Theory Lambda_Free_RPO_App

(*  Title:       The Applicative Recursive Path Order for Lambda-Free Higher-Order Terms
    Author:      Jasmin Blanchette <jasmin.blanchette at inria.fr>, 2016
    Maintainer:  Jasmin Blanchette <jasmin.blanchette at inria.fr>
*)

section ‹The Applicative Recursive Path Order for Lambda-Free Higher-Order Terms›

theory Lambda_Free_RPO_App
imports Lambda_Free_Term Extension_Orders
abbrevs ">t" = ">t"
  and "≥t" = "≥t"
begin

text ‹
This theory defines the applicative recursive path order (RPO), a variant of RPO
for λ›-free higher-order terms. It corresponds to the order obtained by
applying the standard first-order RPO on the applicative encoding of higher-order
terms and assigning the lowest precedence to the application symbol.
›

locale rpo_app = gt_sym "(>s)"
    for gt_sym :: "'s  's  bool" (infix >s 50) +
  fixes ext :: "(('s, 'v) tm  ('s, 'v) tm  bool)  ('s, 'v) tm list  ('s, 'v) tm list  bool"
  assumes
    ext_ext_trans_before_irrefl: "ext_trans_before_irrefl ext" and
    ext_ext_compat_list: "ext_compat_list ext"
begin

lemma ext_mono[mono]: "gt  gt'  ext gt  ext gt'"
  by (simp add: ext.mono ext_ext_compat_list[unfolded ext_compat_list_def, THEN conjunct1])

inductive gt :: "('s, 'v) tm  ('s, 'v) tm  bool" (infix >t 50) where
  gt_sub: "is_App t  (fun t >t s  fun t = s)  (arg t >t s  arg t = s)  t >t s"
| gt_sym_sym: "g >s f  Hd (Sym g) >t Hd (Sym f)"
| gt_sym_app: "Hd (Sym g) >t s1  Hd (Sym g) >t s2  Hd (Sym g) >t App s1 s2"
| gt_app_app: "ext (>t) [t1, t2] [s1, s2]  App t1 t2 >t s1  App t1 t2 >t s2 
    App t1 t2 >t App s1 s2"

abbreviation ge :: "('s, 'v) tm  ('s, 'v) tm  bool" (infix t 50) where
  "t t s  t >t s  t = s"

end

end