Theory Transfer_Cayley_Hamilton
theory Transfer_Cayley_Hamilton
imports
Cayley_Hamilton.Square_Matrix
Cayley_Hamilton.Cayley_Hamilton
"HOL-Types_To_Sets.Group_On_With"
begin
text ‹Hide the definitions of \<^session>‹Cayley_Hamilton› that override those of HOL-Analysis.
They can still be accessed using fully qualified syntax.›
hide_const (open) det transpose row trace adjugate
hide_fact (open) det_def transpose_def row_def row_transpose trace_def adjugate_def
hide_const (open) "XX" "CC" charpoly poly_mat
no_notation Cayley_Hamilton.XX (‹❙X›)
no_notation Cayley_Hamilton.CC (‹❙C›)
hide_fact (open) charpoly_def poly_mat_def
type_synonym ('a, 'n) square_matrix = "(('a, 'n) vec, 'n) vec"
definition to_fun_vec_vec::"(('a,'m::finite)vec,'n::finite)vec ⇒ ('n⇒'m⇒'a)" where
"to_fun_vec_vec M ≡ λi j. M$i$j"
section ‹Missing definitions for \<^typ>‹('a,'n)square_matrix››
definition minor_mat :: "('a,'b)square_matrix ⇒ 'b ⇒ 'b ⇒ ('a::semiring_1,'b::finite)square_matrix" where
"minor_mat A i j ≡ χ k l. if k = i ∧ l = j then 1 else if k = i ∨ l = j then 0 else A$k$l"
lemma minor_from_vec: "from_vec (minor_mat A i j) = minor (from_vec A) i j"
apply transfer
unfolding minor_mat_def using vec_eq_iff fun_eq_iff by fastforce
lemma to_vec_minor: "minor_mat (to_vec A) i j = to_vec (minor A i j)"
using minor_from_vec by (metis from_vec_to_vec to_vec_from_vec)
definition cofac :: "('a,'b)square_matrix ⇒ 'a::comm_ring_1^'b^'b" where
"cofac A ≡ χ i j. det (minor_mat A i j)"
definition "adjugate A ≡ transpose (cofac A)"
text ‹Just for convenience, I'll define scalar multiplication as well, much like in ‹Cayley_Hamilton›.›
definition smult_mat :: "'a::times ⇒ 'a^'n^'m ⇒ 'a^'n^'m" (infixr ‹*⇩s› 75) where
"s *⇩s M ≡ χ i j. s*M$i$j"
lemma smult_map: "smult_mat s = map_matrix (λx. s*x)"
unfolding smult_mat_def map_matrix_def by auto
abbreviation XX (‹❙X›) where "❙X ≡ mat X"
abbreviation CC (‹❙C›) where "❙C ≡ map_matrix C"
definition "charpoly A = det (❙X - ❙C A)"
text ‹Since multiplication \<^term>‹times› is already defined element-wise, so is exponentiation.
Not useful for our purposes - define exponentiation based on \<^term>‹matrix_matrix_mult› instead.›
primrec power_mat :: "'a::{semiring_1}^'n^'n ⇒ nat ⇒ 'a^'n^'n" (infixr ‹*^› 80)
where
power_0: "a *^ 0 = mat 1"
| power_Suc: "a *^ Suc n = a ** a *^ n"
definition poly_mat :: "'a::ring_1 poly ⇒ 'a^'n^'n ⇒ 'a^'n^'n" where
"poly_mat p A = (∑i≤degree p. coeff p i *⇩s A*^i)"
section ‹Transfer Relation and Rules between \<^typ>‹'a^^'n› and \<^typ>‹'a^'n^'n››
subsection ‹Transfer Relation›
context includes lifting_syntax begin
lemma to_fun_from_vec: "to_fun_vec_vec = (to_fun ∘ from_vec)"
unfolding to_fun_vec_vec_def from_vec_def
apply transfer by (simp add: fun.map_ident map_fun_def)
definition rel_sm_vv::"('a⇒'b⇒bool) ⇒ ('n⇒'m⇒bool) ⇒ 'a^^'n ⇒ 'b^'m^'m ⇒ bool" where
"rel_sm_vv A N SM VV ≡ (N===>N===>A) (to_fun SM) (to_fun_vec_vec VV)"
definition Rel_vec::"('a⇒'b⇒bool) ⇒ ('n⇒'m⇒bool) ⇒ 'a^'n ⇒ 'b^'m ⇒ bool" where
"Rel_vec A N v u ≡ (N===>A) (vec_nth v) (vec_nth u)"
definition Rel_vec_vec::"('a⇒'b⇒bool) ⇒ ('n⇒'i⇒bool) ⇒ ('m⇒'j⇒bool) ⇒ 'a^'m^'n ⇒ 'b^'j^'i ⇒ bool" where
"Rel_vec_vec A N M v u ≡ (N===>M===>A) (to_fun_vec_vec v) (to_fun_vec_vec u)"
definition Rel_sq_mat::"('a⇒'b⇒bool) ⇒ ('n⇒'i⇒bool) ⇒ 'a^^'n ⇒ 'b^^'i ⇒ bool" where
"Rel_sq_mat A N v u ≡ (N===>N===>A) (to_fun v) (to_fun u)"
abbreviation "EQ ≡ rel_sm_vv (=) (=)"
lemma EQ_iff: "EQ SM VV ⟷ (to_fun SM) = (to_fun_vec_vec VV)"
by (simp add: rel_fun_eq rel_sm_vv_def)
lemma EQ_cong: "EQ SM VV"
if "EQ sm vv" "sm = SM" "vv = VV"
using that by simp
text ‹A kind-of halfway transfer, between raw representations.›
lemma EQ_intro: "EQ (of_fun f) (χ i j. g i j)"
if "f = g"
using that EQ_iff from_vec_to_vec to_fun_from_vec
by (metis comp_apply to_vec.abs_eq)
end
bundle transfer_CH_matrix_syntax
begin
notation EQ (infix ‹≅› 80)
end
subsection ‹Transfer rules›
context includes lifting_syntax and transfer_CH_matrix_syntax begin
lemma right_total_rel_sm_vv' [transfer_rule]: "right_total EQ"
unfolding right_total_def EQ_iff to_fun_vec_vec_def
using from_vec.rep_eq by blast
lemma bi_unique_rel_sm_vv' [transfer_rule]: "bi_unique EQ"
unfolding bi_unique_def EQ_iff to_fun_vec_vec_def
by (metis from_vec.abs_eq from_vec_eq_iff to_fun_inject)
lemma transfer_sm_vv_1 [transfer_rule]:
shows "(diag 1) ≅ (mat 1)"
unfolding mat_def rel_sm_vv_def rel_fun_def
by (simp add: diag.rep_eq to_fun_from_vec from_vec.rep_eq)
lemma transfer_sm_vv_0 [transfer_rule]:
shows "0 ≅ 0"
unfolding to_fun_from_vec EQ_iff by (simp add: from_vec.rep_eq zero_sq_matrix.rep_eq)
lemma transfer_sm_vv_eq [transfer_rule]:
shows "(EQ ===> EQ ===> (⟷)) (=) (=)"
by transfer_prover
lemma transfer_sm_vv_forall [transfer_rule]:
shows "((EQ ===> (⟷)) ===> (⟷)) All transfer_forall"
unfolding rel_sm_vv_def rel_fun_def to_fun_from_vec transfer_forall_def
by (metis comp_def from_vec_to_vec)
lemma transfer_sm_vv_mult[transfer_rule]:
shows "(EQ ===> EQ ===> EQ) (*) (**)"
unfolding times_sq_matrix_def matrix_matrix_mult_def rel_sm_vv_def rel_fun_def to_fun_from_vec
by (clarify, smt (z3) Finite_Cartesian_Product.sum_cong_aux comp_apply from_vec_mult
times_sq_matrix.rep_eq times_sq_matrix_def matrix_matrix_mult_def)
lemma transfer_sm_vv_diag[transfer_rule]:
shows "((=) ===> EQ) diag mat"
unfolding mat_def rel_sm_vv_def rel_fun_def to_fun_from_vec
by (simp add: diag.abs_eq from_vec.abs_eq)
lemma transfer_sm_vv_transpose[transfer_rule]:
shows "(EQ ===> EQ) Square_Matrix.transpose transpose"
unfolding transpose_def rel_sm_vv_def rel_fun_def
by (metis (mono_tags, lifting) to_fun_vec_vec_def transpose.rep_eq vec_lambda_beta)
lemma transfer_sm_vv_det[transfer_rule]:
shows "(EQ ===> (=)) Square_Matrix.det det"
unfolding Square_Matrix.det_def det_def rel_sm_vv_def rel_fun_def to_fun_from_vec
by (simp add: from_vec.abs_eq of_fun_inverse)
lemma transfer_sm_vv_minor[transfer_rule]:
shows "(EQ ===> (=) ===> (=) ===> EQ) minor minor_mat"
unfolding minor_mat_def minor_def rel_sm_vv_def rel_fun_def to_fun_from_vec
by (simp add: from_vec.abs_eq of_fun_inverse)
lemma transfer_sm_vv_cofactor[transfer_rule]:
shows "(EQ ===> EQ) cofactor cofac"
unfolding cofac_def cofactor_def
minor_mat_def minor_def det_def Square_Matrix.det_def
rel_sm_vv_def rel_fun_def to_fun_from_vec
apply (simp add: from_vec.abs_eq of_fun_inverse)
by (metis (no_types, lifting) id_apply prod.cong sum.cong)
lemma transfer_sm_vv_adjugate[transfer_rule]:
shows "(EQ ===> EQ) Square_Matrix.adjugate adjugate"
unfolding Square_Matrix.adjugate_def adjugate_def
using transfer_sm_vv_cofactor transfer_sm_vv_transpose
by (smt (verit, del_insts) rel_funD rel_funI)
lemma transfer_sm_vv_smult[transfer_rule]:
shows "((=) ===> EQ ===> EQ) (*⇩S) (*⇩s)"
unfolding smult_mat_def rel_fun_def EQ_iff to_fun_from_vec
by (simp add: from_vec.abs_eq smult_sq_matrix.abs_eq to_fun_inject)
lemma power_mat_transfer [transfer_rule]:
‹(R ===> (=) ===> R) (^) (*^)›
if [transfer_rule]: ‹R 1 (mat 1)› ‹(R ===> R ===> R) (*) (**)›
for R :: ‹'a::power ⇒ 'b::semiring_1^'n^'n ⇒ bool›
by (simp only: power_def power_mat_def) transfer_prover
lemma transfer_sm_vv_power[transfer_rule]: "(EQ ===> (=) ===> EQ) power (*^)"
apply (intro power_mat_transfer)
using transfer_sm_vv_1 apply (metis diag_1)
using transfer_sm_vv_mult by simp
lemma transfer_sum_if_plus0 [transfer_rule]: "((B ===> A) ===> rel_set B ===> A) sum sum"
if zero_plus [transfer_rule]: "A 0 0" "(A===>A===>A) (+) (+)"
and rt_bu [transfer_rule]: "right_total A" "bi_unique A" "bi_unique B"
proof (unfold sum_with)
show "((B ===> A) ===> rel_set B ===> A) (sum_with (+) 0) (sum_with (+) 0)"
using sum_with_transfer[OF rt_bu] rel_fun_def_butlast zero_plus by metis
qed
lemma transfer_sm_vv_plus[transfer_rule]: "(EQ===>EQ===>EQ) (+) (+)"
proof (intro rel_funI, unfold plus_vec_def EQ_iff to_fun_from_vec)
fix x y :: "('a, 'b) sq_matrix"
and a b :: "(('a, 'b) vec, 'b) vec"
assume "to_fun x = (to_fun ∘ from_vec) a"
and "to_fun y = (to_fun ∘ from_vec) b"
then show "to_fun (x + y) = (to_fun ∘ from_vec) (χ i j. a$i$j + b$i$j)"
by (simp add: from_vec.abs_eq plus_sq_matrix.abs_eq to_fun_inject)
qed
lemma transfer_sm_vv_sum[transfer_rule]: "(((=) ===> EQ) ===> (rel_set (=)) ===> EQ) sum sum"
by transfer_prover
lemma transfer_sm_vv_poly_mat[transfer_rule]:
shows "((=) ===> EQ ===> EQ) Cayley_Hamilton.poly_mat poly_mat"
unfolding poly_mat_def Cayley_Hamilton.poly_mat_def by transfer_prover
lemma transfer_sm_vv_CC[transfer_rule]:
shows "(EQ ===> EQ) Cayley_Hamilton.CC CC"
unfolding map_matrix_def rel_fun_def EQ_iff to_fun_from_vec
by (transfer, force)
lemma transfer_sm_vv_XX[transfer_rule]:
shows "Cayley_Hamilton.XX ≅ XX"
unfolding rel_fun_def EQ_iff to_fun_from_vec mat_def
by (metis (no_types) comp_apply diag.abs_eq from_vec_to_vec to_vec.abs_eq)
lemma transfer_sm_vv_minus[transfer_rule]:
shows "(EQ ===> EQ ===> EQ) (-) (-)"
unfolding rel_fun_def EQ_iff to_fun_from_vec
by (transfer, simp add: minus_vec_def vec_lambda_inverse)
lemma transfer_sm_vv_charpoly[transfer_rule]:
shows "(EQ ===> (=)) Cayley_Hamilton.charpoly charpoly"
unfolding charpoly_def Cayley_Hamilton.charpoly_def
by transfer_prover
section ‹Transferred results for adjugate and inverse, Cayley-Hamilton Theorem›
lemma mult_adjugate_det_2: "A ** adjugate A = mat (det A)"
by (transfer, simp add: mult_adjugate_det)
theorem Cayley_Hamilton_2:
fixes A :: "'a::comm_ring_1^'n^'n"
shows "poly_mat (charpoly A) A = 0"
by (transfer, simp add: Cayley_Hamilton)
end
end