Theory MTX_Norms

(*  Title:       Matrix norms
    Author:      Jonathan Julián Huerta y Munive, 2020
    Maintainer:  Jonathan Julián Huerta y Munive <jonjulian23@gmail.com>
*)

section ‹ Matrix norms ›

text ‹ Here, we explore some properties about the operator and the maximum norms for matrices. ›

theory MTX_Norms
  imports MTX_Preliminaries

begin


subsection‹ Matrix operator norm ›

abbreviation op_norm :: "('a::real_normed_algebra_1)^'n^'m  real" ((1_op) [65] 61)
  where "Aop  onorm (λx. A *v x)"

lemma norm_matrix_bound:
  fixes A :: "('a::real_normed_algebra_1)^'n^'m"
  shows "x = 1  A *v x  (χ i j. A $ i $ j) *v 1"
proof-
  fix x :: "('a, 'n) vec" assume "x = 1"
  hence xi_le1:"i. x $ i  1" 
    by (metis Finite_Cartesian_Product.norm_nth_le) 
  {fix j::'m 
    have "(iUNIV. A $ j $ i * x $ i)  (iUNIV. A $ j $ i * x $ i)"
      using norm_sum by blast
    also have "...  (iUNIV. (A $ j $ i) * (x $ i))"
      by (simp add: norm_mult_ineq sum_mono)
    also have "...  (iUNIV. (A $ j $ i) * 1)"
      using xi_le1 by (simp add: sum_mono mult_left_le)
    finally have "(iUNIV. A $ j $ i * x $ i)  (iUNIV. (A $ j $ i) * 1)" by simp}
  hence "j. (A *v x) $ j  ((χ i1 i2. A $ i1 $ i2) *v 1) $ j"
    unfolding matrix_vector_mult_def by simp
  hence "(jUNIV. ((A *v x) $ j)2)  (jUNIV. (((χ i1 i2. A $ i1 $ i2) *v 1) $ j)2)"
    by (metis (mono_tags, lifting) norm_ge_zero power2_abs power_mono real_norm_def sum_mono) 
  thus "A *v x  (χ i j. A $ i $ j) *v 1"
    unfolding norm_vec_def L2_set_def by simp
qed

lemma onorm_set_proptys:
  fixes A :: "('a::real_normed_algebra_1)^'n^'m"
  shows "bounded (range (λx. (A *v x) / (x)))"
    and "bdd_above (range (λx. (A *v x) / (x)))"
    and "(range (λx. (A *v x) / (x)))  {}"
  unfolding bounded_def bdd_above_def image_def dist_real_def 
    apply(rule_tac x=0 in exI)
  by (rule_tac x="(χ i j. A $ i $ j) *v 1" in exI, clarsimp,
      subst mult_norm_matrix_sgn_eq[symmetric], clarsimp,
      rule_tac x="sgn _" in norm_matrix_bound, simp add: norm_sgn)+ force

lemma op_norm_set_proptys:
  fixes A :: "('a::real_normed_algebra_1)^'n^'m"
  shows "bounded {A *v x | x. x = 1}"
    and "bdd_above {A *v x | x. x = 1}"
    and "{A *v x | x. x = 1}  {}"
  unfolding bounded_def bdd_above_def apply safe
    apply(rule_tac x=0 in exI, rule_tac x="(χ i j. A $ i $ j) *v 1" in exI)
    apply(force simp: norm_matrix_bound dist_real_def)
   apply(rule_tac x="(χ i j. A $ i $ j) *v 1" in exI, force simp: norm_matrix_bound)
  using ex_norm_eq_1 by blast

lemma op_norm_def: "Aop = Sup {A *v x | x. x = 1}"
  apply(rule antisym[OF onorm_le cSup_least[OF op_norm_set_proptys(3)]])
   apply(case_tac "x = 0", simp)
   apply(subst mult_norm_matrix_sgn_eq[symmetric], simp)
   apply(rule cSup_upper[OF _ op_norm_set_proptys(2)])
   apply(force simp: norm_sgn)
  unfolding onorm_def 
  apply(rule cSup_upper[OF _ onorm_set_proptys(2)])
  by (simp add: image_def, clarsimp) (metis div_by_1)

lemma norm_matrix_le_op_norm: "x = 1  A *v x  Aop"
  apply(unfold onorm_def, rule cSup_upper[OF _ onorm_set_proptys(2)])
  unfolding image_def by (clarsimp, rule_tac x=x in exI) simp

lemma op_norm_ge_0: "0  Aop"
  using ex_norm_eq_1 norm_ge_zero norm_matrix_le_op_norm basic_trans_rules(23) by blast

lemma norm_sgn_le_op_norm: "A *v sgn x  Aop"
  by (cases "x=0", simp_all add: norm_sgn norm_matrix_le_op_norm op_norm_ge_0)

lemma norm_matrix_le_mult_op_norm: "A *v x  (Aop) * (x)"
proof-
  have "A *v x = (A *v sgn x) * (x)"
    by(simp add: mult_norm_matrix_sgn_eq)
  also have "...  (Aop) * (x)"
    using norm_sgn_le_op_norm[of A] by (simp add: mult_mono')
  finally show ?thesis by simp
qed

lemma blin_matrix_vector_mult: "bounded_linear ((*v) A)" for A :: "('a::real_normed_algebra_1)^'n^'m"
  by (unfold_locales) (auto intro: norm_matrix_le_mult_op_norm simp: 
      mult.commute matrix_vector_right_distrib vector_scaleR_commute)

lemma op_norm_eq_0: "(Aop = 0) = (A = 0)" for A :: "('a::real_normed_field)^'n^'m"
  unfolding onorm_eq_0[OF blin_matrix_vector_mult] using matrix_axis_0[of 1 A] by fastforce

lemma op_norm0: "(0::('a::real_normed_field)^'n^'m)op = 0"
  using op_norm_eq_0[of 0] by simp
                  
lemma op_norm_triangle: "A + Bop  (Aop) + (Bop)" 
  using onorm_triangle[OF blin_matrix_vector_mult[of A] blin_matrix_vector_mult[of B]]
    matrix_vector_mult_add_rdistrib[symmetric, of A _ B] by simp

lemma op_norm_scaleR: "c *R Aop = ¦c¦ * (Aop)"
  unfolding onorm_scaleR[OF blin_matrix_vector_mult, symmetric] scaleR_vector_assoc ..

lemma op_norm_matrix_matrix_mult_le: "A ** Bop  (Aop) * (Bop)" 
proof(rule onorm_le)
  have "0  (Aop)" 
    by(rule onorm_pos_le[OF blin_matrix_vector_mult])
  fix x have "A ** B *v x = A *v (B *v x)"
    by (simp add: matrix_vector_mul_assoc)
  also have "...  (Aop) * (B *v x)"
    by (simp add: norm_matrix_le_mult_op_norm[of _ "B *v x"])
  also have "...  (Aop) * ((Bop) * (x))"
    using norm_matrix_le_mult_op_norm[of B x] 0  (Aop) mult_left_mono by blast
  finally show "A ** B *v x  (Aop) * (Bop) * (x)" 
    by simp
qed

lemma norm_matrix_vec_mult_le_transpose:
  "x = 1  (A *v x)  sqrt (transpose A ** Aop) * (x)" for A :: "real^'n^'n"
proof-
  assume "x = 1"
  have "(A *v x)2 = (A *v x)  (A *v x)"
    using dot_square_norm[of "(A *v x)"] by simp
  also have "... = x  (transpose A *v (A *v x))"
    using vec_mult_inner by blast
  also have "...  (x) * (transpose A *v (A *v x))"
    using norm_cauchy_schwarz by blast
  also have "...  (transpose A ** Aop) * (x)^2"
    apply(subst matrix_vector_mul_assoc) 
    using norm_matrix_le_mult_op_norm[of "transpose A ** A" x]
    by (simp add: x = 1) 
  finally have "((A *v x))^2  (transpose A ** Aop) * (x)^2"
    by linarith
  thus "(A *v x)  sqrt ((transpose A ** Aop)) * (x)"
    by (simp add: x = 1 real_le_rsqrt)
qed

lemma op_norm_le_sum_column: "Aop  (iUNIV. column i A)" for A :: "real^'n^'m"  
proof(unfold op_norm_def, rule cSup_least[OF op_norm_set_proptys(3)], clarsimp)
  fix x :: "real^'n" assume x_def:"x = 1" 
  hence x_hyp:"i. x $ i  1"
    by (simp add: norm_bound_component_le_cart)
  have "(A *v x) = (iUNIV. x $ i *s column i A)"
    by(subst matrix_mult_sum[of A], simp)
  also have "...  (iUNIV. x $ i *s column i A)"
    by (simp add: sum_norm_le)
  also have "... = (iUNIV. (x $ i) * (column i A))"
    by (simp add: mult_norm_matrix_sgn_eq)
  also have "...  (iUNIV. column i A)"
    using x_hyp by (simp add: mult_left_le_one_le sum_mono) 
  finally show "A *v x  (iUNIV. column i A)" .
qed

lemma op_norm_le_transpose: "Aop  transpose Aop" for A :: "real^'n^'n"  
proof-
  have obs:"x. x = 1  (A *v x)  sqrt ((transpose A ** Aop)) * (x)"
    using norm_matrix_vec_mult_le_transpose by blast
  have "(Aop)  sqrt ((transpose A ** Aop))"
    using obs apply(unfold op_norm_def)
    by (rule cSup_least[OF op_norm_set_proptys(3)]) clarsimp
  hence "((Aop))2  (transpose A ** Aop)"
    using power_mono[of "(Aop)" _ 2] op_norm_ge_0
    by (metis not_le real_less_lsqrt)
  also have "...  (transpose Aop) * (Aop)"
    using op_norm_matrix_matrix_mult_le by blast
  finally have "((Aop))2  (transpose Aop) * (Aop)"
    by linarith
  thus "(Aop)  (transpose Aop)"
    using sq_le_cancel[of "(Aop)"] op_norm_ge_0 by metis
qed


subsection‹ Matrix maximum norm ›

abbreviation max_norm :: "real^'n^'m  real" ((1_max) [65] 61)
  where "Amax  Max (abs ` (entries A))"

lemma max_norm_def: "Amax = Max {¦A $ i $ j¦|i j. iUNIV  jUNIV}"
  by (simp add: image_def, rule arg_cong[of _ _ Max], blast)

lemma max_norm_set_proptys: "finite {¦A $ i $ j¦ |i j. i  UNIV  j  UNIV}" (is "finite ?X")
proof-
  have "i. finite {¦A $ i $ j¦ | j. j  UNIV}"
    using finite_Atleast_Atmost_nat by fastforce
  hence "finite (iUNIV. {¦A $ i $ j¦ | j. j  UNIV})" (is "finite ?Y")
    using finite_class.finite_UNIV by blast
  also have "?X  ?Y" 
    by auto
  ultimately show ?thesis 
    using finite_subset by blast
qed

lemma max_norm_ge_0: "0  Amax"
  unfolding max_norm_def 
  apply(rule order.trans[OF abs_ge_zero[of "A $ _ $ _"] Max_ge])
  using max_norm_set_proptys by auto

lemma op_norm_le_max_norm:
  fixes A :: "real^('n::finite)^('m::finite)"
  shows "Aop  real CARD('m) * real CARD('n) * (Amax)"
  apply(rule onorm_le_matrix_component)
  unfolding max_norm_def by(rule Max_ge[OF max_norm_set_proptys]) force

lemma sqrt_Sup_power2_eq_Sup_abs:
  "finite A  A  {}  sqrt (Sup {(f i)2 |i. i  A}) = Sup {¦f i¦ |i. i  A}"
proof(rule sym)
  assume assms: "finite A" "A  {}"
  then obtain i where i_def: "i  A  Sup {(f i)2|i. i  A} = (f i)^2"
    using cSup_finite_ex[of "{(f i)2|i. i  A}"] by auto
  hence lhs: "sqrt (Sup {(f i)2 |i. i  A}) = ¦f i¦"
    by simp
  have "finite {(f i)2|i. i  A}"
    using assms by simp
  hence "jA. (f j)2  (f i)2"
    using i_def cSup_upper[of _ "{(f i)2 |i. i  A}"] by force
  hence "jA. ¦f j¦  ¦f i¦"
    using abs_le_square_iff by blast
  also have "¦f i¦  {¦f i¦ |i. i  A}"
    using i_def by auto
  ultimately show "Sup {¦f i¦ |i. i  A} = sqrt (Sup {(f i)2 |i. i  A})"
    using cSup_mem_eq[of "¦f i¦" "{¦f i¦ |i. i  A}"] lhs by auto
qed

lemma sqrt_Max_power2_eq_max_abs:
  "finite A  A  {}  sqrt (Max {(f i)2|i. i  A}) = Max {¦f i¦ |i. i  A}"
  apply(subst cSup_eq_Max[symmetric], simp_all)+
  using sqrt_Sup_power2_eq_Sup_abs .

lemma op_norm_diag_mat_eq: "diag_mat fop = Max {¦f i¦ |i. i  UNIV}" (is "_ = Max ?A")
proof(unfold op_norm_def)
  have obs: "x i. (f i)2 * (x $ i)2  Max {(f i)2|i. i  UNIV} * (x $ i)2"
    apply(rule mult_right_mono[OF _ zero_le_power2])
    using le_max_image_of_finite[of "λi. (f i)^2"] by simp
  {fix r assume "r  {diag_mat f *v x |x. x = 1}"
    then obtain x where x_def: "diag_mat f *v x = r  x = 1"
      by blast
    hence "r2 = (iUNIV. (f i)2 * (x $ i)2)"
      unfolding norm_vec_def L2_set_def matrix_vector_mul_diag_mat 
      apply (simp add: power_mult_distrib)
      by (metis (no_types, lifting) x_def norm_ge_zero real_sqrt_ge_0_iff real_sqrt_pow2)
    also have "...  (Max {(f i)2|i. i  UNIV}) * (iUNIV. (x $ i)2)"
      using obs[of _ x] by (simp add: sum_mono sum_distrib_left)
    also have "... = Max {(f i)2|i. i  UNIV}"
      using x_def by (simp add: norm_vec_def L2_set_def)
    finally have "r  sqrt (Max {(f i)2|i. i  UNIV})"
      using x_def real_le_rsqrt by blast 
    hence "r  Max ?A"
      by (subst (asm) sqrt_Max_power2_eq_max_abs[of UNIV f], simp_all)}
  hence 1: "x{diag_mat f *v x |x. x = 1}. x  Max ?A"
    unfolding diag_mat_def by blast
  obtain i where i_def: "Max ?A = diag_mat f *v 𝖾 i"
    using cMax_finite_ex[of ?A] by force
  hence 2: "x{diag_mat f *v x |x. x = 1}. Max ?A  x"
    by (metis (mono_tags, lifting) abs_1 mem_Collect_eq norm_axis_eq order_refl real_norm_def)
  show "Sup {diag_mat f *v x |x. x = 1} = Max ?A"
    by (rule cSup_eq[OF 1 2])
qed

lemma op_max_norms_eq_at_diag: "diag_mat fop = diag_mat fmax"
proof(rule antisym)
  have "{¦f i¦ |i. i  UNIV}  {¦diag_mat f $ i $ j¦ |i j. i  UNIV  j  UNIV}"
    by (smt Collect_mono diag_mat_vec_nth_simps(1))
  thus "diag_mat fop  diag_mat fmax"
    unfolding op_norm_diag_mat_eq max_norm_def
    by (rule Max.subset_imp) (blast, simp only: finite_image_of_finite2)
next
  have "Sup {¦diag_mat f $ i $ j¦ |i j. i  UNIV  j  UNIV}  Sup {¦f i¦ |i. i  UNIV}"
    apply(rule cSup_least, blast, clarify, case_tac "i = j", simp)
    by (rule cSup_upper, blast, simp_all) (rule cSup_upper2, auto)
  thus "diag_mat fmax  diag_mat fop"
    unfolding op_norm_diag_mat_eq max_norm_def
    apply (subst cSup_eq_Max[symmetric], simp only: finite_image_of_finite2, blast)
    by (subst cSup_eq_Max[symmetric], simp, blast)
qed


end