Theory HOL-Data_Structures.RBT_Set
section ‹Red-Black Tree Implementation of Sets›
theory RBT_Set
imports
Complex_Main
RBT
Cmp
Isin2
begin
definition empty :: "'a rbt" where
"empty = Leaf"
fun ins :: "'a::linorder ⇒ 'a rbt ⇒ 'a rbt" where
"ins x Leaf = R Leaf x Leaf" |
"ins x (B l a r) =
(case cmp x a of
LT ⇒ baliL (ins x l) a r |
GT ⇒ baliR l a (ins x r) |
EQ ⇒ B l a r)" |
"ins x (R l a r) =
(case cmp x a of
LT ⇒ R (ins x l) a r |
GT ⇒ R l a (ins x r) |
EQ ⇒ R l a r)"
definition insert :: "'a::linorder ⇒ 'a rbt ⇒ 'a rbt" where
"insert x t = paint Black (ins x t)"
fun color :: "'a rbt ⇒ color" where
"color Leaf = Black" |
"color (Node _ (_, c) _) = c"
fun del :: "'a::linorder ⇒ 'a rbt ⇒ 'a rbt" where
"del x Leaf = Leaf" |
"del x (Node l (a, _) r) =
(case cmp x a of
LT ⇒ if l ≠ Leaf ∧ color l = Black
then baldL (del x l) a r else R (del x l) a r |
GT ⇒ if r ≠ Leaf∧ color r = Black
then baldR l a (del x r) else R l a (del x r) |
EQ ⇒ join l r)"
definition delete :: "'a::linorder ⇒ 'a rbt ⇒ 'a rbt" where
"delete x t = paint Black (del x t)"
subsection "Functional Correctness Proofs"
lemma inorder_paint: "inorder(paint c t) = inorder t"
by(cases t) (auto)
lemma inorder_baliL:
"inorder(baliL l a r) = inorder l @ a # inorder r"
by(cases "(l,a,r)" rule: baliL.cases) (auto)
lemma inorder_baliR:
"inorder(baliR l a r) = inorder l @ a # inorder r"
by(cases "(l,a,r)" rule: baliR.cases) (auto)
lemma inorder_ins:
"sorted(inorder t) ⟹ inorder(ins x t) = ins_list x (inorder t)"
by(induction x t rule: ins.induct)
(auto simp: ins_list_simps inorder_baliL inorder_baliR)
lemma inorder_insert:
"sorted(inorder t) ⟹ inorder(insert x t) = ins_list x (inorder t)"
by (simp add: insert_def inorder_ins inorder_paint)
lemma inorder_baldL:
"inorder(baldL l a r) = inorder l @ a # inorder r"
by(cases "(l,a,r)" rule: baldL.cases)
(auto simp: inorder_baliL inorder_baliR inorder_paint)
lemma inorder_baldR:
"inorder(baldR l a r) = inorder l @ a # inorder r"
by(cases "(l,a,r)" rule: baldR.cases)
(auto simp: inorder_baliL inorder_baliR inorder_paint)
lemma inorder_join:
"inorder(join l r) = inorder l @ inorder r"
by(induction l r rule: join.induct)
(auto simp: inorder_baldL inorder_baldR split: tree.split color.split)
lemma inorder_del:
"sorted(inorder t) ⟹ inorder(del x t) = del_list x (inorder t)"
by(induction x t rule: del.induct)
(auto simp: del_list_simps inorder_join inorder_baldL inorder_baldR)
lemma inorder_delete:
"sorted(inorder t) ⟹ inorder(delete x t) = del_list x (inorder t)"
by (auto simp: delete_def inorder_del inorder_paint)
subsection ‹Structural invariants›
lemma neq_Black[simp]: "(c ≠ Black) = (c = Red)"
by (cases c) auto
text‹The proofs are due to Markus Reiter and Alexander Krauss.›
fun bheight :: "'a rbt ⇒ nat" where
"bheight Leaf = 0" |
"bheight (Node l (x, c) r) = (if c = Black then bheight l + 1 else bheight l)"
fun invc :: "'a rbt ⇒ bool" where
"invc Leaf = True" |
"invc (Node l (a,c) r) =
((c = Red ⟶ color l = Black ∧ color r = Black) ∧ invc l ∧ invc r)"
text ‹Weaker version:›
abbreviation invc2 :: "'a rbt ⇒ bool" where
"invc2 t ≡ invc(paint Black t)"
fun invh :: "'a rbt ⇒ bool" where
"invh Leaf = True" |
"invh (Node l (x, c) r) = (bheight l = bheight r ∧ invh l ∧ invh r)"
lemma invc2I: "invc t ⟹ invc2 t"
by (cases t rule: tree2_cases) simp+
definition rbt :: "'a rbt ⇒ bool" where
"rbt t = (invc t ∧ invh t ∧ color t = Black)"
lemma color_paint_Black: "color (paint Black t) = Black"
by (cases t) auto
lemma paint2: "paint c2 (paint c1 t) = paint c2 t"
by (cases t) auto
lemma invh_paint: "invh t ⟹ invh (paint c t)"
by (cases t) auto
lemma invc_baliL:
"⟦invc2 l; invc r⟧ ⟹ invc (baliL l a r)"
by (induct l a r rule: baliL.induct) auto
lemma invc_baliR:
"⟦invc l; invc2 r⟧ ⟹ invc (baliR l a r)"
by (induct l a r rule: baliR.induct) auto
lemma bheight_baliL:
"bheight l = bheight r ⟹ bheight (baliL l a r) = Suc (bheight l)"
by (induct l a r rule: baliL.induct) auto
lemma bheight_baliR:
"bheight l = bheight r ⟹ bheight (baliR l a r) = Suc (bheight l)"
by (induct l a r rule: baliR.induct) auto
lemma invh_baliL:
"⟦ invh l; invh r; bheight l = bheight r ⟧ ⟹ invh (baliL l a r)"
by (induct l a r rule: baliL.induct) auto
lemma invh_baliR:
"⟦ invh l; invh r; bheight l = bheight r ⟧ ⟹ invh (baliR l a r)"
by (induct l a r rule: baliR.induct) auto
text ‹All in one:›
lemma inv_baliR: "⟦ invh l; invh r; invc l; invc2 r; bheight l = bheight r ⟧
⟹ invc (baliR l a r) ∧ invh (baliR l a r) ∧ bheight (baliR l a r) = Suc (bheight l)"
by (induct l a r rule: baliR.induct) auto
lemma inv_baliL: "⟦ invh l; invh r; invc2 l; invc r; bheight l = bheight r ⟧
⟹ invc (baliL l a r) ∧ invh (baliL l a r) ∧ bheight (baliL l a r) = Suc (bheight l)"
by (induct l a r rule: baliL.induct) auto
subsubsection ‹Insertion›
lemma invc_ins: "invc t ⟶ invc2 (ins x t) ∧ (color t = Black ⟶ invc (ins x t))"
by (induct x t rule: ins.induct) (auto simp: invc_baliL invc_baliR invc2I)
lemma invh_ins: "invh t ⟹ invh (ins x t) ∧ bheight (ins x t) = bheight t"
by(induct x t rule: ins.induct)
(auto simp: invh_baliL invh_baliR bheight_baliL bheight_baliR)
theorem rbt_insert: "rbt t ⟹ rbt (insert x t)"
by (simp add: invc_ins invh_ins color_paint_Black invh_paint rbt_def insert_def)
text ‹All in one:›
lemma inv_ins: "⟦ invc t; invh t ⟧ ⟹
invc2 (ins x t) ∧ (color t = Black ⟶ invc (ins x t)) ∧
invh(ins x t) ∧ bheight (ins x t) = bheight t"
by (induct x t rule: ins.induct) (auto simp: inv_baliL inv_baliR invc2I)
theorem rbt_insert2: "rbt t ⟹ rbt (insert x t)"
by (simp add: inv_ins color_paint_Black invh_paint rbt_def insert_def)
subsubsection ‹Deletion›
lemma bheight_paint_Red:
"color t = Black ⟹ bheight (paint Red t) = bheight t - 1"
by (cases t) auto
lemma invh_baldL_invc:
"⟦ invh l; invh r; bheight l + 1 = bheight r; invc r ⟧
⟹ invh (baldL l a r) ∧ bheight (baldL l a r) = bheight r"
by (induct l a r rule: baldL.induct)
(auto simp: invh_baliR invh_paint bheight_baliR bheight_paint_Red)
lemma invh_baldL_Black:
"⟦ invh l; invh r; bheight l + 1 = bheight r; color r = Black ⟧
⟹ invh (baldL l a r) ∧ bheight (baldL l a r) = bheight r"
by (induct l a r rule: baldL.induct) (auto simp add: invh_baliR bheight_baliR)
lemma invc_baldL: "⟦invc2 l; invc r; color r = Black⟧ ⟹ invc (baldL l a r)"
by (induct l a r rule: baldL.induct) (simp_all add: invc_baliR)
lemma invc2_baldL: "⟦ invc2 l; invc r ⟧ ⟹ invc2 (baldL l a r)"
by (induct l a r rule: baldL.induct) (auto simp: invc_baliR paint2 invc2I)
lemma invh_baldR_invc:
"⟦ invh l; invh r; bheight l = bheight r + 1; invc l ⟧
⟹ invh (baldR l a r) ∧ bheight (baldR l a r) = bheight l"
by(induct l a r rule: baldR.induct)
(auto simp: invh_baliL bheight_baliL invh_paint bheight_paint_Red)
lemma invc_baldR: "⟦invc l; invc2 r; color l = Black⟧ ⟹ invc (baldR l a r)"
by (induct l a r rule: baldR.induct) (simp_all add: invc_baliL)
lemma invc2_baldR: "⟦ invc l; invc2 r ⟧ ⟹invc2 (baldR l a r)"
by (induct l a r rule: baldR.induct) (auto simp: invc_baliL paint2 invc2I)
lemma invh_join:
"⟦ invh l; invh r; bheight l = bheight r ⟧
⟹ invh (join l r) ∧ bheight (join l r) = bheight l"
by (induct l r rule: join.induct)
(auto simp: invh_baldL_Black split: tree.splits color.splits)
lemma invc_join:
"⟦ invc l; invc r ⟧ ⟹
(color l = Black ∧ color r = Black ⟶ invc (join l r)) ∧ invc2 (join l r)"
by (induct l r rule: join.induct)
(auto simp: invc_baldL invc2I split: tree.splits color.splits)
text ‹All in one:›
lemma inv_baldL:
"⟦ invh l; invh r; bheight l + 1 = bheight r; invc2 l; invc r ⟧
⟹ invh (baldL l a r) ∧ bheight (baldL l a r) = bheight r
∧ invc2 (baldL l a r) ∧ (color r = Black ⟶ invc (baldL l a r))"
by (induct l a r rule: baldL.induct)
(auto simp: inv_baliR invh_paint bheight_baliR bheight_paint_Red paint2 invc2I)
lemma inv_baldR:
"⟦ invh l; invh r; bheight l = bheight r + 1; invc l; invc2 r ⟧
⟹ invh (baldR l a r) ∧ bheight (baldR l a r) = bheight l
∧ invc2 (baldR l a r) ∧ (color l = Black ⟶ invc (baldR l a r))"
by (induct l a r rule: baldR.induct)
(auto simp: inv_baliL invh_paint bheight_baliL bheight_paint_Red paint2 invc2I)
lemma inv_join:
"⟦ invh l; invh r; bheight l = bheight r; invc l; invc r ⟧
⟹ invh (join l r) ∧ bheight (join l r) = bheight l
∧ invc2 (join l r) ∧ (color l = Black ∧ color r = Black ⟶ invc (join l r))"
by (induct l r rule: join.induct)
(auto simp: invh_baldL_Black inv_baldL invc2I split: tree.splits color.splits)
lemma neq_LeafD: "t ≠ Leaf ⟹ ∃l x c r. t = Node l (x,c) r"
by(cases t rule: tree2_cases) auto
lemma inv_del: "⟦ invh t; invc t ⟧ ⟹
invh (del x t) ∧
(color t = Red ⟶ bheight (del x t) = bheight t ∧ invc (del x t)) ∧
(color t = Black ⟶ bheight (del x t) = bheight t - 1 ∧ invc2 (del x t))"
by(induct x t rule: del.induct)
(auto simp: inv_baldL inv_baldR inv_join dest!: neq_LeafD)
theorem rbt_delete: "rbt t ⟹ rbt (delete x t)"
by (metis delete_def rbt_def color_paint_Black inv_del invh_paint)
text ‹Overall correctness:›
interpretation S: Set_by_Ordered
where empty = empty and isin = isin and insert = insert and delete = delete
and inorder = inorder and inv = rbt
proof (standard, goal_cases)
case 1 show ?case by (simp add: empty_def)
next
case 2 thus ?case by(simp add: isin_set_inorder)
next
case 3 thus ?case by(simp add: inorder_insert)
next
case 4 thus ?case by(simp add: inorder_delete)
next
case 5 thus ?case by (simp add: rbt_def empty_def)
next
case 6 thus ?case by (simp add: rbt_insert)
next
case 7 thus ?case by (simp add: rbt_delete)
qed
subsection ‹Height-Size Relation›
lemma rbt_height_bheight_if: "invc t ⟹ invh t ⟹
height t ≤ 2 * bheight t + (if color t = Black then 0 else 1)"
by(induction t) (auto split: if_split_asm)
lemma rbt_height_bheight: "rbt t ⟹ height t / 2 ≤ bheight t "
by(auto simp: rbt_def dest: rbt_height_bheight_if)
lemma bheight_size_bound: "invc t ⟹ invh t ⟹ 2 ^ (bheight t) ≤ size1 t"
by (induction t) auto
lemma bheight_le_min_height: "invh t ⟹ bheight t ≤ min_height t"
by (induction t) auto
lemma rbt_height_le: assumes "rbt t" shows "height t ≤ 2 * log 2 (size1 t)"
proof -
have "2 powr (height t / 2) ≤ 2 powr bheight t"
using rbt_height_bheight[OF assms] by simp
also have "… ≤ size1 t" using assms
by (simp add: powr_realpow bheight_size_bound rbt_def)
finally have "2 powr (height t / 2) ≤ size1 t" .
hence "height t / 2 ≤ log 2 (size1 t)"
by (simp add: le_log_iff size1_size del: divide_le_eq_numeral1(1))
thus ?thesis by simp
qed
lemma rbt_height_le2: assumes "rbt t" shows "height t ≤ 2 * log 2 (size1 t)"
proof -
have "height t ≤ 2 * bheight t"
using rbt_height_bheight_if assms[simplified rbt_def] by fastforce
also have "… ≤ 2 * min_height t"
using bheight_le_min_height assms[simplified rbt_def] by auto
also have "… ≤ 2 * log 2 (size1 t)"
using le_log2_of_power min_height_size1 by auto
finally show ?thesis by simp
qed
end