Theory Lambda_Free_RPO_Std
section ‹The Graceful Recursive Path Order for Lambda-Free Higher-Order Terms›
theory Lambda_Free_RPO_Std
imports Lambda_Free_Term Extension_Orders Nested_Multisets_Ordinals.Multiset_More
abbrevs ">t" = ">⇩t"
and "≥t" = "≥⇩t"
begin
text ‹
This theory defines the graceful recursive path order (RPO) for ‹λ›-free
higher-order terms.
›
subsection ‹Setup›
locale rpo_basis = ground_heads "(>⇩s)" arity_sym arity_var
for
gt_sym :: "'s ⇒ 's ⇒ bool" (infix ‹>⇩s› 50) and
arity_sym :: "'s ⇒ enat" and
arity_var :: "'v ⇒ enat" +
fixes
extf :: "'s ⇒ (('s, 'v) tm ⇒ ('s, 'v) tm ⇒ bool) ⇒ ('s, 'v) tm list ⇒ ('s, 'v) tm list ⇒ bool"
assumes
extf_ext_trans_before_irrefl: "ext_trans_before_irrefl (extf f)" and
extf_ext_compat_cons: "ext_compat_cons (extf f)" and
extf_ext_compat_list: "ext_compat_list (extf f)"
begin
lemma extf_ext_trans: "ext_trans (extf f)"
by (rule ext_trans_before_irrefl.axioms(1)[OF extf_ext_trans_before_irrefl])
lemma extf_ext: "ext (extf f)"
by (rule ext_trans.axioms(1)[OF extf_ext_trans])
lemmas extf_mono_strong = ext.mono_strong[OF extf_ext]
lemmas extf_mono = ext.mono[OF extf_ext, mono]
lemmas extf_map = ext.map[OF extf_ext]
lemmas extf_trans = ext_trans.trans[OF extf_ext_trans]
lemmas extf_irrefl_from_trans =
ext_trans_before_irrefl.irrefl_from_trans[OF extf_ext_trans_before_irrefl]
lemmas extf_compat_append_left = ext_compat_cons.compat_append_left[OF extf_ext_compat_cons]
lemmas extf_compat_list = ext_compat_list.compat_list[OF extf_ext_compat_list]
definition chkvar :: "('s, 'v) tm ⇒ ('s, 'v) tm ⇒ bool" where
[simp]: "chkvar t s ⟷ vars_hd (head s) ⊆ vars t"
end
locale rpo = rpo_basis _ _ arity_sym arity_var
for
arity_sym :: "'s ⇒ enat" and
arity_var :: "'v ⇒ enat"
begin
subsection ‹Inductive Definitions›
definition
chksubs :: "(('s, 'v) tm ⇒ ('s, 'v) tm ⇒ bool) ⇒ ('s, 'v) tm ⇒ ('s, 'v) tm ⇒ bool"
where
[simp]: "chksubs gt t s ⟷ (case s of App s1 s2 ⇒ gt t s1 ∧ gt t s2 | _ ⇒ True)"
lemma chksubs_mono[mono]: "gt ≤ gt' ⟹ chksubs gt ≤ chksubs gt'"
by (auto simp: tm.case_eq_if) force+
inductive gt :: "('s, 'v) tm ⇒ ('s, 'v) tm ⇒ bool" (infix ‹>⇩t› 50) where
gt_sub: "is_App t ⟹ (fun t >⇩t s ∨ fun t = s) ∨ (arg t >⇩t s ∨ arg t = s) ⟹ t >⇩t s"
| gt_diff: "head t >⇩h⇩d head s ⟹ chkvar t s ⟹ chksubs (>⇩t) t s ⟹ t >⇩t s"
| gt_same: "head t = head s ⟹ chksubs (>⇩t) t s ⟹
(∀f ∈ ground_heads (head t). extf f (>⇩t) (args t) (args s)) ⟹ t >⇩t s"
abbreviation ge :: "('s, 'v) tm ⇒ ('s, 'v) tm ⇒ bool" (infix ‹≥⇩t› 50) where
"t ≥⇩t s ≡ t >⇩t s ∨ t = s"
inductive gt_sub :: "('s, 'v) tm ⇒ ('s, 'v) tm ⇒ bool" where
gt_subI: "is_App t ⟹ fun t ≥⇩t s ∨ arg t ≥⇩t s ⟹ gt_sub t s"
inductive gt_diff :: "('s, 'v) tm ⇒ ('s, 'v) tm ⇒ bool" where
gt_diffI: "head t >⇩h⇩d head s ⟹ chkvar t s ⟹ chksubs (>⇩t) t s ⟹ gt_diff t s"
inductive gt_same :: "('s, 'v) tm ⇒ ('s, 'v) tm ⇒ bool" where
gt_sameI: "head t = head s ⟹ chksubs (>⇩t) t s ⟹
(∀f ∈ ground_heads (head t). extf f (>⇩t) (args t) (args s)) ⟹ gt_same t s"
lemma gt_iff_sub_diff_same: "t >⇩t s ⟷ gt_sub t s ∨ gt_diff t s ∨ gt_same t s"
by (subst gt.simps) (auto simp: gt_sub.simps gt_diff.simps gt_same.simps)
subsection ‹Transitivity›
lemma gt_fun_imp: "fun t >⇩t s ⟹ t >⇩t s"
by (cases t) (auto intro: gt_sub)
lemma gt_arg_imp: "arg t >⇩t s ⟹ t >⇩t s"
by (cases t) (auto intro: gt_sub)
lemma gt_imp_vars: "t >⇩t s ⟹ vars t ⊇ vars s"
proof (simp only: atomize_imp,
rule measure_induct_rule[of "λ(t, s). size t + size s"
"λ(t, s). t >⇩t s ⟶ vars t ⊇ vars s" "(t, s)", simplified prod.case],
simp only: split_paired_all prod.case atomize_imp[symmetric])
fix t s
assume
ih: "⋀ta sa. size ta + size sa < size t + size s ⟹ ta >⇩t sa ⟹ vars ta ⊇ vars sa" and
t_gt_s: "t >⇩t s"
show "vars t ⊇ vars s"
using t_gt_s
proof cases
case gt_sub
thus ?thesis
using ih[of "fun t" s] ih[of "arg t" s]
by (meson add_less_cancel_right subsetD size_arg_lt size_fun_lt subsetI tm.set_sel(5,6))
next
case gt_diff
show ?thesis
proof (cases s)
case Hd
thus ?thesis
using gt_diff(2) by (auto elim: hd.set_cases(2))
next
case (App s1 s2)
thus ?thesis
using gt_diff(3) ih[of t s1] ih[of t s2] by simp
qed
next
case gt_same
show ?thesis
proof (cases s)
case Hd
thus ?thesis
using gt_same(1) vars_head_subseteq by fastforce
next
case (App s1 s2)
thus ?thesis
using gt_same(2) ih[of t s1] ih[of t s2] by simp
qed
qed
qed
theorem gt_trans: "u >⇩t t ⟹ t >⇩t s ⟹ u >⇩t s"
proof (simp only: atomize_imp,
rule measure_induct_rule[of "λ(u, t, s). {#size u, size t, size s#}"
"λ(u, t, s). u >⇩t t ⟶ t >⇩t s ⟶ u >⇩t s" "(u, t, s)",
simplified prod.case],
simp only: split_paired_all prod.case atomize_imp[symmetric])
fix u t s
assume
ih: "⋀ua ta sa. {#size ua, size ta, size sa#} < {#size u, size t, size s#} ⟹
ua >⇩t ta ⟹ ta >⇩t sa ⟹ ua >⇩t sa" and
u_gt_t: "u >⇩t t" and t_gt_s: "t >⇩t s"
have chkvar: "chkvar u s"
by (metis (no_types, lifting) chkvar_def gt_imp_vars order_le_less order_le_less_trans t_gt_s
u_gt_t vars_head_subseteq)
have chk_u_s_if: "chksubs (>⇩t) u s" if chk_t_s: "chksubs (>⇩t) t s"
proof (cases s)
case (App s1 s2)
thus ?thesis
using chk_t_s by (auto intro: ih[of _ _ s1, OF _ u_gt_t] ih[of _ _ s2, OF _ u_gt_t])
qed auto
have
fun_u_lt_etc: "is_App u ⟹ {#size (fun u), size t, size s#} < {#size u, size t, size s#}" and
arg_u_lt_etc: "is_App u ⟹ {#size (arg u), size t, size s#} < {#size u, size t, size s#}"
by (simp_all add: size_fun_lt size_arg_lt)
have u_gt_s_if_ui: "is_App u ⟹ fun u ≥⇩t t ∨ arg u ≥⇩t t ⟹ u >⇩t s"
using ih[of "fun u" t s, OF fun_u_lt_etc] ih[of "arg u" t s, OF arg_u_lt_etc] gt_arg_imp
gt_fun_imp t_gt_s by blast
show "u >⇩t s"
using t_gt_s
proof cases
case gt_sub_t_s: gt_sub
have u_gt_s_if_chk_u_t: ?thesis if chk_u_t: "chksubs (>⇩t) u t"
using gt_sub_t_s(1)
proof (cases t)
case t: (App t1 t2)
show ?thesis
using ih[of u t1 s] ih[of u t2 s] gt_sub_t_s(2) chk_u_t unfolding t by auto
qed auto
show ?thesis
using u_gt_t by cases (auto intro: u_gt_s_if_ui u_gt_s_if_chk_u_t)
next
case gt_diff_t_s: gt_diff
show ?thesis
using u_gt_t
proof cases
case gt_diff_u_t: gt_diff
have "head u >⇩h⇩d head s"
using gt_diff_u_t(1) gt_diff_t_s(1) by (auto intro: gt_hd_trans)
thus ?thesis
by (rule gt_diff[OF _ chkvar chk_u_s_if[OF gt_diff_t_s(3)]])
next
case gt_same_u_t: gt_same
have "head u >⇩h⇩d head s"
using gt_diff_t_s(1) gt_same_u_t(1) by auto
thus ?thesis
by (rule gt_diff[OF _ chkvar chk_u_s_if[OF gt_diff_t_s(3)]])
qed (auto intro: u_gt_s_if_ui)
next
case gt_same_t_s: gt_same
show ?thesis
using u_gt_t
proof cases
case gt_diff_u_t: gt_diff
have "head u >⇩h⇩d head s"
using gt_diff_u_t(1) gt_same_t_s(1) by simp
thus ?thesis
by (rule gt_diff[OF _ chkvar chk_u_s_if[OF gt_same_t_s(2)]])
next
case gt_same_u_t: gt_same
have hd_u_s: "head u = head s"
using gt_same_u_t(1) gt_same_t_s(1) by simp
let ?S = "set (args u) ∪ set (args t) ∪ set (args s)"
have gt_trans_args: "∀ua ∈ ?S. ∀ta ∈ ?S. ∀sa ∈ ?S. ua >⇩t ta ⟶ ta >⇩t sa ⟶ ua >⇩t sa"
proof clarify
fix sa ta ua
assume
ua_in: "ua ∈ ?S" and ta_in: "ta ∈ ?S" and sa_in: "sa ∈ ?S" and
ua_gt_ta: "ua >⇩t ta" and ta_gt_sa: "ta >⇩t sa"
show "ua >⇩t sa"
by (auto intro!: ih[OF Max_lt_imp_lt_mset ua_gt_ta ta_gt_sa])
(meson ua_in ta_in sa_in Un_iff max.strict_coboundedI1 max.strict_coboundedI2
size_in_args)+
qed
have "∀f ∈ ground_heads (head u). extf f (>⇩t) (args u) (args s)"
proof (clarify, rule extf_trans[OF _ _ _ gt_trans_args])
fix f
assume f_in_grounds: "f ∈ ground_heads (head u)"
show "extf f (>⇩t) (args u) (args t)"
using f_in_grounds gt_same_u_t(3) by blast
show "extf f (>⇩t) (args t) (args s)"
using f_in_grounds gt_same_t_s(3) unfolding gt_same_u_t(1) by blast
qed auto
thus ?thesis
by (rule gt_same[OF hd_u_s chk_u_s_if[OF gt_same_t_s(2)]])
qed (auto intro: u_gt_s_if_ui)
qed
qed
subsection ‹Irreflexivity›
theorem gt_irrefl: "¬ s >⇩t s"
proof (standard, induct s rule: measure_induct_rule[of size])
case (less s)
note ih = this(1) and s_gt_s = this(2)
show False
using s_gt_s
proof cases
case _: gt_sub
note is_app = this(1) and si_ge_s = this(2)
have s_gt_fun_s: "s >⇩t fun s" and s_gt_arg_s: "s >⇩t arg s"
using is_app by (simp_all add: gt_sub)
have "fun s >⇩t s ∨ arg s >⇩t s"
using si_ge_s is_app s_gt_arg_s s_gt_fun_s by auto
moreover
{
assume fun_s_gt_s: "fun s >⇩t s"
have "fun s >⇩t fun s"
by (rule gt_trans[OF fun_s_gt_s s_gt_fun_s])
hence False
using ih[of "fun s"] is_app size_fun_lt by blast
}
moreover
{
assume arg_s_gt_s: "arg s >⇩t s"
have "arg s >⇩t arg s"
by (rule gt_trans[OF arg_s_gt_s s_gt_arg_s])
hence False
using ih[of "arg s"] is_app size_arg_lt by blast
}
ultimately show False
by sat
next
case gt_diff
thus False
by (cases "head s") (auto simp: gt_hd_irrefl)
next
case gt_same
note in_grounds = this(3)
obtain si where si_in_args: "si ∈ set (args s)" and si_gt_si: "si >⇩t si"
using in_grounds
by (metis (full_types) all_not_in_conv extf_irrefl_from_trans ground_heads_nonempty gt_trans)
have "size si < size s"
by (rule size_in_args[OF si_in_args])
thus False
by (rule ih[OF _ si_gt_si])
qed
qed
lemma gt_antisym: "t >⇩t s ⟹ ¬ s >⇩t t"
using gt_irrefl gt_trans by blast
subsection ‹Subterm Property›
lemma
gt_sub_fun: "App s t >⇩t s" and
gt_sub_arg: "App s t >⇩t t"
by (auto intro: gt_sub)
theorem gt_proper_sub: "proper_sub s t ⟹ t >⇩t s"
by (induct t) (auto intro: gt_sub_fun gt_sub_arg gt_trans)
subsection ‹Compatibility with Functions›
lemma gt_compat_fun:
assumes t'_gt_t: "t' >⇩t t"
shows "App s t' >⇩t App s t"
proof -
have t'_ne_t: "t' ≠ t"
using gt_antisym t'_gt_t by blast
have extf_args_single: "∀f ∈ ground_heads (head s). extf f (>⇩t) (args s @ [t']) (args s @ [t])"
by (simp add: extf_compat_list t'_gt_t t'_ne_t)
show ?thesis
by (rule gt_same) (auto simp: gt_sub gt_sub_fun t'_gt_t intro!: extf_args_single)
qed
theorem gt_compat_fun_strong:
assumes t'_gt_t: "t' >⇩t t"
shows "apps s (t' # us) >⇩t apps s (t # us)"
proof (induct us rule: rev_induct)
case Nil
show ?case
using t'_gt_t by (auto intro!: gt_compat_fun)
next
case (snoc u us)
note ih = snoc
let ?v' = "apps s (t' # us @ [u])"
let ?v = "apps s (t # us @ [u])"
show ?case
proof (rule gt_same)
show "chksubs (>⇩t) ?v' ?v"
using ih by (auto intro: gt_sub gt_sub_arg)
next
show "∀f ∈ ground_heads (head ?v'). extf f (>⇩t) (args ?v') (args ?v)"
by (metis args_apps extf_compat_list gt_irrefl t'_gt_t)
qed simp
qed
subsection ‹Compatibility with Arguments›
theorem gt_diff_same_compat_arg:
assumes
extf_compat_snoc: "⋀f. ext_compat_snoc (extf f)" and
diff_same: "gt_diff s' s ∨ gt_same s' s"
shows "App s' t >⇩t App s t"
proof -
{
assume "s' >⇩t s"
hence "App s' t >⇩t s"
using gt_sub_fun gt_trans by blast
moreover have "App s' t >⇩t t"
by (simp add: gt_sub_arg)
ultimately have "chksubs (>⇩t) (App s' t) (App s t)"
by auto
}
note chk_s't_st = this
show ?thesis
using diff_same
proof
assume "gt_diff s' s"
hence
s'_gt_s: "s' >⇩t s" and
hd_s'_gt_s: "head s' >⇩h⇩d head s" and
chkvar_s'_s: "chkvar s' s" and
chk_s'_s: "chksubs (>⇩t) s' s"
using gt_diff.cases by (auto simp: gt_iff_sub_diff_same)
have chkvar_s't_st: "chkvar (App s' t) (App s t)"
using chkvar_s'_s by auto
show ?thesis
by (rule gt_diff[OF _ chkvar_s't_st chk_s't_st[OF s'_gt_s]])
(simp add: hd_s'_gt_s[simplified])
next
assume "gt_same s' s"
hence
s'_gt_s: "s' >⇩t s" and
hd_s'_eq_s: "head s' = head s" and
chk_s'_s: "chksubs (>⇩t) s' s" and
gts_args: "∀f ∈ ground_heads (head s'). extf f (>⇩t) (args s') (args s)"
using gt_same.cases by (auto simp: gt_iff_sub_diff_same, metis)
have gts_args_t:
"∀f ∈ ground_heads (head (App s' t)). extf f (>⇩t) (args (App s' t)) (args (App s t))"
using gts_args ext_compat_snoc.compat_append_right[OF extf_compat_snoc] by simp
show ?thesis
by (rule gt_same[OF _ chk_s't_st[OF s'_gt_s] gts_args_t]) (simp add: hd_s'_eq_s)
qed
qed
subsection ‹Stability under Substitution›
lemma gt_imp_chksubs_gt:
assumes t_gt_s: "t >⇩t s"
shows "chksubs (>⇩t) t s"
proof -
have "is_App s ⟹ t >⇩t fun s ∧ t >⇩t arg s"
using t_gt_s by (meson gt_sub gt_trans)
thus ?thesis
by (simp add: tm.case_eq_if)
qed
theorem gt_subst:
assumes wary_ρ: "wary_subst ρ"
shows "t >⇩t s ⟹ subst ρ t >⇩t subst ρ s"
proof (simp only: atomize_imp,
rule measure_induct_rule[of "λ(t, s). {#size t, size s#}"
"λ(t, s). t >⇩t s ⟶ subst ρ t >⇩t subst ρ s" "(t, s)",
simplified prod.case],
simp only: split_paired_all prod.case atomize_imp[symmetric])
fix t s
assume
ih: "⋀ta sa. {#size ta, size sa#} < {#size t, size s#} ⟹ ta >⇩t sa ⟹
subst ρ ta >⇩t subst ρ sa" and
t_gt_s: "t >⇩t s"
{
assume chk_t_s: "chksubs (>⇩t) t s"
have "chksubs (>⇩t) (subst ρ t) (subst ρ s)"
proof (cases s)
case s: (Hd ζ)
show ?thesis
proof (cases ζ)
case ζ: (Var x)
have psub_x_t: "proper_sub (Hd (Var x)) t"
using ζ s t_gt_s gt_imp_vars gt_irrefl in_vars_imp_sub by fastforce
show ?thesis
unfolding ζ s
by (rule gt_imp_chksubs_gt[OF gt_proper_sub[OF proper_sub_subst]]) (rule psub_x_t)
qed (auto simp: s)
next
case s: (App s1 s2)
have "t >⇩t s1" and "t >⇩t s2"
using s chk_t_s by auto
thus ?thesis
using s by (auto intro!: ih[of t s1] ih[of t s2])
qed
}
note chk_ρt_ρs_if = this
show "subst ρ t >⇩t subst ρ s"
using t_gt_s
proof cases
case gt_sub_t_s: gt_sub
obtain t1 t2 where t: "t = App t1 t2"
using gt_sub_t_s(1) by (metis tm.collapse(2))
show ?thesis
using gt_sub ih[of t1 s] ih[of t2 s] gt_sub_t_s(2) t by auto
next
case gt_diff_t_s: gt_diff
have "head (subst ρ t) >⇩h⇩d head (subst ρ s)"
by (meson wary_subst_ground_heads gt_diff_t_s(1) gt_hd_def subsetCE wary_ρ)
moreover have "chkvar (subst ρ t) (subst ρ s)"
unfolding chkvar_def using vars_subst_subseteq[OF gt_imp_vars[OF t_gt_s]] vars_head_subseteq
by force
ultimately show ?thesis
by (rule gt_diff[OF _ _ chk_ρt_ρs_if[OF gt_diff_t_s(3)]])
next
case gt_same_t_s: gt_same
have hd_ρt_eq_ρs: "head (subst ρ t) = head (subst ρ s)"
using gt_same_t_s(1) by simp
{
fix f
assume f_in_grounds: "f ∈ ground_heads (head (subst ρ t))"
let ?S = "set (args t) ∪ set (args s)"
have extf_args_s_t: "extf f (>⇩t) (args t) (args s)"
using gt_same_t_s(3) f_in_grounds wary_ρ wary_subst_ground_heads by blast
have "extf f (>⇩t) (map (subst ρ) (args t)) (map (subst ρ) (args s))"
proof (rule extf_map[of ?S, OF _ _ _ _ _ _ extf_args_s_t])
have sz_a: "∀ta ∈ ?S. ∀sa ∈ ?S. {#size ta, size sa#} < {#size t, size s#}"
by (fastforce intro: Max_lt_imp_lt_mset dest: size_in_args)
show "∀ta ∈ ?S. ∀sa ∈ ?S. ta >⇩t sa ⟶ subst ρ ta >⇩t subst ρ sa"
using ih sz_a size_in_args by fastforce
qed (auto intro!: gt_irrefl elim!: gt_trans)
hence "extf f (>⇩t) (args (subst ρ t)) (args (subst ρ s))"
by (auto simp: gt_same_t_s(1) intro: extf_compat_append_left)
}
hence "∀f ∈ ground_heads (head (subst ρ t)).
extf f (>⇩t) (args (subst ρ t)) (args (subst ρ s))"
by blast
thus ?thesis
by (rule gt_same[OF hd_ρt_eq_ρs chk_ρt_ρs_if[OF gt_same_t_s(2)]])
qed
qed
subsection ‹Totality on Ground Terms›
theorem gt_total_ground:
assumes extf_total: "⋀f. ext_total (extf f)"
shows "ground t ⟹ ground s ⟹ t >⇩t s ∨ s >⇩t t ∨ t = s"
proof (simp only: atomize_imp,
rule measure_induct_rule[of "λ(t, s). {# size t, size s #}"
"λ(t, s). ground t ⟶ ground s ⟶ t >⇩t s ∨ s >⇩t t ∨ t = s" "(t, s)", simplified prod.case],
simp only: split_paired_all prod.case atomize_imp[symmetric])
fix t s :: "('s, 'v) tm"
assume
ih: "⋀ta sa. {# size ta, size sa #} < {# size t, size s #} ⟹ ground ta ⟹ ground sa ⟹
ta >⇩t sa ∨ sa >⇩t ta ∨ ta = sa" and
gr_t: "ground t" and gr_s: "ground s"
let ?case = "t >⇩t s ∨ s >⇩t t ∨ t = s"
have "chksubs (>⇩t) t s ∨ s >⇩t t"
unfolding chksubs_def tm.case_eq_if using ih[of t "fun s"] ih[of t "arg s"] mset_lt_single_iff
by (metis add_mset_lt_right_lt gr_s gr_t ground_arg ground_fun gt_sub size_arg_lt size_fun_lt)
moreover have "chksubs (>⇩t) s t ∨ t >⇩t s"
unfolding chksubs_def tm.case_eq_if using ih[of "fun t" s] ih[of "arg t" s]
by (metis add_mset_lt_left_lt gr_s gr_t ground_arg ground_fun gt_sub size_arg_lt size_fun_lt)
moreover
{
assume
chksubs_t_s: "chksubs (>⇩t) t s" and
chksubs_s_t: "chksubs (>⇩t) s t"
obtain g where g: "head t = Sym g"
using gr_t by (metis ground_head hd.collapse(2))
obtain f where f: "head s = Sym f"
using gr_s by (metis ground_head hd.collapse(2))
have chkvar_t_s: "chkvar t s" and chkvar_s_t: "chkvar s t"
using g f by simp_all
{
assume g_gt_f: "g >⇩s f"
have "t >⇩t s"
by (rule gt_diff[OF _ chkvar_t_s chksubs_t_s]) (simp add: g f gt_sym_imp_hd[OF g_gt_f])
}
moreover
{
assume f_gt_g: "f >⇩s g"
have "s >⇩t t"
by (rule gt_diff[OF _ chkvar_s_t chksubs_s_t]) (simp add: g f gt_sym_imp_hd[OF f_gt_g])
}
moreover
{
assume g_eq_f: "g = f"
hence hd_t: "head t = head s"
using g f by auto
let ?ts = "args t"
let ?ss = "args s"
have gr_ts: "∀ta ∈ set ?ts. ground ta"
using ground_args[OF _ gr_t] by blast
have gr_ss: "∀sa ∈ set ?ss. ground sa"
using ground_args[OF _ gr_s] by blast
{
assume ts_eq_ss: "?ts = ?ss"
have "t = s"
using hd_t ts_eq_ss by (rule tm_expand_apps)
}
moreover
{
assume ts_gt_ss: "extf g (>⇩t) ?ts ?ss"
have "t >⇩t s"
by (rule gt_same[OF hd_t chksubs_t_s]) (auto simp: g ts_gt_ss)
}
moreover
{
assume ss_gt_ts: "extf g (>⇩t) ?ss ?ts"
have "s >⇩t t"
by (rule gt_same[OF hd_t[symmetric] chksubs_s_t]) (auto simp: f[folded g_eq_f] ss_gt_ts)
}
ultimately have ?case
using ih gr_ss gr_ts
ext_total.total[OF extf_total, rule_format, of "set ?ts ∪ set ?ss" "(>⇩t)" ?ts ?ss g]
by (metis Un_iff in_listsI less_multiset_doubletons size_in_args)
}
ultimately have ?case
using gt_sym_total by blast
}
ultimately show ?case
by fast
qed
subsection ‹Well-foundedness›
abbreviation gtg :: "('s, 'v) tm ⇒ ('s, 'v) tm ⇒ bool" (infix ‹>⇩t⇩g› 50) where
"(>⇩t⇩g) ≡ λt s. ground t ∧ t >⇩t s"
theorem gt_wf:
assumes extf_wf: "⋀f. ext_wf (extf f)"
shows "wfP (λs t. t >⇩t s)"
proof -
have ground_wfP: "wfP (λs t. t >⇩t⇩g s)"
unfolding wfP_iff_no_inf_chain
proof
assume "∃f. inf_chain (>⇩t⇩g) f"
then obtain t where t_bad: "bad (>⇩t⇩g) t"
unfolding inf_chain_def bad_def by blast
let ?ff = "worst_chain (>⇩t⇩g) (λt s. size t > size s)"
let ?U_of = "λi. if is_App (?ff i) then {fun (?ff i)} ∪ set (args (?ff i)) else {}"
note wf_sz = wf_app[OF wellorder_class.wf, of size, simplified]
define U where "U = (⋃i. ?U_of i)"
have gr: "⋀i. ground (?ff i)"
using worst_chain_bad[OF wf_sz t_bad, unfolded inf_chain_def] by fast
have gr_fun: "⋀i. ground (fun (?ff i))"
by (rule ground_fun[OF gr])
have gr_args: "⋀i s. s ∈ set (args (?ff i)) ⟹ ground s"
by (rule ground_args[OF _ gr])
have gr_u: "⋀u. u ∈ U ⟹ ground u"
unfolding U_def by (auto dest: gr_args) (metis (lifting) empty_iff gr_fun)
have "¬ bad (>⇩t⇩g) u" if u_in: "u ∈ ?U_of i" for u i
proof
let ?ti = "?ff i"
assume u_bad: "bad (>⇩t⇩g) u"
have sz_u: "size u < size ?ti"
proof (cases "?ff i")
case Hd
thus ?thesis
using u_in size_in_args by fastforce
next
case App
thus ?thesis
using u_in size_in_args insert_iff size_fun_lt by fastforce
qed
show False
proof (cases i)
case 0
thus False
using sz_u min_worst_chain_0[OF wf_sz u_bad] by simp
next
case Suc
hence "?ff (i - 1) >⇩t ?ff i"
using worst_chain_pred[OF wf_sz t_bad] by simp
moreover have "?ff i >⇩t u"
proof -
have u_in: "u ∈ ?U_of i"
using u_in by blast
have ffi_ne_u: "?ff i ≠ u"
using sz_u by fastforce
hence "is_App (?ff i) ⟹ ¬ sub u (?ff i) ⟹ ?ff i >⇩t u"
using u_in gt_sub sub_args by auto
thus "?ff i >⇩t u"
using ffi_ne_u u_in gt_proper_sub sub_args by fastforce
qed
ultimately have "?ff (i - 1) >⇩t u"
by (rule gt_trans)
thus False
using Suc sz_u min_worst_chain_Suc[OF wf_sz u_bad] gr by fastforce
qed
qed
hence u_good: "⋀u. u ∈ U ⟹ ¬ bad (>⇩t⇩g) u"
unfolding U_def by blast
have bad_diff_same: "inf_chain (λt s. ground t ∧ (gt_diff t s ∨ gt_same t s)) ?ff"
unfolding inf_chain_def
proof (intro allI conjI)
fix i
show "ground (?ff i)"
by (rule gr)
have gt: "?ff i >⇩t ?ff (Suc i)"
using worst_chain_pred[OF wf_sz t_bad] by blast
have "¬ gt_sub (?ff i) (?ff (Suc i))"
proof
assume a: "gt_sub (?ff i) (?ff (Suc i))"
hence fi_app: "is_App (?ff i)" and
fun_or_arg_fi_ge: "fun (?ff i) ≥⇩t ?ff (Suc i) ∨ arg (?ff i) ≥⇩t ?ff (Suc i)"
unfolding gt_sub.simps by blast+
have "fun (?ff i) ∈ ?U_of i"
unfolding U_def using fi_app by auto
moreover have "arg (?ff i) ∈ ?U_of i"
unfolding U_def using fi_app arg_in_args by force
ultimately obtain uij where uij_in: "uij ∈ U" and uij_cases: "uij ≥⇩t ?ff (Suc i)"
unfolding U_def using fun_or_arg_fi_ge by blast
have "⋀n. ?ff n >⇩t ?ff (Suc n)"
by (rule worst_chain_pred[OF wf_sz t_bad, THEN conjunct2])
hence uij_gt_i_plus_3: "uij >⇩t ?ff (Suc (Suc i))"
using gt_trans uij_cases by blast
have "inf_chain (>⇩t⇩g) (λj. if j = 0 then uij else ?ff (Suc (i + j)))"
unfolding inf_chain_def
by (auto intro!: gr gr_u[OF uij_in] uij_gt_i_plus_3 worst_chain_pred[OF wf_sz t_bad])
hence "bad (>⇩t⇩g) uij"
unfolding bad_def by fastforce
thus False
using u_good[OF uij_in] by sat
qed
thus "gt_diff (?ff i) (?ff (Suc i)) ∨ gt_same (?ff i) (?ff (Suc i))"
using gt unfolding gt_iff_sub_diff_same by sat
qed
have "wf {(s, t). ground s ∧ ground t ∧ sym (head t) >⇩s sym (head s)}"
using gt_sym_wf unfolding wfp_def wf_iff_no_infinite_down_chain by fast
moreover have "{(s, t). ground t ∧ gt_diff t s}
⊆ {(s, t). ground s ∧ ground t ∧ sym (head t) >⇩s sym (head s)}"
proof (clarsimp, intro conjI)
fix s t
assume gr_t: "ground t" and gt_diff_t_s: "gt_diff t s"
thus gr_s: "ground s"
using gt_iff_sub_diff_same gt_imp_vars by fastforce
show "sym (head t) >⇩s sym (head s)"
using gt_diff_t_s ground_head[OF gr_s] ground_head[OF gr_t]
by (cases; cases "head s"; cases "head t") (auto simp: gt_hd_def)
qed
ultimately have wf_diff: "wf {(s, t). ground t ∧ gt_diff t s}"
by (rule wf_subset)
have diff_O_same: "{(s, t). ground t ∧ gt_diff t s} O {(s, t). ground t ∧ gt_same t s}
⊆ {(s, t). ground t ∧ gt_diff t s}"
unfolding gt_diff.simps gt_same.simps
by clarsimp (metis chksubs_def empty_subsetI gt_diff[unfolded chkvar_def] gt_imp_chksubs_gt
gt_same gt_trans)
have diff_same_as_union: "{(s, t). ground t ∧ (gt_diff t s ∨ gt_same t s)} =
{(s, t). ground t ∧ gt_diff t s} ∪ {(s, t). ground t ∧ gt_same t s}"
by auto
obtain k where bad_same: "inf_chain (λt s. ground t ∧ gt_same t s) (λi. ?ff (i + k))"
using wf_infinite_down_chain_compatible[OF wf_diff _ diff_O_same, of ?ff] bad_diff_same
unfolding inf_chain_def diff_same_as_union[symmetric] by auto
hence hd_sym: "⋀i. is_Sym (head (?ff (i + k)))"
unfolding inf_chain_def by (simp add: ground_head)
define f where "f = sym (head (?ff k))"
have hd_eq_f: "head (?ff (i + k)) = Sym f" for i
proof (induct i)
case 0
thus ?case
by (auto simp: f_def hd.collapse(2)[OF hd_sym, of 0, simplified])
next
case (Suc ia)
thus ?case
using bad_same unfolding inf_chain_def gt_same.simps by simp
qed
let ?gtu = "λt s. t ∈ U ∧ t >⇩t s"
have "t ∈ set (args (?ff i)) ⟹ t ∈ ?U_of i" for t i
unfolding U_def
by (cases "is_App (?ff i)", simp_all,
metis (lifting) neq_iff size_in_args sub.cases sub_args tm.discI(2))
moreover have "⋀i. extf f (>⇩t) (args (?ff (i + k))) (args (?ff (Suc i + k)))"
using bad_same hd_eq_f unfolding inf_chain_def gt_same.simps by auto
ultimately have "⋀i. extf f ?gtu (args (?ff (i + k))) (args (?ff (Suc i + k)))"
using extf_mono_strong[of _ _ "(>⇩t)" "λt s. t ∈ U ∧ t >⇩t s"] unfolding U_def by blast
hence "inf_chain (extf f ?gtu) (λi. args (?ff (i + k)))"
unfolding inf_chain_def by blast
hence nwf_ext: "¬ wfP (λxs ys. extf f ?gtu ys xs)"
unfolding wfP_iff_no_inf_chain by fast
have gtu_le_gtg: "?gtu ≤ (>⇩t⇩g)"
by (auto intro!: gr_u)
have "wfP (λs t. ?gtu t s)"
unfolding wfP_iff_no_inf_chain
proof (intro notI, elim exE)
fix f
assume bad_f: "inf_chain ?gtu f"
hence bad_f0: "bad ?gtu (f 0)"
by (rule inf_chain_bad)
have "f 0 ∈ U"
using bad_f unfolding inf_chain_def by blast
hence good_f0: "¬ bad ?gtu (f 0)"
using u_good bad_f inf_chain_bad inf_chain_subset[OF _ gtu_le_gtg] by blast
show False
using bad_f0 good_f0 by sat
qed
hence wf_ext: "wfP (λxs ys. extf f ?gtu ys xs)"
by (rule ext_wf.wf[OF extf_wf, rule_format])
show False
using nwf_ext wf_ext by blast
qed
let ?subst = "subst grounding_ρ"
have "wfP (λs t. ?subst t >⇩t⇩g ?subst s)"
by (rule wfP_app[OF ground_wfP])
hence "wfP (λs t. ?subst t >⇩t ?subst s)"
by (simp add: ground_grounding_ρ)
thus ?thesis
by (auto intro: wfp_subset gt_subst[OF wary_grounding_ρ])
qed
end
end