Theory Orders
section ‹Orders as predicates›
theory Orders
imports
Main
begin
subsection ‹Preliminaries›
text ‹transfer @{term "refl_on"} et al. from @{theory HOL.Relation} to predicates›
abbreviation refl_onP :: "'a set ⇒ ('a ⇒ 'a ⇒ bool) ⇒ bool"
where "refl_onP A r ≡ refl_on A {(x, y). r x y}"
abbreviation reflP :: "('a ⇒ 'a ⇒ bool) ⇒ bool"
where "reflP == refl_onP UNIV"
abbreviation symP :: "('a ⇒ 'a ⇒ bool) ⇒ bool"
where "symP r ≡ sym {(x, y). r x y}"
abbreviation total_onP :: "'a set ⇒ ('a ⇒ 'a ⇒ bool) ⇒ bool"
where "total_onP A r ≡ total_on A {(x, y). r x y}"
abbreviation irreflP :: "('a ⇒ 'a ⇒ bool) ⇒ bool"
where "irreflP r == irrefl {(x, y). r x y}"
definition irreflclp :: "('a ⇒ 'a ⇒ bool) ⇒ 'a ⇒ 'a ⇒ bool" (‹_⇧≠⇧≠› [1000] 1000)
where "r⇧≠⇧≠ a b = (r a b ∧ a ≠ b)"
definition porder_on :: "'a set ⇒ ('a ⇒ 'a ⇒ bool) ⇒ bool"
where "porder_on A r ⟷ refl_onP A r ∧ transp r ∧ antisymp r"
definition torder_on :: "'a set ⇒ ('a ⇒ 'a ⇒ bool) ⇒ bool"
where "torder_on A r ⟷ porder_on A r ∧ total_onP A r"
definition order_consistent :: "('a ⇒ 'a ⇒ bool) ⇒ ('a ⇒ 'a ⇒ bool) ⇒ bool"
where "order_consistent r s ⟷ (∀a a'. r a a' ∧ s a' a ⟶ a = a')"
definition restrictP :: "('a ⇒ 'a ⇒ bool) ⇒ 'a set ⇒ 'a ⇒ 'a ⇒ bool" (infixl ‹|`› 110)
where "(r |` A) a b ⟷ r a b ∧ a ∈ A ∧ b ∈ A"
definition inv_imageP :: "('a ⇒ 'a ⇒ bool) ⇒ ('b ⇒ 'a) ⇒ 'b ⇒ 'b ⇒ bool"
where [iff]: "inv_imageP r f a b ⟷ r (f a) (f b)"
lemma refl_onPI: "(⋀a a'. r a a' ⟹ a ∈ A ∧ a' ∈ A) ⟹ (⋀a. a : A ⟹ r a a) ⟹ refl_onP A r"
by(rule refl_onI)(auto)
lemma refl_onPD: "refl_onP A r ==> a : A ==> r a a"
by(drule (1) refl_onD)(simp)
lemma refl_onPD1: "refl_onP A r ==> r a b ==> a : A"
by(erule refl_onD1)(simp)
lemma refl_onPD2: "refl_onP A r ==> r a b ==> b : A"
by(erule refl_onD2)(simp)
lemma refl_onP_Int: "refl_onP A r ==> refl_onP B s ==> refl_onP (A ∩ B) (λa a'. r a a' ∧ s a a')"
by(drule (1) refl_on_Int)(simp add: split_def inf_fun_def inf_set_def)
lemma refl_onP_Un: "refl_onP A r ==> refl_onP B s ==> refl_onP (A ∪ B) (λa a'. r a a' ∨ s a a')"
by(drule (1) refl_on_Un)(simp add: split_def sup_fun_def sup_set_def)
lemma refl_onP_empty[simp]: "refl_onP {} (λa a'. False)"
unfolding split_def by simp
lemma refl_onP_tranclp:
assumes "refl_onP A r"
shows "refl_onP A r^++"
proof(rule refl_onPI)
fix a a'
assume "r^++ a a'"
thus "a ∈ A ∧ a' ∈ A"
by(induct)(blast intro: refl_onPD1[OF assms] refl_onPD2[OF assms])+
next
fix a
assume "a ∈ A"
from refl_onPD[OF assms this] show "r^++ a a" ..
qed
lemma irreflPI: "(⋀a. ¬ r a a) ⟹ irreflP r"
unfolding irrefl_def by blast
lemma irreflPE:
assumes "irreflP r"
obtains "∀a. ¬ r a a"
using assms unfolding irrefl_def by blast
lemma irreflPD: "⟦ irreflP r; r a a ⟧ ⟹ False"
unfolding irrefl_def by blast
lemma irreflclpD:
"r⇧≠⇧≠ a b ⟹ r a b ∧ a ≠ b"
by(simp add: irreflclp_def)
lemma irreflclpI [intro!]:
"⟦ r a b; a ≠ b ⟧ ⟹ r⇧≠⇧≠ a b"
by(simp add: irreflclp_def)
lemma irreflclpE [elim!]:
assumes "r⇧≠⇧≠ a b"
obtains "r a b" "a ≠ b"
using assms by(simp add: irreflclp_def)
lemma transPI: "(⋀x y z. ⟦ r x y; r y z ⟧ ⟹ r x z) ⟹ transp r"
by (fact transpI)
lemma transPD: "⟦transp r; r x y; r y z ⟧ ⟹ r x z"
by (fact transpD)
lemma transP_tranclp: "transp r^++"
by (fact trans_trancl [to_pred])
lemma antisymPI: "(⋀x y. ⟦ r x y; r y x ⟧ ⟹ x = y) ⟹ antisymp r"
by (fact antisympI)
lemma antisymPD: "⟦ antisymp r; r a b; r b a ⟧ ⟹ a = b"
by (fact antisympD)
lemma antisym_subset:
"⟦ antisymp r; ⋀a a'. s a a' ⟹ r a a' ⟧ ⟹ antisymp s"
by (blast intro: antisymp_less_eq [of s r])
lemma symPI: "(⋀x y. r x y ⟹ r y x) ⟹ symP r"
by(rule symI)(blast)
lemma symPD: "⟦ symP r; r x y ⟧ ⟹ r y x"
by(blast dest: symD)
subsection ‹Easy properties›
lemma porder_onI:
"⟦ refl_onP A r; antisymp r; transp r ⟧ ⟹ porder_on A r"
unfolding porder_on_def by blast
lemma porder_onE:
assumes "porder_on A r"
obtains "refl_onP A r" "antisymp r" "transp r"
using assms unfolding porder_on_def by blast
lemma torder_onI:
"⟦ porder_on A r; total_onP A r ⟧ ⟹ torder_on A r"
unfolding torder_on_def by blast
lemma torder_onE:
assumes "torder_on A r"
obtains "porder_on A r" "total_onP A r"
using assms unfolding torder_on_def by blast
lemma total_onI:
"(⋀x y. ⟦ x ∈ A; y ∈ A ⟧ ⟹ (x, y) ∈ r ∨ x = y ∨ (y, x) ∈ r) ⟹ total_on A r"
unfolding total_on_def by blast
lemma total_onPI:
"(⋀x y. ⟦ x ∈ A; y ∈ A ⟧ ⟹ r x y ∨ x = y ∨ r y x) ⟹ total_onP A r"
by(rule total_onI) simp
lemma total_onD:
"⟦ total_on A r; x ∈ A; y ∈ A ⟧ ⟹ (x, y) ∈ r ∨ x = y ∨ (y, x) ∈ r"
unfolding total_on_def by blast
lemma total_onPD:
"⟦ total_onP A r; x ∈ A; y ∈ A ⟧ ⟹ r x y ∨ x = y ∨ r y x"
by(drule (2) total_onD) blast
subsection ‹Order consistency›
lemma order_consistentI:
"(⋀a a'. ⟦ r a a'; s a' a ⟧ ⟹ a = a') ⟹ order_consistent r s"
unfolding order_consistent_def by blast
lemma order_consistentD:
"⟦ order_consistent r s; r a a'; s a' a ⟧ ⟹ a = a'"
unfolding order_consistent_def by blast
lemma order_consistent_subset:
"⟦ order_consistent r s; ⋀a a'. r' a a' ⟹ r a a'; ⋀a a'. s' a a' ⟹ s a a' ⟧ ⟹ order_consistent r' s'"
by(blast intro: order_consistentI order_consistentD)
lemma order_consistent_sym:
"order_consistent r s ⟹ order_consistent s r"
by(blast intro: order_consistentI dest: order_consistentD)
lemma antisym_order_consistent_self:
"antisymp r ⟹ order_consistent r r"
by(rule order_consistentI)(erule antisympD, simp_all)
lemma total_on_refl_on_consistent_into:
assumes r: "total_onP A r" "refl_onP A r"
and consist: "order_consistent r s"
and x: "x ∈ A" and y: "y ∈ A" and s: "s x y"
shows "r x y"
proof(cases "x = y")
case True
with r x y show ?thesis by(blast intro: refl_onPD)
next
case False
with r x y have "r x y ∨ r y x" by(blast dest: total_onD)
thus ?thesis
proof
assume "r y x"
with s consist have "x = y" by(blast dest: order_consistentD)
with False show ?thesis by(contradiction)
qed
qed
lemma porder_torder_tranclpE [consumes 5, case_names base step]:
assumes r: "porder_on A r"
and s: "torder_on B s"
and consist: "order_consistent r s"
and B_subset_A: "B ⊆ A"
and trancl: "(λa b. r a b ∨ s a b)^++ x y"
obtains "r x y"
| u v where "r x u" "s u v" "r v y"
proof(atomize_elim)
from r have "refl_onP A r" "transp r" by(blast elim: porder_onE)+
from s have "refl_onP B s" "total_onP B s" "transp s"
by(blast elim: torder_onE porder_onE)+
from trancl show "r x y ∨ (∃u v. r x u ∧ s u v ∧ r v y)"
proof(induct)
case (base y)
thus ?case
proof
assume "s x y"
with s have "x ∈ B" "y ∈ B"
by(blast elim: torder_onE porder_onE dest: refl_onPD1 refl_onPD2)+
with B_subset_A have "x ∈ A" "y ∈ A" by blast+
with refl_onPD[OF ‹refl_onP A r›, of x] refl_onPD[OF ‹refl_onP A r›, of y] ‹s x y›
show ?thesis by(iprover)
next
assume "r x y"
thus ?thesis ..
qed
next
case (step y z)
note IH = ‹r x y ∨ (∃u v. r x u ∧ s u v ∧ r v y)›
from ‹r y z ∨ s y z› show ?case
proof
assume "s y z"
with ‹refl_onP B s› have "y ∈ B" "z ∈ B"
by(blast dest: refl_onPD2 refl_onPD1)+
from IH show ?thesis
proof
assume "r x y"
moreover from ‹z ∈ B› B_subset_A r have "r z z"
by(blast elim: porder_onE dest: refl_onPD)
ultimately show ?thesis using ‹s y z› by blast
next
assume "∃u v. r x u ∧ s u v ∧ r v y"
then obtain u v where "r x u" "s u v" "r v y" by blast
from ‹refl_onP B s› ‹s u v› have "v ∈ B" by(rule refl_onPD2)
with ‹total_onP B s› ‹refl_onP B s› order_consistent_sym[OF consist]
have "s v y" using ‹y ∈ B› ‹r v y›
by(rule total_on_refl_on_consistent_into)
with ‹transp s› have "s v z" using ‹s y z› by(rule transPD)
with ‹transp s› ‹s u v› have "s u z" by(rule transPD)
moreover from ‹z ∈ B› B_subset_A have "z ∈ A" ..
with ‹refl_onP A r› have "r z z" by(rule refl_onPD)
ultimately show ?thesis using ‹r x u› by blast
qed
next
assume "r y z"
with IH show ?thesis
by(blast intro: transPD[OF ‹transp r›])
qed
qed
qed
lemma torder_on_porder_on_consistent_tranclp_antisym:
assumes r: "porder_on A r"
and s: "torder_on B s"
and consist: "order_consistent r s"
and B_subset_A: "B ⊆ A"
shows "antisymp (λx y. r x y ∨ s x y)^++"
proof(rule antisymPI)
fix x y
let ?rs = "λx y. r x y ∨ s x y"
assume "?rs^++ x y" "?rs^++ y x"
from r have "antisymp r" "transp r" by(blast elim: porder_onE)+
from s have "total_onP B s" "refl_onP B s" "transp s" "antisymp s"
by(blast elim: torder_onE porder_onE)+
from r s consist B_subset_A ‹?rs^++ x y›
show "x = y"
proof(cases rule: porder_torder_tranclpE)
case base
from r s consist B_subset_A ‹?rs^++ y x›
show ?thesis
proof(cases rule: porder_torder_tranclpE)
case base
with ‹antisymp r› ‹r x y› show ?thesis by(rule antisymPD)
next
case (step u v)
from ‹r v x› ‹r x y› ‹r y u› have "r v u" by(blast intro: transPD[OF ‹transp r›])
with consist have "v = u" using ‹s u v› by(rule order_consistentD)
with ‹r y u› ‹r v x› have "r y x" by(blast intro: transPD[OF ‹transp r›])
with ‹r x y› show ?thesis by(rule antisymPD[OF ‹antisymp r›])
qed
next
case (step u v)
from r s consist B_subset_A ‹?rs^++ y x›
show ?thesis
proof(cases rule: porder_torder_tranclpE)
case base
from ‹r v y› ‹r y x› ‹r x u› have "r v u" by(blast intro: transPD[OF ‹transp r›])
with order_consistent_sym[OF consist] ‹s u v›
have "u = v" by(rule order_consistentD)
with ‹r v y› ‹r x u› have "r x y" by(blast intro: transPD[OF ‹transp r›])
thus ?thesis using ‹r y x› by(rule antisymPD[OF ‹antisymp r›])
next
case (step u' v')
note r_into_s = total_on_refl_on_consistent_into[OF ‹total_onP B s› ‹refl_onP B s› order_consistent_sym[OF consist]]
from ‹refl_onP B s› ‹s u v› ‹s u' v'›
have "u ∈ B" "v ∈ B" "u' ∈ B" "v' ∈ B" by(blast dest: refl_onPD1 refl_onPD2)+
from ‹r v' x› ‹r x u› have "r v' u" by(rule transPD[OF ‹transp r›])
with ‹v' ∈ B› ‹u ∈ B› have "s v' u" by(rule r_into_s)
also note ‹s u v›
also (transPD[OF ‹transp s›])
from ‹r v y› ‹r y u'› have "r v u'" by(rule transPD[OF ‹transp r›])
with ‹v ∈ B› ‹u' ∈ B› have "s v u'" by(rule r_into_s)
finally (transPD[OF ‹transp s›])
have "v' = u'" using ‹s u' v'› by(rule antisymPD[OF ‹antisymp s›])
moreover with ‹s v u'› ‹s v' u› have "s v u" by(blast intro: transPD[OF ‹transp s›])
with ‹s u v› have "u = v" by(rule antisymPD[OF ‹antisymp s›])
ultimately have "r x y" "r y x" using ‹r x u› ‹r v y› ‹r y u'› ‹r v' x›
by(blast intro: transPD[OF ‹transp r›])+
thus ?thesis by(rule antisymPD[OF ‹antisymp r›])
qed
qed
qed
lemma porder_on_torder_on_tranclp_porder_onI:
assumes r: "porder_on A r"
and s: "torder_on B s"
and consist: "order_consistent r s"
and subset: "B ⊆ A"
shows "porder_on A (λa b. r a b ∨ s a b)^++"
proof(rule porder_onI)
let ?rs = "λa b. r a b ∨ s a b"
from r have "refl_onP A r" by(rule porder_onE)
moreover from s have "refl_onP B s" by(blast elim: torder_onE porder_onE)
ultimately have "refl_onP (A ∪ B) ?rs" by(rule refl_onP_Un)
also from subset have "A ∪ B = A" by blast
finally show "refl_onP A ?rs^++" by(rule refl_onP_tranclp)
show "transp ?rs^++" by(rule transP_tranclp)
from r s consist subset show "antisymp ?rs^++"
by (rule torder_on_porder_on_consistent_tranclp_antisym)
qed
lemma porder_on_sub_torder_on_tranclp_porder_onI:
assumes r: "porder_on A r"
and s: "torder_on B s"
and consist: "order_consistent r s"
and t: "⋀x y. t x y ⟹ s x y"
and subset: "B ⊆ A"
shows "porder_on A (λx y. r x y ∨ t x y)^++"
proof(rule porder_onI)
let ?rt = "λx y. r x y ∨ t x y"
let ?rs = "λx y. r x y ∨ s x y"
from r s consist subset have "antisymp ?rs^++"
by(rule torder_on_porder_on_consistent_tranclp_antisym)
thus "antisymp ?rt^++"
proof(rule antisym_subset)
fix x y
assume "?rt^++ x y" thus "?rs^++ x y"
by(induct)(blast intro: tranclp.r_into_trancl t tranclp.trancl_into_trancl t)+
qed
from s have "refl_onP B s" by(blast elim: porder_onE torder_onE)
{ fix x y
assume "t x y"
hence "s x y" by(rule t)
hence "x ∈ B" "y ∈ B"
by(blast dest: refl_onPD1[OF ‹refl_onP B s›] refl_onPD2[OF ‹refl_onP B s›])+
with subset have "x ∈ A" "y ∈ A" by blast+ }
note t_reflD = this
from r have "refl_onP A r" by(rule porder_onE)
show "refl_onP A ?rt^++"
proof(rule refl_onPI)
fix a a'
assume "?rt^++ a a'"
thus "a ∈ A ∧ a' ∈ A"
by(induct)(auto dest: refl_onPD1[OF ‹refl_onP A r›] refl_onPD2[OF ‹refl_onP A r›] t_reflD)
next
fix a
assume "a ∈ A"
with ‹refl_onP A r› have "r a a" by(rule refl_onPD)
thus "?rt^++ a a" by(blast intro: tranclp.r_into_trancl)
qed
show "transp ?rt^++" by(rule transP_tranclp)
qed
subsection ‹Order restrictions›
lemma restrictPI [intro!, simp]:
"⟦ r a b; a ∈ A; b ∈ A ⟧ ⟹ (r |` A) a b"
unfolding restrictP_def by simp
lemma restrictPE [elim!]:
assumes "(r |` A) a b"
obtains "r a b" "a ∈ A" "b ∈ A"
using assms unfolding restrictP_def by simp
lemma restrictP_empty [simp]: "R |` {} = (λ_ _. False)"
by(simp add: restrictP_def[abs_def])
lemma refl_on_restrictPI:
"refl_onP A r ⟹ refl_onP (A ∩ B) (r |` B)"
by(rule refl_onPI)(blast dest: refl_onPD1 refl_onPD2 refl_onPD)+
lemma refl_on_restrictPI':
"⟦ refl_onP A r; B = A ∩ C ⟧ ⟹ refl_onP B (r |` C)"
by(simp add: refl_on_restrictPI)
lemma antisym_restrictPI:
"antisymp r ⟹ antisymp (r |` A)"
by(rule antisymPI)(blast dest: antisymPD)
lemma trans_restrictPI:
"transp r ⟹ transp (r |` A)"
by(rule transPI)(blast dest: transPD)
lemma porder_on_restrictPI:
"porder_on A r ⟹ porder_on (A ∩ B) (r |` B)"
by(blast elim: porder_onE intro: refl_on_restrictPI antisym_restrictPI trans_restrictPI porder_onI)
lemma porder_on_restrictPI':
"⟦ porder_on A r; B = A ∩ C ⟧ ⟹ porder_on B (r |` C)"
by(simp add: porder_on_restrictPI)
lemma total_on_restrictPI:
"total_onP A r ⟹ total_onP (A ∩ B) (r |` B)"
by(blast intro: total_onPI dest: total_onPD)
lemma total_on_restrictPI':
"⟦ total_onP A r; B = A ∩ C ⟧ ⟹ total_onP B (r |` C)"
by(simp add: total_on_restrictPI)
lemma torder_on_restrictPI:
"torder_on A r ⟹ torder_on (A ∩ B) (r |` B)"
by(blast elim: torder_onE intro: torder_onI porder_on_restrictPI total_on_restrictPI)
lemma torder_on_restrictPI':
"⟦ torder_on A r; B = A ∩ C ⟧ ⟹ torder_on B (r |` C)"
by(simp add: torder_on_restrictPI)
lemma restrictP_commute:
fixes r :: "'a ⇒ 'a ⇒ bool"
shows "r |` A |` B = r |` B |` A"
by(blast intro!: ext)
lemma restrictP_subsume1:
fixes r :: "'a ⇒ 'a ⇒ bool"
assumes "A ⊆ B"
shows "r |` A |` B = r |` A"
using assms by(blast intro!: ext)
lemma restrictP_subsume2:
fixes r :: "'a ⇒ 'a ⇒ bool"
assumes "B ⊆ A"
shows "r |` A |` B = r |` B"
using assms by(blast intro!: ext)
lemma restrictP_idem [simp]:
fixes r :: "'a ⇒ 'a ⇒ bool"
shows "r |` A |` A = r |` A"
by(simp add: restrictP_subsume1)
subsection ‹Maximal elements w.r.t. a total order›
definition max_torder :: "('a ⇒ 'a ⇒ bool) ⇒ 'a ⇒ 'a ⇒ 'a"
where "max_torder r a b = (if Domainp r a ∧ Domainp r b then if r a b then b else a
else if a = b then a else SOME a. ¬ Domainp r a)"
lemma refl_on_DomainD: "refl_on A r ⟹ A = Domain r"
by(auto simp add: Domain_unfold dest: refl_onD refl_onD1)
lemma refl_onP_DomainPD: "refl_onP A r ⟹ A = {a. Domainp r a}"
by(drule refl_on_DomainD) auto
lemma semilattice_max_torder:
assumes tot: "torder_on A r"
shows "semilattice (max_torder r)"
proof -
from tot have as: "antisymp r"
and to: "total_onP A r"
and trans: "transp r"
and refl: "refl_onP A r"
by(auto elim: torder_onE porder_onE)
from refl have "{a. Domainp r a} = A" by (rule refl_onP_DomainPD[symmetric])
from this [symmetric] have "domain": "⋀a. Domainp r a ⟷ a ∈ A" by simp
show ?thesis
proof
fix x y z
show "max_torder r (max_torder r x y) z = max_torder r x (max_torder r y z)"
proof (cases "x ≠ y ∧ x ≠ z ∧ y ≠ z")
case True
have *: "⋀a b. a ≠ b ⟹ max_torder r a b = (if Domainp r a ∧ Domainp r b then
if r a b then b else a else SOME a. ¬ Domainp r a)"
by (auto simp add: max_torder_def)
with True show ?thesis
apply (simp only: max_torder_def "domain")
apply (auto split!: if_splits)
apply (blast dest: total_onPD [OF to] transPD [OF trans] antisymPD [OF as] refl_onPD1 [OF refl] refl_onPD2 [OF refl] someI [where P="λa. a ∉ A"])+
done
next
have max_torder_idem: "⋀a. max_torder r a a = a" by (simp add: max_torder_def)
case False then show ?thesis
apply (auto simp add: max_torder_idem)
apply (auto simp add: max_torder_def "domain" dest: someI [where P="λa. a ∉ A"])
done
qed
next
fix x y
show "max_torder r x y = max_torder r y x"
by (auto simp add: max_torder_def "domain" dest: total_onPD [OF to] antisymPD [OF as])
next
fix x
show "max_torder r x x = x"
by (simp add: max_torder_def)
qed
qed
lemma max_torder_ge_conv_disj:
assumes tot: "torder_on A r" and x: "x ∈ A" and y: "y ∈ A"
shows "r z (max_torder r x y) ⟷ r z x ∨ r z y"
proof -
from tot have as: "antisymp r"
and to: "total_onP A r"
and trans: "transp r"
and refl: "refl_onP A r"
by(auto elim: torder_onE porder_onE)
from refl have "{a. Domainp r a} = A" by (rule refl_onP_DomainPD[symmetric])
from this [symmetric] have "domain": "⋀a. Domainp r a ⟷ a ∈ A" by simp
show ?thesis using x y
by(simp add: max_torder_def "domain")(blast dest: total_onPD[OF to] transPD[OF trans])
qed
definition Max_torder :: "('a ⇒ 'a ⇒ bool) ⇒ 'a set ⇒ 'a"
where
"Max_torder r = semilattice_set.F (max_torder r)"
context
fixes A r
assumes tot: "torder_on A r"
begin
lemma semilattice_set:
"semilattice_set (max_torder r)"
by (rule semilattice_set.intro, rule semilattice_max_torder) (fact tot)
lemma domain:
"Domainp r a ⟷ a ∈ A"
proof -
from tot have "{a. Domainp r a} = A"
by (auto elim: torder_onE porder_onE dest: refl_onP_DomainPD [symmetric])
from this [symmetric] show ?thesis by simp
qed
lemma Max_torder_in_Domain:
assumes B: "finite B" "B ≠ {}" "B ⊆ A"
shows "Max_torder r B ∈ A"
proof -
interpret Max_torder: semilattice_set "max_torder r"
rewrites
"semilattice_set.F (max_torder r) = Max_torder r"
by (fact semilattice_set Max_torder_def [symmetric])+
show ?thesis using B
by (induct rule: finite_ne_induct) (simp_all add: max_torder_def "domain")
qed
lemma Max_torder_in_set:
assumes B: "finite B" "B ≠ {}" "B ⊆ A"
shows "Max_torder r B ∈ B"
proof -
interpret Max_torder: semilattice_set "max_torder r"
rewrites
"semilattice_set.F (max_torder r) = Max_torder r"
by (fact semilattice_set Max_torder_def [symmetric])+
show ?thesis using B
by (induct rule: finite_ne_induct) (auto simp add: max_torder_def "domain")
qed
lemma Max_torder_above_iff:
assumes B: "finite B" "B ≠ {}" "B ⊆ A"
shows "r x (Max_torder r B) ⟷ (∃a∈B. r x a)"
proof -
interpret Max_torder: semilattice_set "max_torder r"
rewrites
"semilattice_set.F (max_torder r) = Max_torder r"
by (fact semilattice_set Max_torder_def [symmetric])+
from B show ?thesis
by (induct rule: finite_ne_induct) (simp_all add: max_torder_ge_conv_disj [OF tot] Max_torder_in_Domain)
qed
end
lemma Max_torder_above:
assumes tot: "torder_on A r"
and "finite B" "a ∈ B" "B ⊆ A"
shows "r a (Max_torder r B)"
proof -
from tot have refl: "refl_onP A r" by(auto elim: torder_onE porder_onE)
with ‹a ∈ B› ‹B ⊆ A› have "r a a" by(blast dest: refl_onPD[OF refl])
from ‹a ∈ B› have "B ≠ {}" by auto
from Max_torder_above_iff [OF tot ‹finite B› this ‹B ⊆ A›, of a] ‹r a a› ‹a ∈ B›
show ?thesis by blast
qed
lemma inv_imageP_id [simp]: "inv_imageP R id = R"
by(simp add: fun_eq_iff)
lemma inv_into_id [simp]: "a ∈ A ⟹ inv_into A id a = a"
by (metis f_inv_into_f id_apply image_id)
end