Theory Pi_Regular_Operators
section "Some Useful Regular Operators"
theory Pi_Regular_Operators
imports Pi_Derivatives "HOL-Library.While_Combinator"
begin
primrec REV :: "'a rexp ⇒ 'a rexp" where
"REV Zero = Zero"
| "REV Full = Full"
| "REV One = One"
| "REV (Atom a) = Atom a"
| "REV (Plus r s) = Plus (REV r) (REV s)"
| "REV (Times r s) = Times (REV s) (REV r)"
| "REV (Star r) = Star (REV r)"
| "REV (Not r) = Not (REV r)"
| "REV (Inter r s) = Inter (REV r) (REV s)"
| "REV (Pr r) = Pr (REV r)"
lemma REV_REV[simp]: "REV (REV r) = r"
by (induct r) auto
lemma final_REV[simp]: "final (REV r) = final r"
by (induct r) auto
lemma REV_PLUS: "REV (PLUS xs) = PLUS (map REV xs)"
by (induct xs rule: list_singleton_induct) auto
lemma (in alphabet) wf_REV[simp]: "wf n r ⟹ wf n (REV r)"
by (induct r arbitrary: n) auto
lemma (in project) lang_REV[simp]: "lang n (REV r) = rev ` lang n r"
by (induct r arbitrary: n) (auto simp: image_image rev_map image_set_diff)
context embed
begin
primrec rderiv :: "'a ⇒ 'b rexp ⇒ 'b rexp" where
"rderiv _ Zero = Zero"
| "rderiv _ Full = Full"
| "rderiv _ One = Zero"
| "rderiv a (Atom b) = (if lookup b a then One else Zero)"
| "rderiv a (Plus r s) = Plus (rderiv a r) (rderiv a s)"
| "rderiv a (Times r s) =
(let rs' = Times r (rderiv a s)
in if final s then Plus rs' (rderiv a r) else rs')"
| "rderiv a (Star r) = Times (Star r) (rderiv a r)"
| "rderiv a (Not r) = Not (rderiv a r)"
| "rderiv a (Inter r s) = Inter (rderiv a r) (rderiv a s)"
| "rderiv a (Pr r) = Pr (PLUS (map (λa'. rderiv a' r) (embed a)))"
primrec rderivs where
"rderivs [] r = r"
| "rderivs (w#ws) r = rderivs ws (rderiv w r)"
lemma rderivs_snoc: "rderivs (ws @ [w]) r = rderiv w (rderivs ws r)"
by (induct ws arbitrary: r) auto
lemma rderivs_append: "rderivs (ws @ ws') r = rderivs ws' (rderivs ws r)"
by (induct ws arbitrary: r) auto
lemma rderiv_lderiv: "rderiv as r = REV (lderiv as (REV r))"
by (induct r arbitrary: as) (auto simp: Let_def o_def REV_PLUS)
lemma rderivs_lderivs: "rderivs w r = REV (lderivs w (REV r))"
by (induct w arbitrary: r) (auto simp: rderiv_lderiv)
lemma wf_rderiv[simp]: "wf n r ⟹ wf n (rderiv w r)"
unfolding rderiv_lderiv by (rule wf_REV[OF wf_lderiv[OF wf_REV]])
lemma wf_rderivs[simp]: "wf n r ⟹ wf n (rderivs ws r)"
unfolding rderivs_lderivs by (rule wf_REV[OF wf_lderivs[OF wf_REV]])
lemma lang_rderiv: "⟦wf n r; as ∈ Σ n⟧ ⟹ lang n (rderiv as r) = rQuot as (lang n r)"
unfolding rderiv_lderiv rQuot_rev_lQuot by (simp add: lang_lderiv)
lemma lang_rderivs: "⟦wf n r; wf_word n w⟧ ⟹ lang n (rderivs w r) = rQuots w (lang n r)"
unfolding rderivs_lderivs rQuots_rev_lQuots by (simp add: lang_lderivs)
corollary rderivs_final:
assumes "wf n r" "wf_word n w"
shows "final (rderivs w r) ⟷ rev w ∈ lang n r"
using lang_rderivs[OF assms] lang_final[of "rderivs w r" n] by auto
lemma toplevel_summands_REV[simp]: "toplevel_summands (REV r) = REV ` toplevel_summands r"
by (induct r) auto
lemma ACI_norm_REV: "«REV «r»» = «REV r»"
proof (induct r)
case (Plus r s)
show ?case
using [[unfold_abs_def = false]]
unfolding REV.simps ACI_norm.simps Plus[symmetric] image_Un[symmetric]
toplevel_summands.simps(1) toplevel_summands_ACI_norm toplevel_summands_REV
unfolding toplevel_summands.simps(1)[symmetric] ACI_norm_flatten toplevel_summands_REV
unfolding ACI_norm_flatten[symmetric] toplevel_summands_ACI_norm
..
qed auto
lemma ACI_norm_rderiv: "«rderiv as «r»» = «rderiv as r»"
unfolding rderiv_lderiv by (metis ACI_norm_REV ACI_norm_lderiv)
lemma ACI_norm_rderivs: "«rderivs w «r»» = «rderivs w r»"
unfolding rderivs_lderivs by (metis ACI_norm_REV ACI_norm_lderivs)
theorem finite_rderivs: "finite {«rderivs xs r» | xs . True}"
unfolding rderivs_lderivs
by (subst ACI_norm_REV[symmetric]) (auto intro: finite_surj[OF finite_lderivs, of _ "λr. «REV r»"])
lemma lderiv_PLUS[simp]: "lderiv a (PLUS xs) = PLUS (map (lderiv a) xs)"
by (induct xs rule: list_singleton_induct) auto
lemma rderiv_PLUS[simp]: "rderiv a (PLUS xs) = PLUS (map (rderiv a) xs)"
by (induct xs rule: list_singleton_induct) auto
lemma lang_rderiv_lderiv: "lang n (rderiv a (lderiv b r)) = lang n (lderiv b (rderiv a r))"
by (induct r arbitrary: n a b) (auto simp: Let_def conc_assoc)
lemma lang_lderiv_rderiv: "lang n (lderiv a (rderiv b r)) = lang n (rderiv b (lderiv a r))"
by (induct r arbitrary: n a b) (auto simp: Let_def conc_assoc)
lemma lang_rderiv_lderivs[simp]: "⟦wf n r; wf_word n w; a ∈ Σ n⟧ ⟹
lang n (rderiv a (lderivs w r)) = lang n (lderivs w (rderiv a r))"
by (induct w arbitrary: n r)
(auto, auto simp: lang_lderivs lang_lderiv lang_rderiv lQuot_rQuot)
lemma lang_lderiv_rderivs[simp]: "⟦wf n r; wf_word n w; a ∈ Σ n⟧ ⟹
lang n (lderiv a (rderivs w r)) = lang n (rderivs w (lderiv a r))"
by (induct w arbitrary: n r)
(auto, auto simp: lang_rderivs lang_lderiv lang_rderiv lQuot_rQuot)
definition "biderivs w1 w2 = rderivs w2 o lderivs w1"
lemma lang_biderivs: "⟦wf n r; wf_word n w1; wf_word n w2⟧ ⟹
lang n (biderivs w1 w2 r) = biQuots w1 w2 (lang n r)"
unfolding biderivs_def by (auto simp: lang_rderivs lang_lderivs in_lists_conv_set)
lemma wf_biderivs[simp]: "wf n r ⟹ wf n (biderivs w1 w2 r)"
unfolding biderivs_def by simp
corollary biderivs_final:
assumes "wf n r" "wf_word n w1" "wf_word n w2"
shows "final (biderivs w1 w2 r) ⟷ w1 @ rev w2 ∈ lang n r"
using lang_biderivs[OF assms] lang_final[of "biderivs w1 w2 r" n] by auto
lemma ACI_norm_biderivs: "«biderivs w1 w2 «r»» = «biderivs w1 w2 r»"
unfolding biderivs_def by (metis ACI_norm_lderivs ACI_norm_rderivs o_apply)
lemma "finite {«biderivs w1 w2 r» | w1 w2 . True}"
proof -
have "{«biderivs w1 w2 r» | w1 w2 . True} =
(⋃s ∈ {«lderivs as r» | as . True}. {«rderivs bs s» | bs . True})"
unfolding biderivs_def by (fastforce simp: ACI_norm_rderivs)
also have "finite …" by (rule iffD2[OF finite_UN[OF finite_lderivs] ballI[OF finite_rderivs]])
finally show ?thesis .
qed
end
subsection ‹Quotioning by the same letter›
definition "fin_cut_same x xs = take (LEAST n. drop n xs = replicate (length xs - n) x) xs"
lemma fin_cut_same_Nil[simp]: "fin_cut_same x [] = []"
unfolding fin_cut_same_def by simp
lemma Least_fin_cut_same: "(LEAST n. drop n xs = replicate (length xs - n) y) =
length xs - length (takeWhile (λx. x = y) (rev xs))"
(is "Least ?P = ?min")
proof (rule Least_equality)
show "?P ?min" by (induct xs rule: rev_induct) (auto simp: Suc_diff_le replicate_append_same)
next
fix m assume "?P m"
have "length xs - m ≤ length (takeWhile (λx. x = y) (rev xs))"
proof (intro length_takeWhile_less_P_nth)
fix i assume "i < length xs - m"
hence "rev xs ! i ∈ set (drop m xs)"
by (induct xs arbitrary: i rule: rev_induct) (auto simp: nth_Cons')
with ‹?P m› show "rev xs ! i = y" by simp
qed simp
thus "?min ≤ m" by linarith
qed
lemma takeWhile_takes_all: "length xs = m ⟹ m ≤ length (takeWhile P xs) ⟷ Ball (set xs) P"
by hypsubst_thin (induct xs, auto)
lemma fin_cut_same_Cons[simp]: "fin_cut_same x (y # xs) =
(if fin_cut_same x xs = [] then if x = y then [] else [y] else y # fin_cut_same x xs)"
unfolding fin_cut_same_def Least_fin_cut_same
apply auto
apply (simp add: takeWhile_takes_all)
apply (simp add: takeWhile_takes_all)
apply auto
apply (metis (full_types) Suc_diff_le length_rev length_takeWhile_le take_Suc_Cons)
apply (simp add: takeWhile_takes_all)
apply (subst takeWhile_append2)
apply auto
apply (simp add: takeWhile_takes_all)
apply auto
apply (metis (full_types) Suc_diff_le length_rev length_takeWhile_le take_Suc_Cons)
done
lemma fin_cut_same_singleton[simp]: "fin_cut_same x (xs @ [x]) = fin_cut_same x xs"
by (induct xs) auto
lemma fin_cut_same_replicate[simp]: "fin_cut_same x (xs @ replicate n x) = fin_cut_same x xs"
by (induct n arbitrary: xs)
(auto simp: replicate_append_same[symmetric] append_assoc[symmetric] simp del: append_assoc)
lemma fin_cut_sameE: "fin_cut_same x xs = ys ⟹ ∃m. xs = ys @ replicate m x"
apply (induct xs arbitrary: ys)
apply auto
apply (metis replicate_Suc)
apply metis
apply metis
done
definition "SAMEQUOT a A = {fin_cut_same a x @ replicate m a| x m. x ∈ A}"
lemma SAMEQUOT_mono: "A ⊆ B ⟹ SAMEQUOT a A ⊆ SAMEQUOT a B"
unfolding SAMEQUOT_def by auto
locale embed2 = embed Σ wf_atom project lookup embed
for Σ :: "nat ⇒ 'a set"
and wf_atom :: "nat ⇒ 'b :: linorder ⇒ bool"
and project :: "'a ⇒ 'a"
and lookup :: "'b ⇒ 'a ⇒ bool"
and embed :: "'a ⇒ 'a list" +
fixes singleton :: "'a ⇒ 'b"
assumes wf_singleton[simp]: "a ∈ Σ n ⟹ wf_atom n (singleton a)"
assumes lookup_singleton[simp]: "lookup (singleton a) a' = (a = a')"
begin
lemma finite_rderivs_same: "finite {«rderivs (replicate m a) r» | m . True}"
by (auto intro: finite_subset[OF _ finite_rderivs])
lemma wf_word_replicate[simp]: "a ∈ Σ n ⟹ wf_word n (replicate m a)"
by (induct m) auto
lemma star_singleton[simp]: "star {[x]} = {replicate m x | m . True}"
proof (intro equalityI subsetI)
fix xs assume "xs ∈ star {[x]}"
thus "xs ∈ {replicate m x | m . True}" by (induct xs) (auto, metis replicate_Suc)
qed (auto intro: Ball_starI)
definition "samequot a r = Times (flatten PLUS {«rderivs (replicate m a) r» | m . True}) (Star (Atom (singleton a)))"
lemma wf_samequot: "⟦wf n r; a ∈ Σ n⟧ ⟹ wf n (samequot a r)"
unfolding samequot_def wf.simps wf_flatten_PLUS[OF finite_rderivs_same] by auto
lemma lang_samequot: "⟦wf n r; a ∈ Σ n⟧ ⟹
lang n (samequot a r) = SAMEQUOT a (lang n r)"
unfolding SAMEQUOT_def samequot_def lang.simps lang_flatten_PLUS[OF finite_rderivs_same]
apply (rule sym)
apply (auto simp: lang_rderivs)
apply (intro concI)
apply auto
apply (insert fin_cut_sameE[OF refl, of _ a])
apply (drule meta_spec)
apply (erule exE)
apply (intro exI conjI)
apply (rule refl)
apply (auto simp: lang_rderivs)
apply (erule subst)
apply assumption
apply (erule concE)
apply (auto simp: lang_rderivs)
apply (drule meta_spec)
apply (erule exE)
apply (intro exI conjI)
defer
apply assumption
unfolding fin_cut_same_replicate
apply (erule trans)
unfolding fin_cut_same_replicate
apply (rule refl)
done
fun rderiv_and_add where
"rderiv_and_add as (_ :: bool, rs) =
(let
r = «rderiv as (hd rs)»
in if r ∈ set rs then (False, rs) else (True, r # rs))"
definition "invar_rderiv_and_add as r brs ≡
(if fst brs then True else «rderiv as (hd (snd brs))» ∈ set (snd brs)) ∧
snd brs ≠ [] ∧ distinct (snd brs) ∧
(∀i < length (snd brs). snd brs ! i = «rderivs (replicate (length (snd brs) - 1 - i) as) r»)"
lemma invar_rderiv_and_add_init: "invar_rderiv_and_add as r (True, [«r»])"
unfolding invar_rderiv_and_add_def by auto
lemma invar_rderiv_and_add_step: "invar_rderiv_and_add as r brs ⟹ fst brs ⟹
invar_rderiv_and_add as r (rderiv_and_add as brs)"
unfolding invar_rderiv_and_add_def by (cases brs) (auto simp:
Let_def nth_Cons' ACI_norm_rderiv rderivs_snoc[symmetric] neq_Nil_conv replicate_append_same)
lemma rderivs_replicate_mult: "⟦«rderivs (replicate i as) r» = «r»; i > 0⟧ ⟹
«rderivs (replicate (m * i) as) r» = «r»"
proof (induct m arbitrary: r)
case (Suc m)
hence "«rderivs (replicate (m * i) as) «rderivs (replicate i as) r»» = «r»"
by (auto simp: ACI_norm_rderivs)
thus ?case by (auto simp: ACI_norm_rderivs replicate_add rderivs_append)
qed simp
lemma rderivs_replicate_mult_rest:
assumes "«rderivs (replicate i as) r» = «r»" "k < i"
shows "«rderivs (replicate (m * i + k) as) r» = «rderivs (replicate k as) r»" (is "?L = ?R")
proof -
have "?L = «rderivs (replicate k as) «rderivs (replicate (m * i) as) r»»"
by (simp add: ACI_norm_rderivs replicate_add rderivs_append)
also have "«rderivs (replicate (m * i) as) r» = «r»" using assms
by (simp add: rderivs_replicate_mult)
finally show ?thesis by (simp add: ACI_norm_rderivs)
qed
lemma rderivs_replicate_mod:
assumes "«rderivs (replicate i as) r» = «r»" "i > 0"
shows "«rderivs (replicate m as) r» = «rderivs (replicate (m mod i) as) r»" (is "?L = ?R")
by (subst div_mult_mod_eq[symmetric, of m i])
(intro rderivs_replicate_mult_rest[OF assms(1)] mod_less_divisor[OF assms(2)])
lemma rderivs_replicate_diff: "⟦«rderivs (replicate i as) r» = «rderivs (replicate j as) r»; i > j⟧ ⟹
«rderivs (replicate (i - j) as) (rderivs (replicate j as) r)» = «rderivs (replicate j as) r»"
unfolding rderivs_append[symmetric] replicate_add[symmetric] by auto
lemma samequot_wf:
assumes "wf n r" "while_option fst (rderiv_and_add as) (True, [«r»]) = Some (b, rs)"
shows "wf n (PLUS rs)"
proof -
have "¬ b" using while_option_stop[OF assms(2)] by simp
from while_option_rule[where P="invar_rderiv_and_add as r",
OF invar_rderiv_and_add_step assms(2) invar_rderiv_and_add_init]
have *: "invar_rderiv_and_add as r (b, rs)" by simp
thus "wf n (PLUS rs)" unfolding invar_rderiv_and_add_def wf_PLUS
by (auto simp: in_set_conv_nth wf_rderivs[OF assms(1)])
qed
lemma samequot_soundness:
assumes "while_option fst (rderiv_and_add as) (True, [«r»]) = Some (b, rs)"
shows "lang n (PLUS rs) = ⋃ (lang n ` {«rderivs (replicate m as) r» | m. True})"
proof -
have "¬ b" using while_option_stop[OF assms] by simp
moreover
from while_option_rule[where P="invar_rderiv_and_add as r",
OF invar_rderiv_and_add_step assms invar_rderiv_and_add_init]
have *: "invar_rderiv_and_add as r (b, rs)" by simp
ultimately obtain i where i: "i < length rs" and "«rderivs (replicate (length rs - Suc i) as) r» =
«rderivs (replicate (Suc (length rs - Suc 0)) as) r»" (is "«rderivs ?x r» = _")
unfolding invar_rderiv_and_add_def by (auto simp: in_set_conv_nth hd_conv_nth ACI_norm_rderiv
rderivs_snoc[symmetric] replicate_append_same)
with * have "«rderivs ?x r» = «rderivs (replicate (length rs) as) r»"
by (auto simp: invar_rderiv_and_add_def)
with i have cyc: "«rderivs (replicate (Suc i) as) (rderivs ?x r)» = «rderivs ?x r»"
by (fastforce dest: rderivs_replicate_diff[OF sym])
{ fix m
have "∃i<length rs. rs ! i = «rderivs (replicate m as) r»"
proof (cases "m > length rs - Suc i")
case True
with i obtain m' where m: "m = m' + length rs - Suc i"
by atomize_elim (auto intro: exI[of _ "m - (length rs - Suc i)"])
with i have "«rderivs (replicate m as) r» = «rderivs (replicate m' as) (rderivs ?x r)»"
unfolding replicate_add[symmetric] rderivs_append[symmetric] by (simp add: add.commute)
also from cyc have "… = «rderivs (replicate (m' mod (Suc i)) as) (rderivs ?x r)»"
by (elim rderivs_replicate_mod) simp
also from i have "… = «rderivs (replicate (m' mod (Suc i) + length rs - Suc i) as) r»"
unfolding rderivs_append[symmetric] replicate_add[symmetric] by (simp add: add.commute)
also from m i have "… = «rderivs (replicate ((m - (length rs - Suc i)) mod (Suc i) + length rs - Suc i) as) r»"
by simp
also have "… = «rderivs (replicate (length rs - Suc (i - (m - (length rs - Suc i)) mod (Suc i))) as) r»"
by (subst Suc_diff_le[symmetric])
(metis less_Suc_eq_le mod_less_divisor zero_less_Suc, simp add: add.commute)
finally have "∃j < length rs. «rderivs (replicate m as) r» = «rderivs (replicate (length rs - Suc j) as) r»"
using i by (metis less_imp_diff_less)
with * show ?thesis unfolding invar_rderiv_and_add_def by auto
next
case False
with i have "∃j < length rs. m = length rs - Suc j"
by (induct m)
(metis diff_self_eq_0 gr_implies_not0 lessI nat.exhaust,
metis (no_types) One_nat_def Suc_diff_Suc diff_Suc_1 gr0_conv_Suc less_imp_diff_less
not_less_eq not_less_iff_gr_or_eq)
with * show ?thesis unfolding invar_rderiv_and_add_def by auto
qed
}
hence "⋃ (lang n ` {«rderivs (replicate m as) r» |m. True}) ⊆ lang n (PLUS rs)"
by (fastforce simp: in_set_conv_nth intro!: bexI[rotated])
moreover from * have "lang n (PLUS rs) ⊆ ⋃ (lang n ` {«rderivs (replicate m as) r» |m. True})"
unfolding invar_rderiv_and_add_def by (fastforce simp: in_set_conv_nth)
ultimately show "lang n (PLUS rs) = ⋃ (lang n ` {«rderivs (replicate m as) r» |m. True})" by blast
qed
lemma length_subset_card: "⟦finite X; distinct (x # xs); set (x # xs) ⊆ X⟧ ⟹ length xs < card X"
by (metis card_mono distinct_card impossible_Cons not_le_imp_less order_trans)
lemma samequot_termination:
assumes "while_option fst (rderiv_and_add as) (True, [«r»]) = None" (is "?cl = None")
shows "False"
proof -
let ?D = "{«rderivs (replicate m as) r» | m . True}"
let ?f = "λ(b, rs). card ?D + 1 - length rs + (if b then 1 else 0)"
have "∃st. ?cl = Some st"
apply (rule measure_while_option_Some[of "invar_rderiv_and_add as r" _ _ ?f])
apply (auto simp: invar_rderiv_and_add_init invar_rderiv_and_add_step)
apply (auto simp: invar_rderiv_and_add_def Let_def neq_Nil_conv in_set_conv_nth
intro!: diff_less_mono2 length_subset_card[OF finite_rderivs_same, simplified])
apply auto []
apply fastforce
apply (metis Suc_less_eq nth_Cons_Suc)
done
with assms show False by auto
qed
definition "samequot_exec a r =
Times (PLUS (snd (the (while_option fst (rderiv_and_add a) (True, [«r»]))))) (Star (Atom (singleton a)))"
lemma wf_samequot_exec: "⟦wf n r; as ∈ Σ n⟧ ⟹ wf n (samequot_exec as r)"
unfolding samequot_exec_def
by (cases "while_option fst (rderiv_and_add as) (True, [«r»])")
(auto dest: samequot_termination samequot_wf)
lemma samequot_exec_samequot: "lang n (samequot_exec as r) = lang n (samequot as r)"
unfolding samequot_exec_def samequot_def lang.simps lang_flatten_PLUS[OF finite_rderivs_same]
by (cases "while_option fst (rderiv_and_add as) (True, [«r»])")
(auto dest: samequot_termination dest!: samequot_soundness[of _ _ _ _ n] simp del: ACI_norm_lang)
lemma lang_samequot_exec:
"⟦wf n r; as ∈ Σ n⟧ ⟹ lang n (samequot_exec as r) = SAMEQUOT as (lang n r)"
unfolding samequot_exec_samequot by (rule lang_samequot)
end
subsection ‹Suffix and Prefix Languages›
definition Suffix :: "'a lang ⇒ 'a lang" where
"Suffix L = {w. ∃u. u @ w ∈ L}"
definition Prefix :: "'a lang ⇒ 'a lang" where
"Prefix L = {w. ∃u. w @ u ∈ L}"
lemma Prefix_Suffix: "Prefix L = rev ` Suffix (rev ` L)"
unfolding Prefix_def Suffix_def
by (auto simp: rev_append_invert
intro: image_eqI[of _ rev, OF rev_rev_ident[symmetric]]
image_eqI[of _ rev, OF rev_append[symmetric]])
definition Root :: "'a lang ⇒ 'a lang" where
"Root L = {x . ∃n > 0. x ^^ n ∈ L}"
definition Cycle :: "'a lang ⇒ 'a lang" where
"Cycle L = {u @ w | u w. w @ u ∈ L}"
context embed
begin
context
fixes n :: nat
begin
definition SUFFIX :: "'b rexp ⇒ 'b rexp" where
"SUFFIX r = flatten PLUS {«lderivs w r»| w. wf_word n w}"
lemma finite_lderivs_wf: "finite {«lderivs w r»| w. wf_word n w}"
by (auto intro: finite_subset[OF _ finite_lderivs])
definition PREFIX :: "'b rexp ⇒ 'b rexp" where
"PREFIX r = REV (SUFFIX (REV r))"
lemma wf_SUFFIX[simp]: "wf n r ⟹ wf n (SUFFIX r)"
unfolding SUFFIX_def by (intro iffD2[OF wf_flatten_PLUS[OF finite_lderivs_wf]]) auto
lemma lang_SUFFIX[simp]: "wf n r ⟹ lang n (SUFFIX r) = Suffix (lang n r)"
unfolding SUFFIX_def Suffix_def
using lang_flatten_PLUS[OF finite_lderivs_wf] lang_lderivs wf_lang_wf_word
by fastforce
lemma wf_PREFIX[simp]: "wf n r ⟹ wf n (PREFIX r)"
unfolding PREFIX_def by auto
lemma lang_PREFIX[simp]: "wf n r ⟹ lang n (PREFIX r) = Prefix (lang n r)"
unfolding PREFIX_def by (auto simp: Prefix_Suffix)
end
lemma take_drop_CycleI[intro!]: "x ∈ L ⟹ drop i x @ take i x ∈ Cycle L"
unfolding Cycle_def by fastforce
lemma take_drop_CycleI'[intro!]: "drop i x @ take i x ∈ L ⟹ x ∈ Cycle L"
by (drule take_drop_CycleI[of _ _ "length x - i"]) auto
end
end