Theory QEdlo_inf

(*  Author:     Tobias Nipkow, 2007  *)

theory QEdlo_inf
imports DLO
begin

subsection "Quantifier elimination with infinitesimals"

text‹This section presents a new quantifier elimination procedure
for dense linear orders based on (the simulation of) infinitesimals.
It is a fairly straightforward adaptation of the analogous algorithm
by Loos and Weispfenning for linear arithmetic described in
\S\ref{sec:lin-inf}.›

fun asubst_peps :: "nat  atom  atom fm" (asubst+) where
"asubst_peps k (Less 0 0) = FalseF" |
"asubst_peps k (Less 0 (Suc j)) = Atom(Less k j)" |
"asubst_peps k (Less (Suc i) 0) = (if i=k then TrueF
   else Or (Atom(Less i k)) (Atom(Eq i k)))" |
"asubst_peps k (Less (Suc i) (Suc j)) = Atom(Less i j)" |
"asubst_peps k (Eq 0 0) = TrueF" |
"asubst_peps k (Eq 0 _) = FalseF" |
"asubst_peps k (Eq _ 0) = FalseF" |
"asubst_peps k (Eq (Suc i) (Suc j)) = Atom(Eq i j)"

abbreviation subst_peps :: "atom fm  nat  atom fm" (subst+) where
"subst+ φ k  amapfm (asubst+ k) φ"

definition "nolb φ xs l x = (y{l<..<x}. y  LB φ xs)"

lemma nolb_And[simp]:
  "nolb (And φ1 φ2) xs l x = (nolb φ1 xs l x  nolb φ2 xs l x)"
apply(clarsimp simp:nolb_def)
apply blast
done

lemma nolb_Or[simp]:
  "nolb (Or φ1 φ2) xs l x = (nolb φ1 xs l x  nolb φ2 xs l x)"
apply(clarsimp simp:nolb_def)
apply blast
done

context notes [[simp_depth_limit=3]]
begin

lemma innermost_intvl:
 " nqfree φ; nolb φ xs l x; l < x; x  EQ φ xs; DLO.I φ (x#xs); l < y; y  x
   DLO.I φ (y#xs)"
proof(induct φ)
  case (Atom a)
  show ?case
  proof (cases a)
    case (Less i j)
    then show ?thesis using Atom
      unfolding nolb_def
      by (clarsimp simp: nth.simps Ball_def split:if_split_asm nat.splits)
         (metis not_le_imp_less order_antisym order_less_trans)+
  next
    case (Eq i j) thus ?thesis using Atom
      apply(clarsimp simp:EQ_def nolb_def nth_Cons')
      apply(case_tac "i=0  j=0") apply simp
      apply(case_tac "i0  j0") apply simp
      apply(case_tac "i=0  j0") apply (fastforce split:if_split_asm)
      apply(case_tac "i0  j=0") apply (fastforce split:if_split_asm)
      apply arith
      done
  qed
next
  case And thus ?case by (fastforce)
next
  case Or thus ?case by (fastforce)
qed simp+


lemma I_subst_peps2:
 "nqfree φ  xs!l < x  nolb φ xs (xs!l) x  x  EQ φ xs
  y  {xs!l <.. x}. DLO.I φ (y#xs)
  DLO.I (subst+ φ l) xs"
proof(induct φ)
  case FalseF thus ?case
    by simp (metis antisym_conv1 linorder_neq_iff)
next
  case (Atom a)
  show ?case
  proof(cases "(l,a)" rule:asubst_peps.cases)
    case 3 thus ?thesis using Atom
      by (auto simp: nolb_def EQ_def Ball_def)
         (metis One_nat_def antisym_conv1 not_less_iff_gr_or_eq)
  qed (insert Atom, auto simp: nolb_def EQ_def Ball_def)
next
  case Or thus ?case by(simp add: Ball_def)(metis order_refl innermost_intvl)
qed simp_all

end

lemma dense_interval:
assumes "finite L" "l  L" "l < x" "P(x::'a::dlo)"
and dense: "y l.  y{l<..<x}. y  L; l<x; l<y; yx   P y"
shows "lL. l<x  (y{l<..<x}. y  L)  (y. l<y  yx  P y)"
proof -
  let ?L = "{lL. l < x}"
  let ?ll = "Max ?L"
  have "?L  {}" using l  L l<x by (blast intro:order_less_imp_le)
  hence "y. ?ll<y  y<x  y  L" using finite L by force
  moreover have "?ll  L"
  proof
    show "?ll  ?L" using finite L Max_in[OF _ ?L  {}] by simp
    show "?L  L" by blast
  qed
  moreover have "?ll < x" using finite L ?L  {} by simp
  ultimately show ?thesis using l < x ?L  {}
    by(blast intro!:dense greaterThanLessThan_iff[THEN iffD1])
qed


lemma I_subst_peps:
  "nqfree φ  DLO.I (subst+ φ l) xs 
  (leps>xs!l. x. xs!l < x  x  leps  DLO.I φ (x#xs))"
proof(induct φ)
  case TrueF thus ?case by simp (metis no_ub)
next
  case (Atom a)
  show ?case
  proof (cases "(l,a)" rule: asubst_peps.cases)
    case 2 thus ?thesis using Atom
      apply(auto)
      apply(drule dense)
      apply(metis One_nat_def xt1(7))
      done
  next
    case 3 thus ?thesis using Atom
      apply(auto)
        apply (metis no_ub)
       apply (metis no_ub less_trans)
      apply (metis no_ub)
      done
  next
    case 4 thus ?thesis using Atom by(auto)(metis no_ub)
  next
    case 5 thus ?thesis using Atom by(auto)(metis no_ub)
  next
    case 8 thus ?thesis using Atom by(auto)(metis no_ub)
  qed (insert Atom, auto)
next
  case And thus ?case
    apply clarsimp
    apply(rule_tac x="min leps lepsa" in exI)
    apply simp
    done
next
  case Or thus ?case by force
qed simp_all


definition
"qe_eps1(φ) =
(let as = DLO.atoms0 φ; lbs = lbounds as; ebs = ebounds as
 in list_disj (inf- φ # map (subst+ φ) lbs @ map (subst φ) ebs))"

theorem I_qe_eps1:
assumes "nqfree φ" shows "DLO.I (qe_eps1 φ) xs = (x. DLO.I φ (x#xs))"
  (is "?QE = ?EX")
proof
  let ?as = "DLO.atoms0 φ" let ?ebs = "ebounds ?as"
  assume ?QE
  { assume "DLO.I (inf- φ) xs"
    hence ?EX using ?QE min_inf[of φ xs] nqfree φ
      by(auto simp add:qe_eps1_def amap_fm_list_disj)
  } moreover
  { assume "i  set ?ebs. ¬DLO.I φ (xs!i # xs)"
           "¬ DLO.I (inf- φ) xs"
    with ?QE nqfree φ obtain l where "DLO.I (subst+ φ l) xs"
      by(fastforce simp: I_subst qe_eps1_def set_ebounds set_lbounds)
    then obtain leps where "DLO.I φ (leps#xs)"
      using I_subst_peps[OF nqfree φ] by fastforce
    hence ?EX .. }
  ultimately show ?EX by blast
next
  let ?as = "DLO.atoms0 φ" let ?ebs = "ebounds ?as"
  assume ?EX
  then obtain x where x: "DLO.I φ (x#xs)" ..
  { assume "DLO.I (inf- φ) xs"
    hence ?QE using nqfree φ by(auto simp:qe_eps1_def)
  } moreover
  { assume "k  set ?ebs. DLO.I (subst φ k) xs"
    hence ?QE by(auto simp:qe_eps1_def) } moreover
  { assume "¬ DLO.I (inf- φ) xs"
    and "k  set ?ebs. ¬ DLO.I (subst φ k) xs"
    hence noE: "e  EQ φ xs. ¬ DLO.I φ (e#xs)" using nqfree φ
      by (auto simp:set_ebounds EQ_def I_subst nth_Cons' split:if_split_asm)
    hence "x  EQ φ xs" using x by fastforce
    obtain l where "l  LB φ xs" "l < x"
      using LBex[OF nqfree φ x ¬ DLO.I(inf- φ) xs x  EQ φ xs] ..
    have "lLB φ xs. l<x  nolb φ xs l x 
            (y. l < y  y  x  DLO.I φ (y#xs))"
      using dense_interval[where P = "λx. DLO.I φ (x#xs)", OF finite_LB lLB φ xs l<x x] x innermost_intvl[OF nqfree φ _ _ x  EQ φ xs]
      by (simp add:nolb_def)
    then obtain m
      where *: "Less (Suc m) 0  set ?as  xs!m < x  nolb φ xs (xs!m) x
             (y. xs!m < y  y  x  DLO.I φ (y#xs))"
      by blast
    then have "DLO.I (subst+ φ m) xs"
      using noE by(auto intro!: I_subst_peps2[OF nqfree φ])
    with * have ?QE
      by(simp add:qe_eps1_def bex_Un set_lbounds set_ebounds) metis
  } ultimately show ?QE by blast
qed

lemma qfree_asubst_peps: "qfree (asubst+ k a)"
by(cases "(k,a)" rule:asubst_peps.cases) simp_all

lemma qfree_subst_peps: "nqfree φ  qfree (subst+ φ k)"
by(induct φ) (simp_all add:qfree_asubst_peps)

lemma qfree_qe_eps1: "nqfree φ  qfree(qe_eps1 φ)"
apply(simp add:qe_eps1_def)
apply(rule qfree_list_disj)
apply (auto simp:qfree_min_inf qfree_subst_peps qfree_map_fm)
done

definition "qe_eps = DLO.lift_nnf_qe qe_eps1"

lemma qfree_qe_eps: "qfree(qe_eps φ)"
by(simp add: qe_eps_def DLO.qfree_lift_nnf_qe qfree_qe_eps1)

lemma I_qe_eps: "DLO.I (qe_eps φ) xs = DLO.I φ xs"
by(simp add:qe_eps_def DLO.I_lift_nnf_qe qfree_qe_eps1 I_qe_eps1)

end