>‹fBall›, fn _ => Syntax_Trans.preserve_binder_abs2_tr' \<^syntax_const>‹_fBall›),
(\<^const_syntax>‹fBex›, fn _ => Syntax_Trans.preserve_binder_abs2_tr' \<^syntax_const>‹_fBex›)]
›
syntax
"_setlessfAll" :: "[idt, 'a, bool] ⇒ bool" (‹(‹indent=3 notation=‹binder finite ∀››∀_|⊂|_./ _)› [0, 0, 10] 10)
"_setlessfEx" :: "[idt, 'a, bool] ⇒ bool" (‹(‹indent=3 notation=‹binder finite ∃››∃_|⊂|_./ _)› [0, 0, 10] 10)
"_setlefAll" :: "[idt, 'a, bool] ⇒ bool" (‹(‹indent=3 notation=‹binder finite ∀››∀_|⊆|_./ _)› [0, 0, 10] 10)
"_setlefEx" :: "[idt, 'a, bool] ⇒ bool" (‹(‹indent=3 notation=‹binder finite ∃››∃_|⊆|_./ _)› [0, 0, 10] 10)
syntax_consts
"_setlessfAll" "_setlefAll" ⇌ All and
"_setlessfEx" "_setlefEx" ⇌ Ex
translations
"∀A|⊂|B. P" ⇀ "∀A. A |⊂| B ⟶ P"
"∃A|⊂|B. P" ⇀ "∃A. A |⊂| B ∧ P"
"∀A|⊆|B. P" ⇀ "∀A. A |⊆| B ⟶ P"
"∃A|⊆|B. P" ⇀ "∃A. A |⊆| B ∧ P"
context includes lifting_syntax
begin
lemma fmember_transfer0[transfer_rule]:
assumes [transfer_rule]: "bi_unique A"
shows "(A ===> pcr_fset A ===> (=)) (∈) (|∈|)"
by transfer_prover
lemma fBall_transfer0[transfer_rule]:
assumes [transfer_rule]: "bi_unique A"
shows "(pcr_fset A ===> (A ===> (=)) ===> (=)) (Ball) (fBall)"
by transfer_prover
lemma fBex_transfer0[transfer_rule]:
assumes [transfer_rule]: "bi_unique A"
shows "(pcr_fset A ===> (A ===> (=)) ===> (=)) (Bex) (fBex)"
by transfer_prover
lift_definition ffilter :: "('a ⇒ bool) ⇒ 'a fset ⇒ 'a fset" is Set.filter
parametric Lifting_Set.filter_transfer unfolding Set.filter_def by simp
lift_definition fPow :: "'a fset ⇒ 'a fset fset" is Pow parametric Pow_transfer
by (simp add: finite_subset)
lift_definition fcard :: "'a fset ⇒ nat" is card parametric card_transfer .
lift_definition fimage :: "('a ⇒ 'b) ⇒ 'a fset ⇒ 'b fset" (infixr ‹|`|› 90) is image
parametric image_transfer by simp
lift_definition fthe_elem :: "'a fset ⇒ 'a" is the_elem .
lift_definition fbind :: "'a fset ⇒ ('a ⇒ 'b fset) ⇒ 'b fset" is Set.bind parametric bind_transfer
by (simp add: Set.bind_def)
lift_definition ffUnion :: "'a fset fset ⇒ 'a fset" is Union parametric Union_transfer by simp
lift_definition ffold :: "('a ⇒ 'b ⇒ 'b) ⇒ 'b ⇒ 'a fset ⇒ 'b" is Finite_Set.fold .
lift_definition fset_of_list :: "'a list ⇒ 'a fset" is set by (rule finite_set)
lift_definition sorted_list_of_fset :: "'a::linorder fset ⇒ 'a list" is sorted_list_of_set .
subsection ‹Transferred lemmas from Set.thy›
lemma fset_eqI: "(⋀x. (x |∈| A) = (x |∈| B)) ⟹ A = B"
by (rule set_eqI[Transfer.transferred])
lemma fset_eq_iff[no_atp]: "(A = B) = (∀x. (x |∈| A) = (x |∈| B))"
by (rule set_eq_iff[Transfer.transferred])
lemma fBallI[no_atp]: "(⋀x. x |∈| A ⟹ P x) ⟹ fBall A P"
by (rule ballI[Transfer.transferred])
lemma fbspec[no_atp]: "fBall A P ⟹ x |∈| A ⟹ P x"
by (rule bspec[Transfer.transferred])
lemma fBallE[no_atp]: "fBall A P ⟹ (P x ⟹ Q) ⟹ (x |∉| A ⟹ Q) ⟹ Q"
by (rule ballE[Transfer.transferred])
lemma fBexI[no_atp]: "P x ⟹ x |∈| A ⟹ fBex A P"
by (rule bexI[Transfer.transferred])
lemma rev_fBexI[no_atp]: "x |∈| A ⟹ P x ⟹ fBex A P"
by (rule rev_bexI[Transfer.transferred])
lemma fBexCI[no_atp]: "(fBall A (λx. ¬ P x) ⟹ P a) ⟹ a |∈| A ⟹ fBex A P"
by (rule bexCI[Transfer.transferred])
lemma fBexE[no_atp]: "fBex A P ⟹ (⋀x. x |∈| A ⟹ P x ⟹ Q) ⟹ Q"
by (rule bexE[Transfer.transferred])
lemma fBall_triv[no_atp]: "fBall A (λx. P) = ((∃x. x |∈| A) ⟶ P)"
by (rule ball_triv[Transfer.transferred])
lemma fBex_triv[no_atp]: "fBex A (λx. P) = ((∃x. x |∈| A) ∧ P)"
by (rule bex_triv[Transfer.transferred])
lemma fBex_triv_one_point1[no_atp]: "fBex A (λx. x = a) = (a |∈| A)"
by (rule bex_triv_one_point1[Transfer.transferred])
lemma fBex_triv_one_point2[no_atp]: "fBex A ((=) a) = (a |∈| A)"
by (rule bex_triv_one_point2[Transfer.transferred])
lemma fBex_one_point1[no_atp]: "fBex A (λx. x = a ∧ P x) = (a |∈| A ∧ P a)"
by (rule bex_one_point1[Transfer.transferred])
lemma fBex_one_point2[no_atp]: "fBex A (λx. a = x ∧ P x) = (a |∈| A ∧ P a)"
by (rule bex_one_point2[Transfer.transferred])
lemma fBall_one_point1[no_atp]: "fBall A (λx. x = a ⟶ P x) = (a |∈| A ⟶ P a)"
by (rule ball_one_point1[Transfer.transferred])
lemma fBall_one_point2[no_atp]: "fBall A (λx. a = x ⟶ P x) = (a |∈| A ⟶ P a)"
by (rule ball_one_point2[Transfer.transferred])
lemma fBall_conj_distrib: "fBall A (λx. P x ∧ Q x) = (fBall A P ∧ fBall A Q)"
by (rule ball_conj_distrib[Transfer.transferred])
lemma fBex_disj_distrib: "fBex A (λx. P x ∨ Q x) = (fBex A P ∨ fBex A Q)"
by (rule bex_disj_distrib[Transfer.transferred])
lemma fBall_cong[fundef_cong]: "A = B ⟹ (⋀x. x |∈| B ⟹ P x = Q x) ⟹ fBall A P = fBall B Q"
by (rule ball_cong[Transfer.transferred])
lemma fBex_cong[fundef_cong]: "A = B ⟹ (⋀x. x |∈| B ⟹ P x = Q x) ⟹ fBex A P = fBex B Q"
by (rule bex_cong[Transfer.transferred])
lemma fsubsetI[intro!]: "(⋀x. x |∈| A ⟹ x |∈| B) ⟹ A |⊆| B"
by (rule subsetI[Transfer.transferred])
lemma fsubsetD[elim, intro?]: "A |⊆| B ⟹ c |∈| A ⟹ c |∈| B"
by (rule subsetD[Transfer.transferred])
lemma rev_fsubsetD[no_atp,intro?]: "c |∈| A ⟹ A |⊆| B ⟹ c |∈| B"
by (rule rev_subsetD[Transfer.transferred])
lemma fsubsetCE[no_atp,elim]: "A |⊆| B ⟹ (c |∉| A ⟹ P) ⟹ (c |∈| B ⟹ P) ⟹ P"
by (rule subsetCE[Transfer.transferred])
lemma fsubset_eq[no_atp]: "(A |⊆| B) = fBall A (λx. x |∈| B)"
by (rule subset_eq[Transfer.transferred])
lemma contra_fsubsetD[no_atp]: "A |⊆| B ⟹ c |∉| B ⟹ c |∉| A"
by (rule contra_subsetD[Transfer.transferred])
lemma fsubset_refl: "A |⊆| A"
by (rule subset_refl[Transfer.transferred])
lemma fsubset_trans: "A |⊆| B ⟹ B |⊆| C ⟹ A |⊆| C"
by (rule subset_trans[Transfer.transferred])
lemma fset_rev_mp: "c |∈| A ⟹ A |⊆| B ⟹ c |∈| B"
by (rule rev_subsetD[Transfer.transferred])
lemma fset_mp: "A |⊆| B ⟹ c |∈| A ⟹ c |∈| B"
by (rule subsetD[Transfer.transferred])
lemma fsubset_not_fsubset_eq[code]: "(A |⊂| B) = (A |⊆| B ∧ ¬ B |⊆| A)"
by (rule subset_not_subset_eq[Transfer.transferred])
lemma eq_fmem_trans: "a = b ⟹ b |∈| A ⟹ a |∈| A"
by (rule eq_mem_trans[Transfer.transferred])
lemma fsubset_antisym[intro!]: "A |⊆| B ⟹ B |⊆| A ⟹ A = B"
by (rule subset_antisym[Transfer.transferred])
lemma fequalityD1: "A = B ⟹ A |⊆| B"
by (rule equalityD1[Transfer.transferred])
lemma fequalityD2: "A = B ⟹ B |⊆| A"
by (rule equalityD2[Transfer.transferred])
lemma fequalityE: "A = B ⟹ (A |⊆| B ⟹ B |⊆| A ⟹ P) ⟹ P"
by (rule equalityE[Transfer.transferred])
lemma fequalityCE[elim]:
"A = B ⟹ (c |∈| A ⟹ c |∈| B ⟹ P) ⟹ (c |∉| A ⟹ c |∉| B ⟹ P) ⟹ P"
by (rule equalityCE[Transfer.transferred])
lemma eqfset_imp_iff: "A = B ⟹ (x |∈| A) = (x |∈| B)"
by (rule eqset_imp_iff[Transfer.transferred])
lemma eqfelem_imp_iff: "x = y ⟹ (x |∈| A) = (y |∈| A)"
by (rule eqelem_imp_iff[Transfer.transferred])
lemma fempty_iff[simp]: "(c |∈| {||}) = False"
by (rule empty_iff[Transfer.transferred])
lemma fempty_fsubsetI[iff]: "{||} |⊆| x"
by (rule empty_subsetI[Transfer.transferred])
lemma equalsffemptyI: "(⋀y. y |∈| A ⟹ False) ⟹ A = {||}"
by (rule equals0I[Transfer.transferred])
lemma equalsffemptyD: "A = {||} ⟹ a |∉| A"
by (rule equals0D[Transfer.transferred])
lemma fBall_fempty[simp]: "fBall {||} P = True"
by (rule ball_empty[Transfer.transferred])
lemma fBex_fempty[simp]: "fBex {||} P = False"
by (rule bex_empty[Transfer.transferred])
lemma fPow_iff[iff]: "(A |∈| fPow B) = (A |⊆| B)"
by (rule Pow_iff[Transfer.transferred])
lemma fPowI: "A |⊆| B ⟹ A |∈| fPow B"
by (rule PowI[Transfer.transferred])
lemma fPowD: "A |∈| fPow B ⟹ A |⊆| B"
by (rule PowD[Transfer.transferred])
lemma fPow_bottom: "{||} |∈| fPow B"
by (rule Pow_bottom[Transfer.transferred])
lemma fPow_top: "A |∈| fPow A"
by (rule Pow_top[Transfer.transferred])
lemma fPow_not_fempty: "fPow A ≠ {||}"
by (rule Pow_not_empty[Transfer.transferred])
lemma finter_iff[simp]: "(c |∈| A |∩| B) = (c |∈| A ∧ c |∈| B)"
by (rule Int_iff[Transfer.transferred])
lemma finterI[intro!]: "c |∈| A ⟹ c |∈| B ⟹ c |∈| A |∩| B"
by (rule IntI[Transfer.transferred])
lemma finterD1: "c |∈| A |∩| B ⟹ c |∈| A"
by (rule IntD1[Transfer.transferred])
lemma finterD2: "c |∈| A |∩| B ⟹ c |∈| B"
by (rule IntD2[Transfer.transferred])
lemma finterE[elim!]: "c |∈| A |∩| B ⟹ (c |∈| A ⟹ c |∈| B ⟹ P) ⟹ P"
by (rule IntE[Transfer.transferred])
lemma funion_iff[simp]: "(c |∈| A |∪| B) = (c |∈| A ∨ c |∈| B)"
by (rule Un_iff[Transfer.transferred])
lemma funionI1[elim?]: "c |∈| A ⟹ c |∈| A |∪| B"
by (rule UnI1[Transfer.transferred])
lemma funionI2[elim?]: "c |∈| B ⟹ c |∈| A |∪| B"
by (rule UnI2[Transfer.transferred])
lemma funionCI[intro!]: "(c |∉| B ⟹ c |∈| A) ⟹ c |∈| A |∪| B"
by (rule UnCI[Transfer.transferred])
lemma funionE[elim!]: "c |∈| A |∪| B ⟹ (c |∈| A ⟹ P) ⟹ (c |∈| B ⟹ P) ⟹ P"
by (rule UnE[Transfer.transferred])
lemma fminus_iff[simp]: "(c |∈| A |-| B) = (c |∈| A ∧ c |∉| B)"
by (rule Diff_iff[Transfer.transferred])
lemma fminusI[intro!]: "c |∈| A ⟹ c |∉| B ⟹ c |∈| A |-| B"
by (rule DiffI[Transfer.transferred])
lemma fminusD1: "c |∈| A |-| B ⟹ c |∈| A"
by (rule DiffD1[Transfer.transferred])
lemma fminusD2: "c |∈| A |-| B ⟹ c |∈| B ⟹ P"
by (rule DiffD2[Transfer.transferred])
lemma fminusE[elim!]: "c |∈| A |-| B ⟹ (c |∈| A ⟹ c |∉| B ⟹ P) ⟹ P"
by (rule DiffE[Transfer.transferred])
lemma finsert_iff[simp]: "(a |∈| finsert b A) = (a = b ∨ a |∈| A)"
by (rule insert_iff[Transfer.transferred])
lemma finsertI1: "a |∈| finsert a B"
by (rule insertI1[Transfer.transferred])
lemma finsertI2: "a |∈| B ⟹ a |∈| finsert b B"
by (rule insertI2[Transfer.transferred])
lemma finsertE[elim!]: "a |∈| finsert b A ⟹ (a = b ⟹ P) ⟹ (a |∈| A ⟹ P) ⟹ P"
by (rule insertE[Transfer.transferred])
lemma finsertCI[intro!]: "(a |∉| B ⟹ a = b) ⟹ a |∈| finsert b B"
by (rule insertCI[Transfer.transferred])
lemma fsubset_finsert_iff:
"(A |⊆| finsert x B) = (if x |∈| A then A |-| {|x|} |⊆| B else A |⊆| B)"
by (rule subset_insert_iff[Transfer.transferred])
lemma finsert_ident: "x |∉| A ⟹ x |∉| B ⟹ (finsert x A = finsert x B) = (A = B)"
by (rule insert_ident[Transfer.transferred])
lemma fsingletonI[intro!,no_atp]: "a |∈| {|a|}"
by (rule singletonI[Transfer.transferred])
lemma fsingletonD[dest!,no_atp]: "b |∈| {|a|} ⟹ b = a"
by (rule singletonD[Transfer.transferred])
lemma fsingleton_iff: "(b |∈| {|a|}) = (b = a)"
by (rule singleton_iff[Transfer.transferred])
lemma fsingleton_inject[dest!]: "{|a|} = {|b|} ⟹ a = b"
by (rule singleton_inject[Transfer.transferred])
lemma fsingleton_finsert_inj_eq[iff,no_atp]: "({|b|} = finsert a A) = (a = b ∧ A |⊆| {|b|})"
by (rule singleton_insert_inj_eq[Transfer.transferred])
lemma fsingleton_finsert_inj_eq'[iff,no_atp]: "(finsert a A = {|b|}) = (a = b ∧ A |⊆| {|b|})"
by (rule singleton_insert_inj_eq'[Transfer.transferred])
lemma fsubset_fsingletonD: "A |⊆| {|x|} ⟹ A = {||} ∨ A = {|x|}"
by (rule subset_singletonD[Transfer.transferred])
lemma fminus_single_finsert: "A |-| {|x|} |⊆| B ⟹ A |⊆| finsert x B"
by (rule Diff_single_insert[Transfer.transferred])
lemma fdoubleton_eq_iff: "({|a, b|} = {|c, d|}) = (a = c ∧ b = d ∨ a = d ∧ b = c)"
by (rule doubleton_eq_iff[Transfer.transferred])
lemma funion_fsingleton_iff:
"(A |∪| B = {|x|}) = (A = {||} ∧ B = {|x|} ∨ A = {|x|} ∧ B = {||} ∨ A = {|x|} ∧ B = {|x|})"
by (rule Un_singleton_iff[Transfer.transferred])
lemma fsingleton_funion_iff:
"({|x|} = A |∪| B) = (A = {||} ∧ B = {|x|} ∨ A = {|x|} ∧ B = {||} ∨ A = {|x|} ∧ B = {|x|})"
by (rule singleton_Un_iff[Transfer.transferred])
lemma fimage_eqI[simp, intro]: "b = f x ⟹ x |∈| A ⟹ b |∈| f |`| A"
by (rule image_eqI[Transfer.transferred])
lemma fimageI: "x |∈| A ⟹ f x |∈| f |`| A"
by (rule imageI[Transfer.transferred])
lemma rev_fimage_eqI: "x |∈| A ⟹ b = f x ⟹ b |∈| f |`| A"
by (rule rev_image_eqI[Transfer.transferred])
lemma fimageE[elim!]: "b |∈| f |`| A ⟹ (⋀x. b = f x ⟹ x |∈| A ⟹ thesis) ⟹ thesis"
by (rule imageE[Transfer.transferred])
lemma Compr_fimage_eq: "{x. x |∈| f |`| A ∧ P x} = f ` {x. x |∈| A ∧ P (f x)}"
by (rule Compr_image_eq[Transfer.transferred])
lemma fimage_funion: "f |`| (A |∪| B) = f |`| A |∪| f |`| B"
by (rule image_Un[Transfer.transferred])
lemma fimage_iff: "(z |∈| f |`| A) = fBex A (λx. z = f x)"
by (rule image_iff[Transfer.transferred])
lemma fimage_fsubset_iff[no_atp]: "(f |`| A |⊆| B) = fBall A (λx. f x |∈| B)"
by (rule image_subset_iff[Transfer.transferred])
lemma fimage_fsubsetI: "(⋀x. x |∈| A ⟹ f x |∈| B) ⟹ f |`| A |⊆| B"
by (rule image_subsetI[Transfer.transferred])
lemma fimage_ident[simp]: "(λx. x) |`| Y = Y"
by (rule image_ident[Transfer.transferred])
lemma if_split_fmem1: "((if Q then x else y) |∈| b) = ((Q ⟶ x |∈| b) ∧ (¬ Q ⟶ y |∈| b))"
by (rule if_split_mem1[Transfer.transferred])
lemma if_split_fmem2: "(a |∈| (if Q then x else y)) = ((Q ⟶ a |∈| x) ∧ (¬ Q ⟶ a |∈| y))"
by (rule if_split_mem2[Transfer.transferred])
lemma pfsubsetI[intro!,no_atp]: "A |⊆| B ⟹ A ≠ B ⟹ A |⊂| B"
by (rule psubsetI[Transfer.transferred])
lemma pfsubsetE[elim!,no_atp]: "A |⊂| B ⟹ (A |⊆| B ⟹ ¬ B |⊆| A ⟹ R) ⟹ R"
by (rule psubsetE[Transfer.transferred])
lemma pfsubset_finsert_iff:
"(A |⊂| finsert x B) =
(if x |∈| B then A |⊂| B else if x |∈| A then A |-| {|x|} |⊂| B else A |⊆| B)"
by (rule psubset_insert_iff[Transfer.transferred])
lemma pfsubset_eq: "(A |⊂| B) = (A |⊆| B ∧ A ≠ B)"
by (rule psubset_eq[Transfer.transferred])
lemma pfsubset_imp_fsubset: "A |⊂| B ⟹ A |⊆| B"
by (rule psubset_imp_subset[Transfer.transferred])
lemma pfsubset_trans: "A |⊂| B ⟹ B |⊂| C ⟹ A |⊂| C"
by (rule psubset_trans[Transfer.transferred])
lemma pfsubsetD: "A |⊂| B ⟹ c |∈| A ⟹ c |∈| B"
by (rule psubsetD[Transfer.transferred])
lemma pfsubset_fsubset_trans: "A |⊂| B ⟹ B |⊆| C ⟹ A |⊂| C"
by (rule psubset_subset_trans[Transfer.transferred])
lemma fsubset_pfsubset_trans: "A |⊆| B ⟹ B |⊂| C ⟹ A |⊂| C"
by (rule subset_psubset_trans[Transfer.transferred])
lemma pfsubset_imp_ex_fmem: "A |⊂| B ⟹ ∃b. b |∈| B |-| A"
by (rule psubset_imp_ex_mem[Transfer.transferred])
lemma fimage_fPow_mono: "f |`| A |⊆| B ⟹ (|`|) f |`| fPow A |⊆| fPow B"
by (rule image_Pow_mono[Transfer.transferred])
lemma fimage_fPow_surj: "f |`| A = B ⟹ (|`|) f |`| fPow A = fPow B"
by (rule image_Pow_surj[Transfer.transferred])
lemma fsubset_finsertI: "B |⊆| finsert a B"
by (rule subset_insertI[Transfer.transferred])
lemma fsubset_finsertI2: "A |⊆| B ⟹ A |⊆| finsert b B"
by (rule subset_insertI2[Transfer.transferred])
lemma fsubset_finsert: "x |∉| A ⟹ (A |⊆| finsert x B) = (A |⊆| B)"
by (rule subset_insert[Transfer.transferred])
lemma funion_upper1: "A |⊆| A |∪| B"
by (rule Un_upper1[Transfer.transferred])
lemma funion_upper2: "B |⊆| A |∪| B"
by (rule Un_upper2[Transfer.transferred])
lemma funion_least: "A |⊆| C ⟹ B |⊆| C ⟹ A |∪| B |⊆| C"
by (rule Un_least[Transfer.transferred])
lemma finter_lower1: "A |∩| B |⊆| A"
by (rule Int_lower1[Transfer.transferred])
lemma finter_lower2: "A |∩| B |⊆| B"
by (rule Int_lower2[Transfer.transferred])
lemma finter_greatest: "C |⊆| A ⟹ C |⊆| B ⟹ C |⊆| A |∩| B"
by (rule Int_greatest[Transfer.transferred])
lemma fminus_fsubset: "A |-| B |⊆| A"
by (rule Diff_subset[Transfer.transferred])
lemma fminus_fsubset_conv: "(A |-| B |⊆| C) = (A |⊆| B |∪| C)"
by (rule Diff_subset_conv[Transfer.transferred])
lemma fsubset_fempty[simp]: "(A |⊆| {||}) = (A = {||})"
by (rule subset_empty[Transfer.transferred])
lemma not_pfsubset_fempty[iff]: "¬ A |⊂| {||}"
by (rule not_psubset_empty[Transfer.transferred])
lemma finsert_is_funion: "finsert a A = {|a|} |∪| A"
by (rule insert_is_Un[Transfer.transferred])
lemma finsert_not_fempty[simp]: "finsert a A ≠ {||}"
by (rule insert_not_empty[Transfer.transferred])
lemma fempty_not_finsert: "{||} ≠ finsert a A"
by (rule empty_not_insert[Transfer.transferred])
lemma finsert_absorb: "a |∈| A ⟹ finsert a A = A"
by (rule insert_absorb[Transfer.transferred])
lemma finsert_absorb2[simp]: "finsert x (finsert x A) = finsert x A"
by (rule insert_absorb2[Transfer.transferred])
lemma finsert_commute: "finsert x (finsert y A) = finsert y (finsert x A)"
by (rule insert_commute[Transfer.transferred])
lemma finsert_fsubset[simp]: "(finsert x A |⊆| B) = (x |∈| B ∧ A |⊆| B)"
by (rule insert_subset[Transfer.transferred])
lemma finsert_inter_finsert[simp]: "finsert a A |∩| finsert a B = finsert a (A |∩| B)"
by (rule insert_inter_insert[Transfer.transferred])
lemma finsert_disjoint[simp,no_atp]:
"(finsert a A |∩| B = {||}) = (a |∉| B ∧ A |∩| B = {||})"
"({||} = finsert a A |∩| B) = (a |∉| B ∧ {||} = A |∩| B)"
by (rule insert_disjoint[Transfer.transferred])+
lemma disjoint_finsert[simp,no_atp]:
"(B |∩| finsert a A = {||}) = (a |∉| B ∧ B |∩| A = {||})"
"({||} = A |∩| finsert b B) = (b |∉| A ∧ {||} = A |∩| B)"
by (rule disjoint_insert[Transfer.transferred])+
lemma fimage_fempty[simp]: "f |`| {||} = {||}"
by (rule image_empty[Transfer.transferred])
lemma fimage_finsert[simp]: "f |`| finsert a B = finsert (f a) (f |`| B)"
by (rule image_insert[Transfer.transferred])
lemma fimage_constant: "x |∈| A ⟹ (λx. c) |`| A = {|c|}"
by (rule image_constant[Transfer.transferred])
lemma fimage_constant_conv: "(λx. c) |`| A = (if A = {||} then {||} else {|c|})"
by (rule image_constant_conv[Transfer.transferred])
lemma fimage_fimage: "f |`| g |`| A = (λx. f (g x)) |`| A"
by (rule image_image[Transfer.transferred])
lemma finsert_fimage[simp]: "x |∈| A ⟹ finsert (f x) (f |`| A) = f |`| A"
by (rule insert_image[Transfer.transferred])
lemma fimage_is_fempty[iff]: "(f |`| A = {||}) = (A = {||})"
by (rule image_is_empty[Transfer.transferred])
lemma fempty_is_fimage[iff]: "({||} = f |`| A) = (A = {||})"
by (rule empty_is_image[Transfer.transferred])
lemma fimage_cong: "M = N ⟹ (⋀x. x |∈| N ⟹ f x = g x) ⟹ f |`| M = g |`| N"
by (rule image_cong[Transfer.transferred])
lemma fimage_finter_fsubset: "f |`| (A |∩| B) |⊆| f |`| A |∩| f |`| B"
by (rule image_Int_subset[Transfer.transferred])
lemma fimage_fminus_fsubset: "f |`| A |-| f |`| B |⊆| f |`| (A |-| B)"
by (rule image_diff_subset[Transfer.transferred])
lemma finter_absorb: "A |∩| A = A"
by (rule Int_absorb[Transfer.transferred])
lemma finter_left_absorb: "A |∩| (A |∩| B) = A |∩| B"
by (rule Int_left_absorb[Transfer.transferred])
lemma finter_commute: "A |∩| B = B |∩| A"
by (rule Int_commute[Transfer.transferred])
lemma finter_left_commute: "A |∩| (B |∩| C) = B |∩| (A |∩| C)"
by (rule Int_left_commute[Transfer.transferred])
lemma finter_assoc: "A |∩| B |∩| C = A |∩| (B |∩| C)"
by (rule Int_assoc[Transfer.transferred])
lemma finter_ac:
"A |∩| B |∩| C = A |∩| (B |∩| C)"
"A |∩| (A |∩| B) = A |∩| B"
"A |∩| B = B |∩| A"
"A |∩| (B |∩| C) = B |∩| (A |∩| C)"
by (rule Int_ac[Transfer.transferred])+
lemma finter_absorb1: "B |⊆| A ⟹ A |∩| B = B"
by (rule Int_absorb1[Transfer.transferred])
lemma finter_absorb2: "A |⊆| B ⟹ A |∩| B = A"
by (rule Int_absorb2[Transfer.transferred])
lemma finter_fempty_left: "{||} |∩| B = {||}"
by (rule Int_empty_left[Transfer.transferred])
lemma finter_fempty_right: "A |∩| {||} = {||}"
by (rule Int_empty_right[Transfer.transferred])
lemma disjoint_iff_fnot_equal: "(A |∩| B = {||}) = fBall A (λx. fBall B ((≠) x))"
by (rule disjoint_iff_not_equal[Transfer.transferred])
lemma finter_funion_distrib: "A |∩| (B |∪| C) = A |∩| B |∪| (A |∩| C)"
by (rule Int_Un_distrib[Transfer.transferred])
lemma finter_funion_distrib2: "B |∪| C |∩| A = B |∩| A |∪| (C |∩| A)"
by (rule Int_Un_distrib2[Transfer.transferred])
lemma finter_fsubset_iff[no_atp, simp]: "(C |⊆| A |∩| B) = (C |⊆| A ∧ C |⊆| B)"
by (rule Int_subset_iff[Transfer.transferred])
lemma funion_absorb: "A |∪| A = A"
by (rule Un_absorb[Transfer.transferred])
lemma funion_left_absorb: "A |∪| (A |∪| B) = A |∪| B"
by (rule Un_left_absorb[Transfer.transferred])
lemma funion_commute: "A |∪| B = B |∪| A"
by (rule Un_commute[Transfer.transferred])
lemma funion_left_commute: "A |∪| (B |∪| C) = B |∪| (A |∪| C)"
by (rule Un_left_commute[Transfer.transferred])
lemma funion_assoc: "A |∪| B |∪| C = A |∪| (B |∪| C)"
by (rule Un_assoc[Transfer.transferred])
lemma funion_ac:
"A |∪| B |∪| C = A |∪| (B |∪| C)"
"A |∪| (A |∪| B) = A |∪| B"
"A |∪| B = B |∪| A"
"A |∪| (B |∪| C) = B |∪| (A |∪| C)"
by (rule Un_ac[Transfer.transferred])+
lemma funion_absorb1: "A |⊆| B ⟹ A |∪| B = B"
by (rule Un_absorb1[Transfer.transferred])
lemma funion_absorb2: "B |⊆| A ⟹ A |∪| B = A"
by (rule Un_absorb2[Transfer.transferred])
lemma funion_fempty_left: "{||} |∪| B = B"
by (rule Un_empty_left[Transfer.transferred])
lemma funion_fempty_right: "A |∪| {||} = A"
by (rule Un_empty_right[Transfer.transferred])
lemma funion_finsert_left[simp]: "finsert a B |∪| C = finsert a (B |∪| C)"
by (rule Un_insert_left[Transfer.transferred])
lemma funion_finsert_right[simp]: "A |∪| finsert a B = finsert a (A |∪| B)"
by (rule Un_insert_right[Transfer.transferred])
lemma finter_finsert_left: "finsert a B |∩| C = (if a |∈| C then finsert a (B |∩| C) else B |∩| C)"
by (rule Int_insert_left[Transfer.transferred])
lemma finter_finsert_left_ifffempty[simp]: "a |∉| C ⟹ finsert a B |∩| C = B |∩| C"
by (rule Int_insert_left_if0[Transfer.transferred])
lemma finter_finsert_left_if1[simp]: "a |∈| C ⟹ finsert a B |∩| C = finsert a (B |∩| C)"
by (rule Int_insert_left_if1[Transfer.transferred])
lemma finter_finsert_right:
"A |∩| finsert a B = (if a |∈| A then finsert a (A |∩| B) else A |∩| B)"
by (rule Int_insert_right[Transfer.transferred])
lemma finter_finsert_right_ifffempty[simp]: "a |∉| A ⟹ A |∩| finsert a B = A |∩| B"
by (rule Int_insert_right_if0[Transfer.transferred])
lemma finter_finsert_right_if1[simp]: "a |∈| A ⟹ A |∩| finsert a B = finsert a (A |∩| B)"
by (rule Int_insert_right_if1[Transfer.transferred])
lemma funion_finter_distrib: "A |∪| (B |∩| C) = A |∪| B |∩| (A |∪| C)"
by (rule Un_Int_distrib[Transfer.transferred])
lemma funion_finter_distrib2: "B |∩| C |∪| A = B |∪| A |∩| (C |∪| A)"
by (rule Un_Int_distrib2[Transfer.transferred])
lemma funion_finter_crazy:
"A |∩| B |∪| (B |∩| C) |∪| (C |∩| A) = A |∪| B |∩| (B |∪| C) |∩| (C |∪| A)"
by (rule Un_Int_crazy[Transfer.transferred])
lemma fsubset_funion_eq: "(A |⊆| B) = (A |∪| B = B)"
by (rule subset_Un_eq[Transfer.transferred])
lemma funion_fempty[iff]: "(A |∪| B = {||}) = (A = {||} ∧ B = {||})"
by (rule Un_empty[Transfer.transferred])
lemma funion_fsubset_iff[no_atp, simp]: "(A |∪| B |⊆| C) = (A |⊆| C ∧ B |⊆| C)"
by (rule Un_subset_iff[Transfer.transferred])
lemma funion_fminus_finter: "A |-| B |∪| (A |∩| B) = A"
by (rule Un_Diff_Int[Transfer.transferred])
lemma ffunion_empty[simp]: "ffUnion {||} = {||}"
by (rule Union_empty[Transfer.transferred])
lemma ffunion_mono: "A |⊆| B ⟹ ffUnion A |⊆| ffUnion B"
by (rule Union_mono[Transfer.transferred])
lemma ffunion_insert[simp]: "ffUnion (finsert a B) = a |∪| ffUnion B"
by (rule Union_insert[Transfer.transferred])
lemma fminus_finter2: "A |∩| C |-| (B |∩| C) = A |∩| C |-| B"
by (rule Diff_Int2[Transfer.transferred])
lemma funion_finter_assoc_eq: "(A |∩| B |∪| C = A |∩| (B |∪| C)) = (C |⊆| A)"
by (rule Un_Int_assoc_eq[Transfer.transferred])
lemma fBall_funion: "fBall (A |∪| B) P = (fBall A P ∧ fBall B P)"
by (rule ball_Un[Transfer.transferred])
lemma fBex_funion: "fBex (A |∪| B) P = (fBex A P ∨ fBex B P)"
by (rule bex_Un[Transfer.transferred])
lemma fminus_eq_fempty_iff[simp,no_atp]: "(A |-| B = {||}) = (A |⊆| B)"
by (rule Diff_eq_empty_iff[Transfer.transferred])
lemma fminus_cancel[simp]: "A |-| A = {||}"
by (rule Diff_cancel[Transfer.transferred])
lemma fminus_idemp[simp]: "A |-| B |-| B = A |-| B"
by (rule Diff_idemp[Transfer.transferred])
lemma fminus_triv: "A |∩| B = {||} ⟹ A |-| B = A"
by (rule Diff_triv[Transfer.transferred])
lemma fempty_fminus[simp]: "{||} |-| A = {||}"
by (rule empty_Diff[Transfer.transferred])
lemma fminus_fempty[simp]: "A |-| {||} = A"
by (rule Diff_empty[Transfer.transferred])
lemma fminus_finsertffempty[simp,no_atp]: "x |∉| A ⟹ A |-| finsert x B = A |-| B"
by (rule Diff_insert0[Transfer.transferred])
lemma fminus_finsert: "A |-| finsert a B = A |-| B |-| {|a|}"
by (rule Diff_insert[Transfer.transferred])
lemma fminus_finsert2: "A |-| finsert a B = A |-| {|a|} |-| B"
by (rule Diff_insert2[Transfer.transferred])
lemma finsert_fminus_if: "finsert x A |-| B = (if x |∈| B then A |-| B else finsert x (A |-| B))"
by (rule insert_Diff_if[Transfer.transferred])
lemma finsert_fminus1[simp]: "x |∈| B ⟹ finsert x A |-| B = A |-| B"
by (rule insert_Diff1[Transfer.transferred])
lemma finsert_fminus_single[simp]: "finsert a (A |-| {|a|}) = finsert a A"
by (rule insert_Diff_single[Transfer.transferred])
lemma finsert_fminus: "a |∈| A ⟹ finsert a (A |-| {|a|}) = A"
by (rule insert_Diff[Transfer.transferred])
lemma fminus_finsert_absorb: "x |∉| A ⟹ finsert x A |-| {|x|} = A"
by (rule Diff_insert_absorb[Transfer.transferred])
lemma fminus_disjoint[simp]: "A |∩| (B |-| A) = {||}"
by (rule Diff_disjoint[Transfer.transferred])
lemma fminus_partition: "A |⊆| B ⟹ A |∪| (B |-| A) = B"
by (rule Diff_partition[Transfer.transferred])
lemma double_fminus: "A |⊆| B ⟹ B |⊆| C ⟹ B |-| (C |-| A) = A"
by (rule double_diff[Transfer.transferred])
lemma funion_fminus_cancel[simp]: "A |∪| (B |-| A) = A |∪| B"
by (rule Un_Diff_cancel[Transfer.transferred])
lemma funion_fminus_cancel2[simp]: "B |-| A |∪| A = B |∪| A"
by (rule Un_Diff_cancel2[Transfer.transferred])
lemma fminus_funion: "A |-| (B |∪| C) = A |-| B |∩| (A |-| C)"
by (rule Diff_Un[Transfer.transferred])
lemma fminus_finter: "A |-| (B |∩| C) = A |-| B |∪| (A |-| C)"
by (rule Diff_Int[Transfer.transferred])
lemma funion_fminus: "A |∪| B |-| C = A |-| C |∪| (B |-| C)"
by (rule Un_Diff[Transfer.transferred])
lemma finter_fminus: "A |∩| B |-| C = A |∩| (B |-| C)"
by (rule Int_Diff[Transfer.transferred])
lemma fminus_finter_distrib: "C |∩| (A |-| B) = C |∩| A |-| (C |∩| B)"
by (rule Diff_Int_distrib[Transfer.transferred])
lemma fminus_finter_distrib2: "A |-| B |∩| C = A |∩| C |-| (B |∩| C)"
by (rule Diff_Int_distrib2[Transfer.transferred])
lemma fUNIV_bool[no_atp]: "fUNIV = {|False, True|}"
by (rule UNIV_bool[Transfer.transferred])
lemma fPow_fempty[simp]: "fPow {||} = {|{||}|}"
by (rule Pow_empty[Transfer.transferred])
lemma fPow_finsert: "fPow (finsert a A) = fPow A |∪| finsert a |`| fPow A"
by (rule Pow_insert[Transfer.transferred])
lemma funion_fPow_fsubset: "fPow A |∪| fPow B |⊆| fPow (A |∪| B)"
by (rule Un_Pow_subset[Transfer.transferred])
lemma fPow_finter_eq[simp]: "fPow (A |∩| B) = fPow A |∩| fPow B"
by (rule Pow_Int_eq[Transfer.transferred])
lemma fset_eq_fsubset: "(A = B) = (A |⊆| B ∧ B |⊆| A)"
by (rule set_eq_subset[Transfer.transferred])
lemma fsubset_iff[no_atp]: "(A |⊆| B) = (∀t. t |∈| A ⟶ t |∈| B)"
by (rule subset_iff[Transfer.transferred])
lemma fsubset_iff_pfsubset_eq: "(A |⊆| B) = (A |⊂| B ∨ A = B)"
by (rule subset_iff_psubset_eq[Transfer.transferred])
lemma all_not_fin_conv[simp]: "(∀x. x |∉| A) = (A = {||})"
by (rule all_not_in_conv[Transfer.transferred])
lemma ex_fin_conv: "(∃x. x |∈| A) = (A ≠ {||})"
by (rule ex_in_conv[Transfer.transferred])
lemma fimage_mono: "A |⊆| B ⟹ f |`| A |⊆| f |`| B"
by (rule image_mono[Transfer.transferred])
lemma fPow_mono: "A |⊆| B ⟹ fPow A |⊆| fPow B"
by (rule Pow_mono[Transfer.transferred])
lemma finsert_mono: "C |⊆| D ⟹ finsert a C |⊆| finsert a D"
by (rule insert_mono[Transfer.transferred])
lemma funion_mono: "A |⊆| C ⟹ B |⊆| D ⟹ A |∪| B |⊆| C |∪| D"
by (rule Un_mono[Transfer.transferred])
lemma finter_mono: "A |⊆| C ⟹ B |⊆| D ⟹ A |∩| B |⊆| C |∩| D"
by (rule Int_mono[Transfer.transferred])
lemma fminus_mono: "A |⊆| C ⟹ D |⊆| B ⟹ A |-| B |⊆| C |-| D"
by (rule Diff_mono[Transfer.transferred])
lemma fin_mono: "A |⊆| B ⟹ x |∈| A ⟶ x |∈| B"
by (rule in_mono[Transfer.transferred])
lemma fthe_felem_eq[simp]: "fthe_elem {|x|} = x"
by (rule the_elem_eq[Transfer.transferred])
lemma fLeast_mono:
"mono f ⟹ fBex S (λx. fBall S ((≤) x)) ⟹ (LEAST y. y |∈| f |`| S) = f (LEAST x. x |∈| S)"
by (rule Least_mono[Transfer.transferred])
lemma fbind_fbind: "fbind (fbind A B) C = fbind A (λx. fbind (B x) C)"
by (rule Set.bind_bind[Transfer.transferred])
lemma fempty_fbind[simp]: "fbind {||} f = {||}"
by (rule empty_bind[Transfer.transferred])
lemma nonfempty_fbind_const: "A ≠ {||} ⟹ fbind A (λ_. B) = B"
by (rule nonempty_bind_const[Transfer.transferred])
lemma fbind_const: "fbind A (λ_. B) = (if A = {||} then {||} else B)"
by (rule bind_const[Transfer.transferred])
lemma ffmember_filter[simp]: "(x |∈| ffilter P A) = (x |∈| A ∧ P x)"
by (rule member_filter[Transfer.transferred])
lemma fequalityI: "A |⊆| B ⟹ B |⊆| A ⟹ A = B"
by (rule equalityI[Transfer.transferred])
lemma fset_of_list_simps[simp]:
"fset_of_list [] = {||}"
"fset_of_list (x21 # x22) = finsert x21 (fset_of_list x22)"
by (rule set_simps[Transfer.transferred])+
lemma fset_of_list_append[simp]: "fset_of_list (xs @ ys) = fset_of_list xs |∪| fset_of_list ys"
by (rule set_append[Transfer.transferred])
lemma fset_of_list_rev[simp]: "fset_of_list (rev xs) = fset_of_list xs"
by (rule set_rev[Transfer.transferred])
lemma fset_of_list_map[simp]: "fset_of_list (map f xs) = f |`| fset_of_list xs"
by (rule set_map[Transfer.transferred])
subsection ‹Additional lemmas›
subsubsection ‹‹ffUnion››
lemma ffUnion_funion_distrib[simp]: "ffUnion (A |∪| B) = ffUnion A |∪| ffUnion B"
by (rule Union_Un_distrib[Transfer.transferred])
subsubsection ‹‹fbind››
lemma fbind_cong[fundef_cong]: "A = B ⟹ (⋀x. x |∈| B ⟹ f x = g x) ⟹ fbind A f = fbind B g"
by transfer force
subsubsection ‹‹fsingleton››
lemma fsingletonE: " b |∈| {|a|} ⟹ (b = a ⟹ thesis) ⟹ thesis"
by (rule fsingletonD [elim_format])
subsubsection ‹‹femepty››
lemma fempty_ffilter[simp]: "ffilter (λ_. False) A = {||}"
by transfer auto
lemma femptyE [elim!]: "a |∈| {||} ⟹ P"
by simp
subsubsection ‹‹fset››
lemma fset_simps[simp]:
"fset {||} = {}"
"fset (finsert x X) = insert x (fset X)"
by (rule bot_fset.rep_eq finsert.rep_eq)+
lemma finite_fset [simp]:
shows "finite (fset S)"
by transfer simp
lemmas fset_cong = fset_inject
lemma filter_fset [simp]:
shows "fset (ffilter P xs) = Collect P ∩ fset xs"
by transfer auto
lemma inter_fset[simp]: "fset (A |∩| B) = fset A ∩ fset B"
by (rule inf_fset.rep_eq)
lemma union_fset[simp]: "fset (A |∪| B) = fset A ∪ fset B"
by (rule sup_fset.rep_eq)
lemma minus_fset[simp]: "fset (A |-| B) = fset A - fset B"
by (rule minus_fset.rep_eq)
subsubsection ‹‹ffilter››
lemma subset_ffilter:
"ffilter P A |⊆| ffilter Q A = (∀ x. x |∈| A ⟶ P x ⟶ Q x)"
by transfer auto
lemma eq_ffilter:
"(ffilter P A = ffilter Q A) = (∀x. x |∈| A ⟶ P x = Q x)"
by transfer auto
lemma pfsubset_ffilter:
"(⋀x. x |∈| A ⟹ P x ⟹ Q x) ⟹ (x |∈| A ∧ ¬ P x ∧ Q x) ⟹
ffilter P A |⊂| ffilter Q A"
unfolding less_fset_def by (auto simp add: subset_ffilter eq_ffilter)
subsubsection ‹‹fset_of_list››
lemma fset_of_list_filter[simp]:
"fset_of_list (filter P xs) = ffilter P (fset_of_list xs)"
by transfer (auto simp: Set.filter_def)
lemma fset_of_list_subset[intro]:
"set xs ⊆ set ys ⟹ fset_of_list xs |⊆| fset_of_list ys"
by transfer simp
lemma fset_of_list_elem: "(x |∈| fset_of_list xs) ⟷ (x ∈ set xs)"
by transfer simp
subsubsection ‹‹finsert››
lemma set_finsert:
assumes "x |∈| A"
obtains B where "A = finsert x B" and "x |∉| B"
using assms by transfer (metis Set.set_insert finite_insert)
lemma mk_disjoint_finsert: "a |∈| A ⟹ ∃B. A = finsert a B ∧ a |∉| B"
by (rule exI [where x = "A |-| {|a|}"]) blast
lemma finsert_eq_iff:
assumes "a |∉| A" and "b |∉| B"
shows "(finsert a A = finsert b B) =
(if a = b then A = B else ∃C. A = finsert b C ∧ b |∉| C ∧ B = finsert a C ∧ a |∉| C)"
using assms by transfer (force simp: insert_eq_iff)
subsubsection ‹‹fimage››
lemma subset_fimage_iff: "(B |⊆| f|`|A) = (∃ AA. AA |⊆| A ∧ B = f|`|AA)"
by transfer (metis mem_Collect_eq rev_finite_subset subset_image_iff)
lemma fimage_strict_mono:
assumes "inj_on f (fset B)" and "A |⊂| B"
shows "f |`| A |⊂| f |`| B"
proof (rule pfsubsetI)
from ‹A |⊂| B› have "A |⊆| B"
by (rule pfsubset_imp_fsubset)
thus "f |`| A |⊆| f |`| B"
by (rule fimage_mono)
next
from ‹A |⊂| B› have "A |⊆| B" and "A ≠ B"
by (simp_all add: pfsubset_eq)
have "fset A ≠ fset B"
using ‹A ≠ B›
by (simp add: fset_cong)
hence "f ` fset A ≠ f ` fset B"
using ‹A |⊆| B›
by (simp add: inj_on_image_eq_iff[OF ‹inj_on f (fset B)›] less_eq_fset.rep_eq)
hence "fset (f |`| A) ≠ fset (f |`| B)"
by (simp add: fimage.rep_eq)
thus "f |`| A ≠ f |`| B"
by (simp add: fset_cong)
qed
subsubsection ‹bounded quantification›
lemma bex_simps [simp, no_atp]:
"⋀A P Q. fBex A (λx. P x ∧ Q) = (fBex A P ∧ Q)"
"⋀A P Q. fBex A (λx. P ∧ Q x) = (P ∧ fBex A Q)"
"⋀P. fBex {||} P = False"
"⋀a B P. fBex (finsert a B) P = (P a ∨ fBex B P)"
"⋀A P f. fBex (f |`| A) P = fBex A (λx. P (f x))"
"⋀A P. (¬ fBex A P) = fBall A (λx. ¬ P x)"
by auto
lemma ball_simps [simp, no_atp]:
"⋀A P Q. fBall A (λx. P x ∨ Q) = (fBall A P ∨ Q)"
"⋀A P Q. fBall A (λx. P ∨ Q x) = (P ∨ fBall A Q)"
"⋀A P Q. fBall A (λx. P ⟶ Q x) = (P ⟶ fBall A Q)"
"⋀A P Q. fBall A (λx. P x ⟶ Q) = (fBex A P ⟶ Q)"
"⋀P. fBall {||} P = True"
"⋀a B P. fBall (finsert a B) P = (P a ∧ fBall B P)"
"⋀A P f. fBall (f |`| A) P = fBall A (λx. P (f x))"
"⋀A P. (¬ fBall A P) = fBex A (λx. ¬ P x)"
by auto
lemma atomize_fBall:
"(⋀x. x |∈| A ==> P x) == Trueprop (fBall A (λx. P x))"
by (simp add: Set.atomize_ball)
lemma fBall_mono[mono]: "P ≤ Q ⟹ fBall S P ≤ fBall S Q"
by auto
lemma fBex_mono[mono]: "P ≤ Q ⟹ fBex S P ≤ fBex S Q"
by auto
end
subsubsection ‹‹fcard››
lemma fcard_fempty:
"fcard {||} = 0"
by transfer (rule card.empty)
lemma fcard_finsert_disjoint:
"x |∉| A ⟹ fcard (finsert x A) = Suc (fcard A)"
by transfer (rule card_insert_disjoint)
lemma fcard_finsert_if:
"fcard (finsert x A) = (if x |∈| A then fcard A else Suc (fcard A))"
by transfer (rule card_insert_if)
lemma fcard_0_eq [simp, no_atp]:
"fcard A = 0 ⟷ A = {||}"
by transfer (rule card_0_eq)
lemma fcard_Suc_fminus1:
"x |∈| A ⟹ Suc (fcard (A |-| {|x|})) = fcard A"
by transfer (rule card_Suc_Diff1)
lemma fcard_fminus_fsingleton:
"x |∈| A ⟹ fcard (A |-| {|x|}) = fcard A - 1"
by transfer (rule card_Diff_singleton)
lemma fcard_fminus_fsingleton_if:
"fcard (A |-| {|x|}) = (if x |∈| A then fcard A - 1 else fcard A)"
by transfer (rule card_Diff_singleton_if)
lemma fcard_fminus_finsert[simp]:
assumes "a |∈| A" and "a |∉| B"
shows "fcard (A |-| finsert a B) = fcard (A |-| B) - 1"
using assms by transfer (rule card_Diff_insert)
lemma fcard_finsert: "fcard (finsert x A) = Suc (fcard (A |-| {|x|}))"
by transfer (rule card.insert_remove)
lemma fcard_finsert_le: "fcard A ≤ fcard (finsert x A)"
by transfer (rule card_insert_le)
lemma fcard_mono:
"A |⊆| B ⟹ fcard A ≤ fcard B"
by transfer (rule card_mono)
lemma fcard_seteq: "A |⊆| B ⟹ fcard B ≤ fcard A ⟹ A = B"
by transfer (rule card_seteq)
lemma pfsubset_fcard_mono: "A |⊂| B ⟹ fcard A < fcard B"
by transfer (rule psubset_card_mono)
lemma fcard_funion_finter:
"fcard A + fcard B = fcard (A |∪| B) + fcard (A |∩| B)"
by transfer (rule card_Un_Int)
lemma fcard_funion_disjoint:
"A |∩| B = {||} ⟹ fcard (A |∪| B) = fcard A + fcard B"
by transfer (rule card_Un_disjoint)
lemma fcard_funion_fsubset:
"B |⊆| A ⟹ fcard (A |-| B) = fcard A - fcard B"
by transfer (rule card_Diff_subset)
lemma diff_fcard_le_fcard_fminus:
"fcard A - fcard B ≤ fcard(A |-| B)"
by transfer (rule diff_card_le_card_Diff)
lemma fcard_fminus1_less: "x |∈| A ⟹ fcard (A |-| {|x|}) < fcard A"
by transfer (rule card_Diff1_less)
lemma fcard_fminus2_less:
"x |∈| A ⟹ y |∈| A ⟹ fcard (A |-| {|x|} |-| {|y|}) < fcard A"
by transfer (rule card_Diff2_less)
lemma fcard_fminus1_le: "fcard (A |-| {|x|}) ≤ fcard A"
by transfer (rule card_Diff1_le)
lemma fcard_pfsubset: "A |⊆| B ⟹ fcard A < fcard B ⟹ A < B"
by transfer (rule card_psubset)
subsubsection ‹‹sorted_list_of_fset››
lemma sorted_list_of_fset_simps[simp]:
"set (sorted_list_of_fset S) = fset S"
"fset_of_list (sorted_list_of_fset S) = S"
by (transfer, simp)+
subsubsection ‹‹ffold››
context comp_fun_commute
begin
lemma ffold_empty[simp]: "ffold f z {||} = z"
by (rule fold_empty[Transfer.transferred])
lemma ffold_finsert [simp]:
assumes "x |∉| A"
shows "ffold f z (finsert x A) = f x (ffold f z A)"
using assms by (transfer fixing: f) (rule fold_insert)
lemma ffold_fun_left_comm:
"f x (ffold f z A) = ffold f (f x z) A"
by (transfer fixing: f) (rule fold_fun_left_comm)
lemma ffold_finsert2:
"x |∉| A ⟹ ffold f z (finsert x A) = ffold f (f x z) A"
by (transfer fixing: f) (rule fold_insert2)
lemma ffold_rec:
assumes "x |∈| A"
shows "ffold f z A = f x (ffold f z (A |-| {|x|}))"
using assms by (transfer fixing: f) (rule fold_rec)
lemma ffold_finsert_fremove:
"ffold f z (finsert x A) = f x (ffold f z (A |-| {|x|}))"
by (transfer fixing: f) (rule fold_insert_remove)
end
lemma ffold_fimage:
assumes "inj_on g (fset A)"
shows "ffold f z (g |`| A) = ffold (f ∘ g) z A"
using assms by transfer' (rule fold_image)
lemma ffold_cong:
assumes "comp_fun_commute f" "comp_fun_commute g"
"⋀x. x |∈| A ⟹ f x = g x"
and "s = t" and "A = B"
shows "ffold f s A = ffold g t B"
using assms[unfolded comp_fun_commute_def']
by transfer (meson Finite_Set.fold_cong subset_UNIV)
context comp_fun_idem
begin
lemma ffold_finsert_idem:
"ffold f z (finsert x A) = f x (ffold f z A)"
by (transfer fixing: f) (rule fold_insert_idem)
declare ffold_finsert [simp del] ffold_finsert_idem [simp]
lemma ffold_finsert_idem2:
"ffold f z (finsert x A) = ffold f (f x z) A"
by (transfer fixing: f) (rule fold_insert_idem2)
end
subsubsection ‹@{term fsubset}›
lemma wfP_pfsubset: "wfP (|⊂|)"
proof (rule wfp_if_convertible_to_nat)
show "⋀x y. x |⊂| y ⟹ fcard x < fcard y"
by (rule pfsubset_fcard_mono)
qed
subsubsection ‹Group operations›
locale comm_monoid_fset = comm_monoid
begin
sublocale set: comm_monoid_set ..
lift_definition F :: "('b ⇒ 'a) ⇒ 'b fset ⇒ 'a" is set.F .
lemma cong[fundef_cong]: "A = B ⟹ (⋀x. x |∈| B ⟹ g x = h x) ⟹ F g A = F h B"
by (rule set.cong[Transfer.transferred])
lemma cong_simp[cong]:
"⟦ A = B; ⋀x. x |∈| B =simp=> g x = h x ⟧ ⟹ F g A = F h B"
unfolding simp_implies_def by (auto cong: cong)
end
context comm_monoid_add begin
sublocale fsum: comm_monoid_fset plus 0
rewrites "comm_monoid_set.F plus 0 = sum"
defines fsum = fsum.F
proof -
show "comm_monoid_fset (+) 0" by standard
show "comm_monoid_set.F (+) 0 = sum" unfolding sum_def ..
qed
end
subsubsection ‹Semilattice operations›
locale semilattice_fset = semilattice
begin
sublocale set: semilattice_set ..
lift_definition F :: "'a fset ⇒ 'a" is set.F .
lemma eq_fold: "F (finsert x A) = ffold f x A"
by transfer (rule set.eq_fold)
lemma singleton [simp]: "F {|x|} = x"
by transfer (rule set.singleton)
lemma insert_not_elem: "x |∉| A ⟹ A ≠ {||} ⟹ F (finsert x A) = x ❙* F A"
by transfer (rule set.insert_not_elem)
lemma in_idem: "x |∈| A ⟹ x ❙* F A = F A"
by transfer (rule set.in_idem)
lemma insert [simp]: "A ≠ {||} ⟹ F (finsert x A) = x ❙* F A"
by transfer (rule set.insert)
end
locale semilattice_order_fset = binary?: semilattice_order + semilattice_fset
begin
end
context linorder begin
sublocale fMin: semilattice_order_fset min less_eq less
rewrites "semilattice_set.F min = Min"
defines fMin = fMin.F
proof -
show "semilattice_order_fset min (≤) (<)" by standard
show "semilattice_set.F min = Min" unfolding Min_def ..
qed
sublocale fMax: semilattice_order_fset max greater_eq greater
rewrites "semilattice_set.F max = Max"
defines fMax = fMax.F
proof -
show "semilattice_order_fset max (≥) (>)"
by standard
show "semilattice_set.F max = Max"
unfolding Max_def ..
qed
end
lemma mono_fMax_commute: "mono f ⟹ A ≠ {||} ⟹ f (fMax A) = fMax (f |`| A)"
by transfer (rule mono_Max_commute)
lemma mono_fMin_commute: "mono f ⟹ A ≠ {||} ⟹ f (fMin A) = fMin (f |`| A)"
by transfer (rule mono_Min_commute)
lemma fMax_in[simp]: "A ≠ {||} ⟹ fMax A |∈| A"
by transfer (rule Max_in)
lemma fMin_in[simp]: "A ≠ {||} ⟹ fMin A |∈| A"
by transfer (rule Min_in)
lemma fMax_ge[simp]: "x |∈| A ⟹ x ≤ fMax A"
by transfer (rule Max_ge)
lemma fMin_le[simp]: "x |∈| A ⟹ fMin A ≤ x"
by transfer (rule Min_le)
lemma fMax_eqI: "(⋀y. y |∈| A ⟹ y ≤ x) ⟹ x |∈| A ⟹ fMax A = x"
by transfer (rule Max_eqI)
lemma fMin_eqI: "(⋀y. y |∈| A ⟹ x ≤ y) ⟹ x |∈| A ⟹ fMin A = x"
by transfer (rule Min_eqI)
lemma fMax_finsert[simp]: "fMax (finsert x A) = (if A = {||} then x else max x (fMax A))"
by transfer simp
lemma fMin_finsert[simp]: "fMin (finsert x A) = (if A = {||} then x else min x (fMin A))"
by transfer simp
context linorder begin
lemma fset_linorder_max_induct[case_names fempty finsert]:
assumes "P {||}"
and "⋀x S. ⟦∀y. y |∈| S ⟶ y < x; P S⟧ ⟹ P (finsert x S)"
shows "P S"
proof -
note Domainp_forall_transfer[transfer_rule]
show ?thesis
using assms by (transfer fixing: less) (auto intro: finite_linorder_max_induct)
qed
lemma fset_linorder_min_induct[case_names fempty finsert]:
assumes "P {||}"
and "⋀x S. ⟦∀y. y |∈| S ⟶ y > x; P S⟧ ⟹ P (finsert x S)"
shows "P S"
proof -
note Domainp_forall_transfer[transfer_rule]
show ?thesis
using assms by (transfer fixing: less) (auto intro: finite_linorder_min_induct)
qed
end
subsection ‹Choice in fsets›
lemma fset_choice:
assumes "∀x. x |∈| A ⟶ (∃y. P x y)"
shows "∃f. ∀x. x |∈| A ⟶ P x (f x)"
using assms by transfer metis
subsection ‹Induction and Cases rules for fsets›
lemma fset_exhaust [case_names empty insert, cases type: fset]:
assumes fempty_case: "S = {||} ⟹ P"
and finsert_case: "⋀x S'. S = finsert x S' ⟹ P"
shows "P"
using assms by transfer blast
lemma fset_induct [case_names empty insert]:
assumes fempty_case: "P {||}"
and finsert_case: "⋀x S. P S ⟹ P (finsert x S)"
shows "P S"
proof -
note Domainp_forall_transfer[transfer_rule]
show ?thesis
using assms by transfer (auto intro: finite_induct)
qed
lemma fset_induct_stronger [case_names empty insert, induct type: fset]:
assumes empty_fset_case: "P {||}"
and insert_fset_case: "⋀x S. ⟦x |∉| S; P S⟧ ⟹ P (finsert x S)"
shows "P S"
proof -
note Domainp_forall_transfer[transfer_rule]
show ?thesis
using assms by transfer (auto intro: finite_induct)
qed
lemma fset_card_induct:
assumes empty_fset_case: "P {||}"
and card_fset_Suc_case: "⋀S T. Suc (fcard S) = (fcard T) ⟹ P S ⟹ P T"
shows "P S"
proof (induct S)
case empty
show "P {||}" by (rule empty_fset_case)
next
case (insert x S)
have h: "P S" by fact
have "x |∉| S" by fact
then have "Suc (fcard S) = fcard (finsert x S)"
by transfer auto
then show "P (finsert x S)"
using h card_fset_Suc_case by simp
qed
lemma fset_strong_cases:
obtains "xs = {||}"
| ys x where "x |∉| ys" and "xs = finsert x ys"
by auto
lemma fset_induct2:
"P {||} {||} ⟹
(⋀x xs. x |∉| xs ⟹ P (finsert x xs) {||}) ⟹
(⋀y ys. y |∉| ys ⟹ P {||} (finsert y ys)) ⟹
(⋀x xs y ys. ⟦P xs ys; x |∉| xs; y |∉| ys⟧ ⟹ P (finsert x xs) (finsert y ys)) ⟹
P xsa ysa"
by (induct xsa arbitrary: ysa; metis fset_induct_stronger)
subsection ‹Lemmas depending on induction›
lemma ffUnion_fsubset_iff: "ffUnion A |⊆| B ⟷ fBall A (λx. x |⊆| B)"
by (induction A) simp_all
subsection ‹Setup for Lifting/Transfer›
subsubsection ‹Relator and predicator properties›
lift_definition rel_fset :: "('a ⇒ 'b ⇒ bool) ⇒ 'a fset ⇒ 'b fset ⇒ bool" is rel_set
parametric rel_set_transfer .
lemma rel_fset_alt_def: "rel_fset R = (λA B. (∀x.∃y. x|∈|A ⟶ y|∈|B ∧ R x y)
∧ (∀y. ∃x. y|∈|B ⟶ x|∈|A ∧ R x y))"
by transfer' (metis (no_types, opaque_lifting) rel_set_def)
lemma finite_rel_set:
assumes fin: "finite X" "finite Z"
assumes R_S: "rel_set (R OO S) X Z"
shows "∃Y. finite Y ∧ rel_set R X Y ∧ rel_set S Y Z"
proof -
obtain f g where f: "∀x∈X. R x (f x) ∧ (∃z∈Z. S (f x) z)"
and g: "∀z∈Z. S (g z) z ∧ (∃x∈X. R x (g z))"
using R_S[unfolded rel_set_def OO_def] by metis
let ?Y = "f ` X ∪ g ` Z"
have "finite ?Y" by (simp add: fin)
moreover have "rel_set R X ?Y"
unfolding rel_set_def
using f g by clarsimp blast
moreover have "rel_set S ?Y Z"
unfolding rel_set_def
using f g by clarsimp blast
ultimately show ?thesis by metis
qed
subsubsection ‹Transfer rules for the Transfer package›
text ‹Unconditional transfer rules›
context includes lifting_syntax
begin
lemma fempty_transfer [transfer_rule]:
"rel_fset A {||} {||}"
by (rule empty_transfer[Transfer.transferred])
lemma finsert_transfer [transfer_rule]:
"(A ===> rel_fset A ===> rel_fset A) finsert finsert"
unfolding rel_fun_def rel_fset_alt_def by blast
lemma funion_transfer [transfer_rule]:
"(rel_fset A ===> rel_fset A ===> rel_fset A) funion funion"
unfolding rel_fun_def rel_fset_alt_def by blast
lemma ffUnion_transfer [transfer_rule]:
"(rel_fset (rel_fset A) ===> rel_fset A) ffUnion ffUnion"
unfolding rel_fun_def rel_fset_alt_def by transfer (simp, fast)
lemma fimage_transfer [transfer_rule]:
"((A ===> B) ===> rel_fset A ===> rel_fset B) fimage fimage"
unfolding rel_fun_def rel_fset_alt_def by simp blast
lemma fBall_transfer [transfer_rule]:
"(rel_fset A ===> (A ===> (=)) ===> (=)) fBall fBall"
unfolding rel_fset_alt_def rel_fun_def by blast
lemma fBex_transfer [transfer_rule]:
"(rel_fset A ===> (A ===> (=)) ===> (=)) fBex fBex"
unfolding rel_fset_alt_def rel_fun_def by blast
lemma fPow_transfer [transfer_rule]:
"(rel_fset A ===> rel_fset (rel_fset A)) fPow fPow"
unfolding rel_fun_def
using Pow_transfer[unfolded rel_fun_def, rule_format, Transfer.transferred]
by blast
lemma rel_fset_transfer [transfer_rule]:
"((A ===> B ===> (=)) ===> rel_fset A ===> rel_fset B ===> (=))
rel_fset rel_fset"
unfolding rel_fun_def
using rel_set_transfer[unfolded rel_fun_def,rule_format, Transfer.transferred, where A = A and B = B]
by simp
lemma bind_transfer [transfer_rule]:
"(rel_fset A ===> (A ===> rel_fset B) ===> rel_fset B) fbind fbind"
unfolding rel_fun_def
using bind_transfer[unfolded rel_fun_def, rule_format, Transfer.transferred] by blast
text ‹Rules requiring bi-unique, bi-total or right-total relations›
lemma fmember_transfer [transfer_rule]:
assumes "bi_unique A"
shows "(A ===> rel_fset A ===> (=)) (|∈|) (|∈|)"
using assms unfolding rel_fun_def rel_fset_alt_def bi_unique_def by metis
lemma finter_transfer [transfer_rule]:
assumes "bi_unique A"
shows "(rel_fset A ===> rel_fset A ===> rel_fset A) finter finter"
using assms unfolding rel_fun_def
using inter_transfer[unfolded rel_fun_def, rule_format, Transfer.transferred] by blast
lemma fminus_transfer [transfer_rule]:
assumes "bi_unique A"
shows "(rel_fset A ===> rel_fset A ===> rel_fset A) (|-|) (|-|)"
using assms unfolding rel_fun_def
using Diff_transfer[unfolded rel_fun_def, rule_format, Transfer.transferred] by blast
lemma fsubset_transfer [transfer_rule]:
assumes "bi_unique A"
shows "(rel_fset A ===> rel_fset A ===> (=)) (|⊆|) (|⊆|)"
using assms unfolding rel_fun_def
using subset_transfer[unfolded rel_fun_def, rule_format, Transfer.transferred] by blast
lemma fSup_transfer [transfer_rule]:
"bi_unique A ⟹ (rel_set (rel_fset A) ===> rel_fset A) Sup Sup"
unfolding rel_fun_def
apply clarify
apply transfer'
using Sup_fset_transfer[unfolded rel_fun_def] by blast
lemma fInf_transfer [transfer_rule]:
assumes "bi_unique A" and "bi_total A"
shows "(rel_set (rel_fset A) ===> rel_fset A) Inf Inf"
using assms unfolding rel_fun_def
apply clarify
apply transfer'
using Inf_fset_transfer[unfolded rel_fun_def] by blast
lemma ffilter_transfer [transfer_rule]:
assumes "bi_unique A"
shows "((A ===> (=)) ===> rel_fset A ===> rel_fset A) ffilter ffilter"
using assms Lifting_Set.filter_transfer
unfolding rel_fun_def by (metis ffilter.rep_eq rel_fset.rep_eq)
lemma card_transfer [transfer_rule]:
"bi_unique A ⟹ (rel_fset A ===> (=)) fcard fcard"
using card_transfer unfolding rel_fun_def
by (metis fcard.rep_eq rel_fset.rep_eq)
end
lifting_update fset.lifting
lifting_forget fset.lifting
subsection ‹BNF setup›
context
includes fset.lifting
begin
lemma rel_fset_alt:
"rel_fset R a b ⟷ (∀t ∈ fset a. ∃u ∈ fset b. R t u) ∧ (∀t ∈ fset b. ∃u ∈ fset a. R u t)"
by transfer (simp add: rel_set_def)
lemma fset_to_fset: "finite A ⟹ fset (the_inv fset A) = A"
by (metis CollectI f_the_inv_into_f fset_cases fset_cong inj_onI rangeI)
lemma rel_fset_aux:
"(∀t ∈ fset a. ∃u ∈ fset b. R t u) ∧ (∀u ∈ fset b. ∃t ∈ fset a. R t u) ⟷
((BNF_Def.Grp {a. fset a ⊆ {(a, b). R a b}} (fimage fst))¯¯ OO
BNF_Def.Grp {a. fset a ⊆ {(a, b). R a b}} (fimage snd)) a b" (is "?L = ?R")
proof
assume ?L
define R' where "R' =
the_inv fset (Collect (case_prod R) ∩ (fset a × fset b))" (is "_ = the_inv fset ?L'")
have "finite ?L'" by (intro finite_Int[OF disjI2] finite_cartesian_product) (transfer, simp)+
hence *: "fset R' = ?L'" unfolding R'_def by (intro fset_to_fset)
show ?R unfolding Grp_def relcompp.simps conversep.simps
proof (intro CollectI case_prodI exI[of _ a] exI[of _ b] exI[of _ R'] conjI refl)
from * show "a = fimage fst R'" using conjunct1[OF ‹?L›]
by (transfer, auto simp add: image_def Int_def split: prod.splits)
from * show "b = fimage snd R'" using conjunct2[OF ‹?L›]
by (transfer, auto simp add: image_def Int_def split: prod.splits)
qed (auto simp add: *)
next
assume ?R thus ?L unfolding Grp_def relcompp.simps conversep.simps
using Product_Type.Collect_case_prodD by blast
qed
bnf "'a fset"
map: fimage
sets: fset
bd: natLeq
wits: "{||}"
rel: rel_fset
apply -
apply transfer' apply simp
apply transfer' apply force
apply transfer apply force
apply transfer' apply force
apply (rule natLeq_card_order)
apply (rule natLeq_cinfinite)
apply (rule regularCard_natLeq)
apply transfer apply (metis finite_iff_ordLess_natLeq)
apply (fastforce simp: rel_fset_alt)
apply (simp add: Grp_def relcompp.simps conversep.simps fun_eq_iff rel_fset_alt
rel_fset_aux[unfolded OO_Grp_alt])
apply transfer apply simp
done
lemma rel_fset_fset: "rel_set χ (fset A1) (fset A2) = rel_fset χ A1 A2"
by (simp add: rel_fset.rep_eq)
end
declare
fset.map_comp[simp]
fset.map_id[simp]
fset.set_map[simp]
subsection ‹Size setup›
context includes fset.lifting
begin
lift_definition size_fset :: "('a ⇒ nat) ⇒ 'a fset ⇒ nat" is "λf. sum (Suc ∘ f)" .
end
instantiation fset :: (type) size
begin
definition size_fset where
size_fset_overloaded_def: "size_fset = FSet.size_fset (λ_. 0)"
instance ..
end
lemma size_fset_simps[simp]: "size_fset f X = (∑x ∈ fset X. Suc (f x))"
by (rule size_fset_def[THEN meta_eq_to_obj_eq, THEN fun_cong, THEN fun_cong,
unfolded map_fun_def comp_def id_apply])
lemma size_fset_overloaded_simps[simp]: "size X = (∑x ∈ fset X. Suc 0)"
by (rule size_fset_simps[of "λ_. 0", unfolded add_0_left add_0_right,
folded size_fset_overloaded_def])
lemma fset_size_o_map: "inj f ⟹ size_fset g ∘ fimage f = size_fset (g ∘ f)"
unfolding fun_eq_iff
by (simp add: inj_def inj_onI sum.reindex)
setup ‹
BNF_LFP_Size.register_size_global \<^type_name>‹fset› \<^const_name>‹size_fset›
@{thm size_fset_overloaded_def} @{thms size_fset_simps size_fset_overloaded_simps}
@{thms fset_size_o_map}
›
lifting_update fset.lifting
lifting_forget fset.lifting
subsection ‹Advanced relator customization›
text ‹Set vs. sum relators:›
lemma rel_set_rel_sum[simp]:
"rel_set (rel_sum χ φ) A1 A2 ⟷
rel_set χ (Inl -` A1) (Inl -` A2) ∧ rel_set φ (Inr -` A1) (Inr -` A2)"
(is "?L ⟷ ?Rl ∧ ?Rr")
proof safe
assume L: "?L"
show ?Rl unfolding rel_set_def Bex_def vimage_eq proof safe
fix l1 assume "Inl l1 ∈ A1"
then obtain a2 where a2: "a2 ∈ A2" and "rel_sum χ φ (Inl l1) a2"
using L unfolding rel_set_def by auto
then obtain l2 where "a2 = Inl l2 ∧ χ l1 l2" by (cases a2, auto)
thus "∃ l2. Inl l2 ∈ A2 ∧ χ l1 l2" using a2 by auto
next
fix l2 assume "Inl l2 ∈ A2"
then obtain a1 where a1: "a1 ∈ A1" and "rel_sum χ φ a1 (Inl l2)"
using L unfolding rel_set_def by auto
then obtain l1 where "a1 = Inl l1 ∧ χ l1 l2" by (cases a1, auto)
thus "∃ l1. Inl l1 ∈ A1 ∧ χ l1 l2" using a1 by auto
qed
show ?Rr unfolding rel_set_def Bex_def vimage_eq proof safe
fix r1 assume "Inr r1 ∈ A1"
then obtain a2 where a2: "a2 ∈ A2" and "rel_sum χ φ (Inr r1) a2"
using L unfolding rel_set_def by auto
then obtain r2 where "a2 = Inr r2 ∧ φ r1 r2" by (cases a2, auto)
thus "∃ r2. Inr r2 ∈ A2 ∧ φ r1 r2" using a2 by auto
next
fix r2 assume "Inr r2 ∈ A2"
then obtain a1 where a1: "a1 ∈ A1" and "rel_sum χ φ a1 (Inr r2)"
using L unfolding rel_set_def by auto
then obtain r1 where "a1 = Inr r1 ∧ φ r1 r2" by (cases a1, auto)
thus "∃ r1. Inr r1 ∈ A1 ∧ φ r1 r2" using a1 by auto
qed
next
assume Rl: "?Rl" and Rr: "?Rr"
show ?L unfolding rel_set_def Bex_def vimage_eq proof safe
fix a1 assume a1: "a1 ∈ A1"
show "∃ a2. a2 ∈ A2 ∧ rel_sum χ φ a1 a2"
proof(cases a1)
case (Inl l1) then obtain l2 where "Inl l2 ∈ A2 ∧ χ l1 l2"
using Rl a1 unfolding rel_set_def by blast
thus ?thesis unfolding Inl by auto
next
case (Inr r1) then obtain r2 where "Inr r2 ∈ A2 ∧ φ r1 r2"
using Rr a1 unfolding rel_set_def by blast
thus ?thesis unfolding Inr by auto
qed
next
fix a2 assume a2: "a2 ∈ A2"
show "∃ a1. a1 ∈ A1 ∧ rel_sum χ φ a1 a2"
proof(cases a2)
case (Inl l2) then obtain l1 where "Inl l1 ∈ A1 ∧ χ l1 l2"
using Rl a2 unfolding rel_set_def by blast
thus ?thesis unfolding Inl by auto
next
case (Inr r2) then obtain r1 where "Inr r1 ∈ A1 ∧ φ r1 r2"
using Rr a2 unfolding rel_set_def by blast
thus ?thesis unfolding Inr by auto
qed
qed
qed
subsubsection ‹Countability›
lemma exists_fset_of_list: "∃xs. fset_of_list xs = S"
including fset.lifting
by transfer (rule finite_list)
lemma fset_of_list_surj[simp, intro]: "surj fset_of_list"
by (metis exists_fset_of_list surj_def)
instance fset :: (countable) countable
proof
obtain to_nat :: "'a list ⇒ nat" where "inj to_nat"
by (metis ex_inj)
moreover have "inj (inv fset_of_list)"
using fset_of_list_surj by (rule surj_imp_inj_inv)
ultimately have "inj (to_nat ∘ inv fset_of_list)"
by (rule inj_compose)
thus "∃to_nat::'a fset ⇒ nat. inj to_nat"
by auto
qed
subsection ‹Quickcheck setup›
text ‹Setup adapted from sets.›
notation Quickcheck_Exhaustive.orelse (infixr ‹orelse› 55)
context
includes term_syntax
begin
definition [code_unfold]:
"valterm_femptyset = Code_Evaluation.valtermify ({||} :: ('a :: typerep) fset)"
definition [code_unfold]:
"valtermify_finsert x s = Code_Evaluation.valtermify finsert {⋅} (x :: ('a :: typerep * _)) {⋅} s"
end
instantiation fset :: (exhaustive) exhaustive
begin
fun exhaustive_fset where
"exhaustive_fset f i = (if i = 0 then None else (f {||} orelse exhaustive_fset (λA. f A orelse Quickcheck_Exhaustive.exhaustive (λx. if x |∈| A then None else f (finsert x A)) (i - 1)) (i - 1)))"
instance ..
end
instantiation fset :: (full_exhaustive) full_exhaustive
begin
fun full_exhaustive_fset where
"full_exhaustive_fset f i = (if i = 0 then None else (f valterm_femptyset orelse full_exhaustive_fset (λA. f A orelse Quickcheck_Exhaustive.full_exhaustive (λx. if fst x |∈| fst A then None else f (valtermify_finsert x A)) (i - 1)) (i - 1)))"
instance ..
end
no_notation Quickcheck_Exhaustive.orelse (infixr ‹orelse› 55)
instantiation fset :: (random) random
begin
context
includes state_combinator_syntax
begin
fun random_aux_fset :: "natural ⇒ natural ⇒ natural × natural ⇒ ('a fset × (unit ⇒ term)) × natural × natural" where
"random_aux_fset 0 j = Quickcheck_Random.collapse (Random.select_weight [(1, Pair valterm_femptyset)])" |
"random_aux_fset (Code_Numeral.Suc i) j =
Quickcheck_Random.collapse (Random.select_weight
[(1, Pair valterm_femptyset),
(Code_Numeral.Suc i,
Quickcheck_Random.random j ∘→ (λx. random_aux_fset i j ∘→ (λs. Pair (valtermify_finsert x s))))])"
lemma [code]:
"random_aux_fset i j =
Quickcheck_Random.collapse (Random.select_weight [(1, Pair valterm_femptyset),
(i, Quickcheck_Random.random j ∘→ (λx. random_aux_fset (i - 1) j ∘→ (λs. Pair (valtermify_finsert x s))))])"
proof (induct i rule: natural.induct)
case zero
show ?case by (subst select_weight_drop_zero[symmetric]) (simp add: less_natural_def)
next
case (Suc i)
show ?case by (simp only: random_aux_fset.simps Suc_natural_minus_one)
qed
definition "random_fset i = random_aux_fset i i"
instance ..
end
end
subsection ‹Code Generation Setup›
text ‹The following @{attribute code_unfold} lemmas are so the pre-processor of the code generator
will perform conversions like, e.g.,
@{lemma "x |∈| fimage f (fset_of_list xs) ⟷ x ∈ f ` set xs"
by (simp only: fimage.rep_eq fset_of_list.rep_eq)}.›
declare
ffilter.rep_eq[code_unfold]
fimage.rep_eq[code_unfold]
finsert.rep_eq[code_unfold]
fset_of_list.rep_eq[code_unfold]
inf_fset.rep_eq[code_unfold]
minus_fset.rep_eq[code_unfold]
sup_fset.rep_eq[code_unfold]
uminus_fset.rep_eq[code_unfold]
end