Theory Lem_map_extra

chapter ‹Generated by Lem from map_extra.lem›.›

theory "Lem_map_extra" 

imports
  Main
  "Lem_bool"
  "Lem_basic_classes"
  "Lem_function"
  "Lem_assert_extra"
  "Lem_maybe"
  "Lem_list"
  "Lem_num"
  "Lem_set"
  "Lem_map"

begin 



― ‹open import Bool Basic_classes Function Assert_extra Maybe List Num Set Map›

― ‹ -------------------------------------------------------------------------- ›
― ‹ find                                                                       ›
― ‹ -------------------------------------------------------------------------- ›

― ‹val find : forall 'k 'v. MapKeyType 'k => 'k -> map 'k 'v -> 'v›
― ‹let find k m=  match (lookup k m) with Just x -> x | Nothing -> failwith "Map_extra.find" end›



― ‹ -------------------------------------------------------------------------- ›
― ‹ from sets / domain / range                                                 ›
― ‹ -------------------------------------------------------------------------- ›


― ‹val fromSet : forall 'k 'v. MapKeyType 'k => ('k -> 'v) -> set 'k -> map 'k 'v›
definition fromSet  :: "('k  'v) 'k set ('k,'v)Map.map "  where 
     " fromSet f s = ( Finite_Set.fold (λ k m .  map_update k (f k) m) Map.empty s )"


― ‹
assert fromSet_0: (fromSet succ (Set.empty : set nat) = Map.empty)
assert fromSet_1: (fromSet succ {(2:nat); 3; 4}) = Map.fromList [(2,3); (3, 4); (4, 5)]
›

― ‹ -------------------------------------------------------------------------- ›
― ‹ fold                                                                       ›
― ‹ -------------------------------------------------------------------------- ›

― ‹val fold : forall 'k 'v 'r. MapKeyType 'k, SetType 'k, SetType 'v => ('k -> 'v -> 'r -> 'r) -> map 'k 'v -> 'r -> 'r›
definition fold  :: "('k  'v  'r  'r)('k,'v)Map.map  'r  'r "  where 
     " fold f m v = ( Finite_Set.fold ( λx .  
  (case  x of (k, v) => λ r .  f k v r )) v (map_to_set m))"


― ‹
assert fold_1: (fold (fun k v a -> (a+k)) (Map.fromList [((2:nat),(3:nat)); (3, 4); (4, 5)]) 0 = 9)
assert fold_2: (fold (fun k v a -> (a+v)) (Map.fromList [((2:nat),(3:nat)); (3, 4); (4, 5)]) 0 = 12)
›

― ‹val toList: forall 'k 'v. MapKeyType 'k => map 'k 'v -> list ('k * 'v)›
― ‹ declare compile_message toList = "Map_extra.toList is only defined for the ocaml, isabelle and coq backend" ›

― ‹ more 'map' functions ›

― ‹ TODO: this function is in map_extra rather than map just for implementation reasons ›
― ‹val mapMaybe : forall 'a 'b 'c. MapKeyType 'a => ('a -> 'b -> maybe 'c) -> map 'a 'b -> map 'a 'c›
― ‹ OLD: TODO: mapMaybe depends on toList that is not defined for hol and isabelle ›
definition option_map  :: "('a  'b  'c option)('a,'b)Map.map ('a,'c)Map.map "  where 
     " option_map f m = (
  List.foldl
    (λ m' .  λx .  
  (case  x of
      (k, v) =>
  (case  f k v of   None => m' | Some v' => map_update k v' m' )
  ))
    Map.empty
    (list_of_set (LemExtraDefs.map_to_set m)))"


end