Theory Lorenz_C1
theory Lorenz_C1
imports
Lorenz_Approximation.Lorenz_Approximation
begin
locale check_lines_c1 =
assumes check_lines_c1: "check_lines True ordered_lines"
begin
lemma all_coarse_results: "Ball (set coarse_results) correct_res" if NF
apply (rule Ball_coarseI)
apply fact
apply (rule check_lines_c1)
apply eval
done
theorem lorenz_bounds:
"∀x ∈ N - Γ. x returns_to Σ"
"R ` (N - Γ) ⊆ N"
"∀x ∈ N - Γ. (R has_derivative DR x) (at x within Σ⇩l⇩e)"
"∀x ∈ N - Γ. DR x ` ℭ x ⊆ ℭ (R x)"
"∀x ∈ N - Γ. ∀c ∈ ℭ x. norm (DR x c) ≥ ℰ x * norm c"
"∀x ∈ N - Γ. ∀c ∈ ℭ x. norm (DR x c) ≥ ℰ⇩p (R x) * norm c"
if NF
using lorenz_bounds_lemma_asym[OF ‹NF› reduce_lorenz_symmetry, OF all_coarse_results[OF ‹NF›]]
by auto
end
interpretation check_lines_c1
apply unfold_locales
oops
end