Theory Collections.ListSetImpl_NotDist
section ‹\isaheader{Set Implementation by non-distinct Lists}›
theory ListSetImpl_NotDist
imports
"../spec/SetSpec"
"../gen_algo/SetGA"
begin
text_raw ‹\label{thy:ListSetImpl_NotDist}›
type_synonym
'a lsnd = "'a list"
subsection "Definitions"
definition lsnd_α :: "'a lsnd ⇒ 'a set" where "lsnd_α == set"
abbreviation (input) lsnd_invar
:: "'a lsnd ⇒ bool" where "lsnd_invar == (λ_. True)"
definition lsnd_empty :: "unit ⇒ 'a lsnd" where "lsnd_empty == (λ_::unit. [])"
definition lsnd_memb :: "'a ⇒ 'a lsnd ⇒ bool" where "lsnd_memb x l == List.member l x"
definition lsnd_ins :: "'a ⇒ 'a lsnd ⇒ 'a lsnd" where "lsnd_ins x l == x#l"
definition lsnd_ins_dj :: "'a ⇒ 'a lsnd ⇒ 'a lsnd" where "lsnd_ins_dj x l == x#l"
definition lsnd_delete :: "'a ⇒ 'a lsnd ⇒ 'a lsnd" where "lsnd_delete x l == remove_rev x l"
definition lsnd_iteratei :: "'a lsnd ⇒ ('a,'σ) set_iterator"
where "lsnd_iteratei l = foldli (remdups l)"
definition lsnd_isEmpty :: "'a lsnd ⇒ bool" where "lsnd_isEmpty s == s=[]"
definition lsnd_union :: "'a lsnd ⇒ 'a lsnd ⇒ 'a lsnd"
where "lsnd_union s1 s2 == revg s1 s2"
definition lsnd_union_dj :: "'a lsnd ⇒ 'a lsnd ⇒ 'a lsnd"
where "lsnd_union_dj s1 s2 == revg s1 s2"
definition lsnd_to_list :: "'a lsnd ⇒ 'a list" where "lsnd_to_list == remdups"
definition list_to_lsnd :: "'a list ⇒ 'a lsnd" where "list_to_lsnd == id"
subsection "Correctness"
lemmas lsnd_defs =
lsnd_α_def
lsnd_empty_def
lsnd_memb_def
lsnd_ins_def
lsnd_ins_dj_def
lsnd_delete_def
lsnd_iteratei_def
lsnd_isEmpty_def
lsnd_union_def
lsnd_union_dj_def
lsnd_to_list_def
list_to_lsnd_def
lemma lsnd_empty_impl: "set_empty lsnd_α lsnd_invar lsnd_empty"
by (unfold_locales) (auto simp add: lsnd_defs)
lemma lsnd_memb_impl: "set_memb lsnd_α lsnd_invar lsnd_memb"
by (unfold_locales)(auto simp add: lsnd_defs in_set_member)
lemma lsnd_ins_impl: "set_ins lsnd_α lsnd_invar lsnd_ins"
by (unfold_locales) (auto simp add: lsnd_defs in_set_member)
lemma lsnd_ins_dj_impl: "set_ins_dj lsnd_α lsnd_invar lsnd_ins_dj"
by (unfold_locales) (auto simp add: lsnd_defs)
lemma lsnd_delete_impl: "set_delete lsnd_α lsnd_invar lsnd_delete"
by (unfold_locales) (auto simp add: lsnd_delete_def lsnd_α_def remove_rev_alt_def)
lemma lsnd_α_finite[simp, intro!]: "finite (lsnd_α l)"
by (auto simp add: lsnd_defs)
lemma lsnd_is_finite_set: "finite_set lsnd_α lsnd_invar"
by (unfold_locales) (auto simp add: lsnd_defs)
lemma lsnd_iteratei_impl: "poly_set_iteratei lsnd_α lsnd_invar lsnd_iteratei"
proof
fix l :: "'a list"
show "finite (lsnd_α l)"
unfolding lsnd_α_def by simp
show "set_iterator (lsnd_iteratei l) (lsnd_α l)"
apply (rule set_iterator_I [of "remdups l"])
apply (simp_all add: lsnd_α_def lsnd_iteratei_def)
done
qed
lemma lsnd_isEmpty_impl: "set_isEmpty lsnd_α lsnd_invar lsnd_isEmpty"
by(unfold_locales)(auto simp add: lsnd_defs)
lemma lsnd_union_impl: "set_union lsnd_α lsnd_invar lsnd_α lsnd_invar lsnd_α lsnd_invar lsnd_union"
by(unfold_locales)(auto simp add: lsnd_defs)
lemma lsnd_union_dj_impl: "set_union_dj lsnd_α lsnd_invar lsnd_α lsnd_invar lsnd_α lsnd_invar lsnd_union_dj"
by(unfold_locales)(auto simp add: lsnd_defs)
lemma lsnd_to_list_impl: "set_to_list lsnd_α lsnd_invar lsnd_to_list"
by(unfold_locales)(auto simp add: lsnd_defs)
lemma list_to_lsnd_impl: "list_to_set lsnd_α lsnd_invar list_to_lsnd"
by(unfold_locales)(auto simp add: lsnd_defs)
definition lsnd_basic_ops :: "('x,'x lsnd) set_basic_ops"
where [icf_rec_def]: "lsnd_basic_ops ≡ ⦇
bset_op_α = lsnd_α,
bset_op_invar = lsnd_invar,
bset_op_empty = lsnd_empty,
bset_op_memb = lsnd_memb,
bset_op_ins = lsnd_ins,
bset_op_ins_dj = lsnd_ins_dj,
bset_op_delete = lsnd_delete,
bset_op_list_it = lsnd_iteratei
⦈"
setup Locale_Code.open_block
interpretation lsnd_basic: StdBasicSet lsnd_basic_ops
apply (rule StdBasicSet.intro)
apply (simp_all add: icf_rec_unf)
apply (rule lsnd_empty_impl lsnd_memb_impl lsnd_ins_impl lsnd_ins_dj_impl
lsnd_delete_impl lsnd_iteratei_impl)+
done
setup Locale_Code.close_block
definition [icf_rec_def]: "lsnd_ops ≡ lsnd_basic.dflt_ops ⦇
set_op_isEmpty := lsnd_isEmpty,
set_op_union := lsnd_union,
set_op_union_dj := lsnd_union_dj,
set_op_to_list := lsnd_to_list,
set_op_from_list := list_to_lsnd
⦈"
setup Locale_Code.open_block
interpretation lsnd: StdSetDefs lsnd_ops .
interpretation lsnd: StdSet lsnd_ops
proof -
interpret aux: StdSet lsnd_basic.dflt_ops
by (rule lsnd_basic.dflt_ops_impl)
show "StdSet lsnd_ops"
unfolding lsnd_ops_def
apply (rule StdSet_intro)
apply icf_locales
apply (simp_all add: icf_rec_unf
lsnd_isEmpty_impl lsnd_union_impl lsnd_union_dj_impl lsnd_to_list_impl
list_to_lsnd_impl
)
done
qed
interpretation lsnd: StdSet_no_invar lsnd_ops
by unfold_locales (simp add: icf_rec_unf)
setup Locale_Code.close_block
setup ‹ICF_Tools.revert_abbrevs "lsnd"›
lemma pi_lsnd[proper_it]:
"proper_it' lsnd_iteratei lsnd_iteratei"
apply (rule proper_it'I)
unfolding lsnd_iteratei_def
by (intro icf_proper_iteratorI)
interpretation pi_lsnd: proper_it_loc lsnd_iteratei lsnd_iteratei
apply unfold_locales by (rule pi_lsnd)
definition test_codegen where "test_codegen ≡ (
lsnd.empty,
lsnd.memb,
lsnd.ins,
lsnd.delete,
lsnd.list_it,
lsnd.sng,
lsnd.isEmpty,
lsnd.isSng,
lsnd.ball,
lsnd.bex,
lsnd.size,
lsnd.size_abort,
lsnd.union,
lsnd.union_dj,
lsnd.diff,
lsnd.filter,
lsnd.inter,
lsnd.subset,
lsnd.equal,
lsnd.disjoint,
lsnd.disjoint_witness,
lsnd.sel,
lsnd.to_list,
lsnd.from_list
)"
export_code test_codegen checking SML
end