Theory Generic_Join.Generic_Join
section ‹The algorithm›
theory Generic_Join
imports MFOTL_Monitor.Table
begin
type_synonym 'a atable = "nat set × 'a table"
type_synonym 'a query = "'a atable set"
type_synonym vertices = "nat set"
subsection ‹Generic algorithm›
locale getIJ =
fixes getIJ :: "'a query ⇒ 'a query ⇒ vertices ⇒ vertices × vertices"
assumes coreProperties: "card V ≥ 2 ⟹ getIJ Q_pos Q_neg V = (I, J) ⟹
card I ≥ 1 ∧ card J ≥ 1 ∧ V = I ∪ J ∧ I ∩ J = {}"
begin
lemma getIJProperties:
assumes "card V ≥ 2"
assumes "(I, J) = getIJ Q_pos Q_neg V"
shows "card I ≥ 1" and "card J ≥ 1" and "card I < card V" and "card J < card V"
and "V = I ∪ J" and "I ∩ J = {}"
proof -
show "1 ≤ card I" using coreProperties[of V Q_pos Q_neg I J] assms by auto
show "1 ≤ card J" using coreProperties[of V Q_pos Q_neg I J] assms by auto
show "card I < card V" by (metis (no_types, lifting) Int_ac(3) One_nat_def Suc_le_lessD assms(1)
assms(2) card_gt_0_iff card_seteq dual_order.trans getIJ.coreProperties getIJ_axioms leI
le_iff_inf one_le_numeral sup_ge1 sup_ge2)
show "card J < card V" by (metis One_nat_def Suc_1 assms(1) assms(2) card_gt_0_iff card_seteq
getIJ.coreProperties getIJ_axioms leI le_0_eq le_iff_inf nat.simps(3) sup_ge1 sup_ge2)
show "V = I ∪ J" by (metis assms(1) assms(2) getIJ.coreProperties getIJ_axioms)
show "I ∩ J = {}" by (metis assms(1) assms(2) getIJ_axioms getIJ_def)
qed
fun projectTable :: "vertices ⇒ 'a atable ⇒ 'a atable" where
"projectTable V (s, t) = (s ∩ V, Set.image (restrict V) t)"
fun filterQuery :: "vertices ⇒ 'a query ⇒ 'a query" where
"filterQuery V Q = Set.filter (λ(s, _). ¬ Set.is_empty (s ∩ V)) Q"
fun filterQueryNeg :: "vertices ⇒ 'a query ⇒ 'a query" where
"filterQueryNeg V Q = Set.filter (λ(A, _). A ⊆ V) Q"
fun projectQuery :: "vertices ⇒ 'a query ⇒ 'a query" where
"projectQuery V s = Set.image (projectTable V) s"
fun isSameIntersection :: "'a tuple ⇒ nat set ⇒ 'a tuple ⇒ bool" where
"isSameIntersection t1 s t2 = (∀i∈s. t1!i = t2!i)"
fun semiJoin :: "'a atable ⇒ (nat set × 'a tuple) ⇒ 'a atable" where
"semiJoin (s, tab) (st, tup) = (s, Set.filter (isSameIntersection tup (s ∩ st)) tab)"
fun newQuery :: "vertices ⇒ 'a query ⇒ (nat set × 'a tuple) ⇒ 'a query" where
"newQuery V Q (st, t) = Set.image (λtab. projectTable V (semiJoin tab (st, t))) Q"
fun merge_option :: "'a option × 'a option ⇒ 'a option" where
"merge_option (None, None) = None"
| "merge_option (Some x, None) = Some x"
| "merge_option (None, Some x) = Some x"
| "merge_option (Some a, Some b) = Some a"
fun merge :: "'a tuple ⇒ 'a tuple ⇒ 'a tuple" where
"merge t1 t2 = map merge_option (zip t1 t2)"
function (sequential) genericJoin :: "vertices ⇒ 'a query ⇒ 'a query ⇒ 'a table" where
"genericJoin V Q_pos Q_neg =
(if card V ≤ 1 then
(⋂(_, x) ∈ Q_pos. x) - (⋃(_, x) ∈ Q_neg. x)
else
let (I, J) = getIJ Q_pos Q_neg V in
let Q_I_pos = projectQuery I (filterQuery I Q_pos) in
let Q_I_neg = filterQueryNeg I Q_neg in
let R_I = genericJoin I Q_I_pos Q_I_neg in
let Q_J_neg = Q_neg - Q_I_neg in
let Q_J_pos = filterQuery J Q_pos in
let X = {(t, genericJoin J (newQuery J Q_J_pos (I, t)) (newQuery J Q_J_neg (I, t))) | t . t ∈ R_I} in
(⋃(t, x) ∈ X. {merge xx t | xx . xx ∈ x}))"
by pat_completeness auto
termination
by (relation "measure (λ(V, Q_pos, Q_neg). card V)") (auto simp add: getIJProperties)
fun wrapperGenericJoin :: "'a query ⇒ 'a query ⇒ 'a table" where
"wrapperGenericJoin Q_pos Q_neg =
(if ((∃(A, X)∈Q_pos. Set.is_empty X) ∨ (∃(A, X)∈Q_neg. Set.is_empty A ∧ ¬ Set.is_empty X)) then
{}
else
let Q = Set.filter (λ(A, _). ¬ Set.is_empty A) Q_pos in
if Set.is_empty Q then
(⋂(A, X)∈Q_pos. X) - (⋃(A, X)∈Q_neg. X)
else
let V = (⋃(A, X)∈Q. A) in
let Qn = Set.filter (λ(A, _). A ⊆ V ∧ card A ≥ 1) Q_neg in
genericJoin V Q Qn)"
end
subsection ‹An instantation›
fun score :: "'a query ⇒ nat ⇒ nat" where
"score Q i = (let relevant = Set.image (λ(_, x). card x) (Set.filter (λ(sign, _). i ∈ sign) Q) in
let l = sorted_list_of_set relevant in
foldl (+) 0 l
)"
fun arg_max_list :: "('a ⇒ nat) ⇒ 'a list ⇒ 'a" where
"arg_max_list f l = (let m = Max (set (map f l)) in arg_min_list (λx. m - f x) l)"
lemma arg_max_list_element:
assumes "length l ≥ 1" shows "arg_max_list f l ∈ set l"
by (metis One_nat_def arg_max_list.simps arg_min_list_in assms le_imp_less_Suc less_irrefl list.size(3))
fun max_getIJ :: "'a query ⇒ 'a query ⇒ vertices ⇒ vertices × vertices" where
"max_getIJ Q_pos Q_neg V = (
let l = sorted_list_of_set V in
if Set.is_empty Q_neg then
let x = arg_max_list (score Q_pos) l in
({x}, V - {x})
else
let x = arg_max_list (score Q_neg) l in
(V - {x}, {x}))"
lemma max_getIJ_coreProperties:
assumes "card V ≥ 2"
assumes "(I, J) = max_getIJ Q_pos Q_neg V"
shows "card I ≥ 1 ∧ card J ≥ 1 ∧ V = I ∪ J ∧ I ∩ J = {}"
proof -
have "finite V" using assms(1) card.infinite by force
define l where "l = sorted_list_of_set V"
then have "length l ≥ 1" by (metis Suc_1 Suc_le_lessD ‹finite V› assms(1) distinct_card
distinct_sorted_list_of_set less_imp_le set_sorted_list_of_set)
show ?thesis
proof (cases "Set.is_empty Q_neg")
case True
define x where "x = arg_max_list (score Q_pos) l"
then have "x ∈ (set l)" using ‹1 ≤ length l› arg_max_list_element by blast
then have "x ∈ V" by (simp add: ‹finite V› l_def)
moreover have "(I, J) = ({x}, V - {x})"
proof -
have "(I, J) = (let l = sorted_list_of_set V in
let x = arg_max_list (score Q_pos) l in
({x}, V - {x}))" by (simp add: True assms(2))
then show ?thesis by (metis l_def x_def)
qed
then show ?thesis using Pair_inject ‹finite V› assms(1) calculation by auto
next
case False
define x where "x = arg_max_list (score Q_neg) l"
then have "x ∈ (set l)" using ‹1 ≤ length l› arg_max_list_element by blast
then have "x ∈ V" by (simp add: ‹finite V› l_def)
moreover have "(I, J) = (V - {x}, {x})"
proof -
have "(I, J) = (let l = sorted_list_of_set V in
let x = arg_max_list (score Q_neg) l in (V - {x}, {x}))" by (simp add: False assms(2))
then show ?thesis by (metis l_def x_def)
qed
then show ?thesis using Pair_inject ‹finite V› assms(1) calculation by auto
qed
qed