Theory Collections.ListSetImpl_Sorted
section ‹\isaheader{Set Implementation by sorted Lists}›
theory ListSetImpl_Sorted
imports
"../spec/SetSpec"
"../gen_algo/SetGA"
"../../Lib/Sorted_List_Operations"
begin
text_raw ‹\label{thy:ListSetImpl_Sorted}›
type_synonym
'a lss = "'a list"
subsection "Definitions"
definition lss_α :: "'a lss ⇒ 'a set" where "lss_α == set"
definition lss_invar :: "'a::{linorder} lss ⇒ bool" where "lss_invar l == distinct l ∧ sorted l"
definition lss_empty :: "unit ⇒ 'a lss" where "lss_empty == (λ_::unit. [])"
definition lss_memb :: "'a::{linorder} ⇒ 'a lss ⇒ bool" where "lss_memb x l == Sorted_List_Operations.memb_sorted l x"
definition lss_ins :: "'a::{linorder} ⇒ 'a lss ⇒ 'a lss" where "lss_ins x l == insertion_sort x l"
definition lss_ins_dj :: "'a::{linorder} ⇒ 'a lss ⇒ 'a lss" where "lss_ins_dj == lss_ins"
definition lss_delete :: "'a::{linorder} ⇒ 'a lss ⇒ 'a lss" where "lss_delete x l == delete_sorted x l"
definition lss_iterateoi :: "'a lss ⇒ ('a,'σ) set_iterator"
where "lss_iterateoi l = foldli l"
definition lss_reverse_iterateoi :: "'a lss ⇒ ('a,'σ) set_iterator"
where "lss_reverse_iterateoi l = foldli (rev l)"
definition lss_iteratei :: "'a lss ⇒ ('a,'σ) set_iterator"
where "lss_iteratei l = foldli l"
definition lss_isEmpty :: "'a lss ⇒ bool" where "lss_isEmpty s == s=[]"
definition lss_union :: "'a::{linorder} lss ⇒ 'a lss ⇒ 'a lss"
where "lss_union s1 s2 == Misc.merge s1 s2"
definition lss_union_list :: "'a::{linorder} lss list ⇒ 'a lss"
where "lss_union_list l == merge_list [] l"
definition lss_inter :: "'a::{linorder} lss ⇒ 'a lss ⇒ 'a lss"
where "lss_inter == inter_sorted"
definition lss_union_dj :: "'a::{linorder} lss ⇒ 'a lss ⇒ 'a lss"
where "lss_union_dj == lss_union"
definition lss_image_filter
where "lss_image_filter f l =
mergesort_remdups (List.map_filter f l)"
definition lss_filter where [code_unfold]: "lss_filter = List.filter"
definition lss_inj_image_filter
where "lss_inj_image_filter == lss_image_filter"
definition "lss_image == iflt_image lss_image_filter"
definition "lss_inj_image == iflt_inj_image lss_inj_image_filter"
definition lss_to_list :: "'a lss ⇒ 'a list" where "lss_to_list == id"
definition list_to_lss :: "'a::{linorder} list ⇒ 'a lss" where "list_to_lss == mergesort_remdups"
subsection "Correctness"
lemmas lss_defs =
lss_α_def
lss_invar_def
lss_empty_def
lss_memb_def
lss_ins_def
lss_ins_dj_def
lss_delete_def
lss_iteratei_def
lss_isEmpty_def
lss_union_def
lss_union_list_def
lss_inter_def
lss_union_dj_def
lss_image_filter_def
lss_inj_image_filter_def
lss_image_def
lss_inj_image_def
lss_to_list_def
list_to_lss_def
lemma lss_empty_impl: "set_empty lss_α lss_invar lss_empty"
by (unfold_locales) (auto simp add: lss_defs)
lemma lss_memb_impl: "set_memb lss_α lss_invar lss_memb"
by (unfold_locales) (auto simp add: lss_defs memb_sorted_correct)
lemma lss_ins_impl: "set_ins lss_α lss_invar lss_ins"
by (unfold_locales) (auto simp add: lss_defs insertion_sort_correct)
lemma lss_ins_dj_impl: "set_ins_dj lss_α lss_invar lss_ins_dj"
by (unfold_locales) (auto simp add: lss_defs insertion_sort_correct)
lemma lss_delete_impl: "set_delete lss_α lss_invar lss_delete"
by(unfold_locales)(auto simp add: lss_delete_def lss_α_def lss_invar_def delete_sorted_correct)
lemma lss_α_finite[simp, intro!]: "finite (lss_α l)"
by (auto simp add: lss_defs)
lemma lss_is_finite_set: "finite_set lss_α lss_invar"
by (unfold_locales) (auto simp add: lss_defs)
lemma lss_iterateoi_impl: "poly_set_iterateoi lss_α lss_invar lss_iterateoi"
proof
fix l :: "'a::{linorder} list"
assume invar_l: "lss_invar l"
show "finite (lss_α l)"
unfolding lss_α_def by simp
from invar_l
show "set_iterator_linord (lss_iterateoi l) (lss_α l)"
apply (rule_tac set_iterator_linord_I [of "l"])
apply (simp_all add: lss_α_def lss_invar_def lss_iterateoi_def)
done
qed
lemma lss_reverse_iterateoi_impl: "poly_set_rev_iterateoi lss_α lss_invar lss_reverse_iterateoi"
proof
fix l :: "'a list"
assume invar_l: "lss_invar l"
show "finite (lss_α l)"
unfolding lss_α_def by simp
from invar_l
show "set_iterator_rev_linord (lss_reverse_iterateoi l) (lss_α l)"
apply (rule_tac set_iterator_rev_linord_I [of "rev l"])
apply (simp_all add: lss_α_def lss_invar_def lss_reverse_iterateoi_def)
done
qed
lemma lss_iteratei_impl: "poly_set_iteratei lss_α lss_invar lss_iteratei"
proof
fix l :: "'a list"
assume invar_l: "lss_invar l"
show "finite (lss_α l)"
unfolding lss_α_def by simp
from invar_l
show "set_iterator (lss_iteratei l) (lss_α l)"
apply (rule_tac set_iterator_I [of "l"])
apply (simp_all add: lss_α_def lss_invar_def lss_iteratei_def)
done
qed
lemma lss_isEmpty_impl: "set_isEmpty lss_α lss_invar lss_isEmpty"
by(unfold_locales)(auto simp add: lss_defs)
lemma lss_inter_impl: "set_inter lss_α lss_invar lss_α lss_invar lss_α lss_invar lss_inter"
by (unfold_locales) (auto simp add: lss_defs inter_sorted_correct)
lemma lss_union_impl: "set_union lss_α lss_invar lss_α lss_invar lss_α lss_invar lss_union"
by (unfold_locales) (auto simp add: lss_defs merge_correct)
lemma lss_union_list_impl: "set_union_list lss_α lss_invar lss_α lss_invar lss_union_list"
proof
fix l :: "'a::{linorder} lss list"
assume "∀s1∈set l. lss_invar s1"
with merge_list_correct [of l "[]"]
show "lss_α (lss_union_list l) = ⋃{lss_α s1 |s1. s1 ∈ set l}"
"lss_invar (lss_union_list l)"
by (auto simp add: lss_defs)
qed
lemma lss_union_dj_impl: "set_union_dj lss_α lss_invar lss_α lss_invar lss_α lss_invar lss_union_dj"
by (unfold_locales) (auto simp add: lss_defs merge_correct)
lemma lss_image_filter_impl : "set_image_filter lss_α lss_invar lss_α lss_invar lss_image_filter"
apply (unfold_locales)
apply (simp_all add:
lss_invar_def lss_image_filter_def lss_α_def mergesort_remdups_correct
set_map_filter Bex_def)
done
lemma lss_inj_image_filter_impl : "set_inj_image_filter lss_α lss_invar lss_α lss_invar lss_inj_image_filter"
apply (unfold_locales)
apply (simp_all add: lss_invar_def lss_inj_image_filter_def lss_image_filter_def
mergesort_remdups_correct lss_α_def
set_map_filter Bex_def)
done
lemma lss_filter_impl : "set_filter lss_α lss_invar lss_α lss_invar lss_filter"
apply (unfold_locales)
apply (simp_all add: lss_invar_def lss_filter_def sorted_filter lss_α_def
set_map_filter Bex_def sorted_filter')
done
lemmas lss_image_impl = iflt_image_correct[OF lss_image_filter_impl, folded lss_image_def]
lemmas lss_inj_image_impl = iflt_inj_image_correct[OF lss_inj_image_filter_impl, folded lss_inj_image_def]
lemma lss_to_list_impl: "set_to_list lss_α lss_invar lss_to_list"
by(unfold_locales)(auto simp add: lss_defs)
lemma list_to_lss_impl: "list_to_set lss_α lss_invar list_to_lss"
by (unfold_locales) (auto simp add: lss_defs mergesort_remdups_correct)
definition lss_basic_ops :: "('x::linorder,'x lss) oset_basic_ops"
where [icf_rec_def]: "lss_basic_ops ≡ ⦇
bset_op_α = lss_α,
bset_op_invar = lss_invar,
bset_op_empty = lss_empty,
bset_op_memb = lss_memb,
bset_op_ins = lss_ins,
bset_op_ins_dj = lss_ins_dj,
bset_op_delete = lss_delete,
bset_op_list_it = lss_iteratei,
bset_op_ordered_list_it = lss_iterateoi,
bset_op_rev_list_it = lss_reverse_iterateoi
⦈"
setup Locale_Code.open_block