Theory Annotate

(*  Title:      Jinja/J/Annotate.thy
    Author:     Tobias Nipkow, Andreas Lochbihler
*)

section ‹Program annotation›

theory Annotate
imports
  WellType
begin

abbreviation (output)
  unanFAcc :: "'addr expr  vname  'addr expr" ((__) [10,10] 90)
where
  "unanFAcc e F  FAcc e F (STR '''')"

abbreviation (output)
  unanFAss :: "'addr expr  vname  'addr expr  'addr expr" ((__ := _) [10,0,90] 90)
where
  "unanFAss e F e'  FAss e F (STR '''') e'"

definition array_length_field_name :: vname
where "array_length_field_name = STR ''length''"

notation (output) array_length_field_name (length)

definition super :: vname
where "super = STR ''super''"

lemma super_neq_this [simp]: "super  this" "this  super"
by(simp_all add: this_def super_def)

inductive Anno :: "(ty  ty  ty  bool)  'addr J_prog  env  'addr expr  'addr expr  bool" 
  (‹_,_,_  _  _›   [51,51,0,0,51]50)
  and Annos :: "(ty  ty  ty  bool)  'addr J_prog  env  'addr expr list  'addr expr list  bool"
  (‹_,_,_  _ [↝] _› [51,51,0,0,51]50)
for is_lub :: "ty  ty  ty  bool" and P :: "'addr J_prog"
where
  AnnoNew: "is_lub,P,E  new C  new C"
| AnnoNewArray: "is_lub,P,E  i  i'  is_lub,P,E  newA Ti  newA Ti'"
| AnnoCast: "is_lub,P,E  e  e'  is_lub,P,E  Cast C e  Cast C e'"
| AnnoInstanceOf: "is_lub,P,E  e  e'  is_lub,P,E  e instanceof T  e' instanceof T"
| AnnoVal: "is_lub,P,E  Val v  Val v"
| AnnoVarVar: " E V = T; V  super   is_lub,P,E  Var V  Var V"
| AnnoVarField:
  ― ‹There is no need to handle access of array fields explicitly,
    because arrays do not implement methods, i.e. @{term "this"} is
    always of a @{term "Class"} type.›
  " E V = None; V  super; E this = Class C; P  C sees V:T (fm) in D 
   is_lub,P,E  Var V  Var thisV{D}"
| AnnoBinOp:
  " is_lub,P,E  e1  e1';  is_lub,P,E  e2  e2' 
    is_lub,P,E  e1 «bop» e2  e1' «bop» e2'"
| AnnoLAssVar:
  " E V = T; V  super; is_lub,P,E  e  e'   is_lub,P,E  V:=e  V:=e'"
| AnnoLAssField:
  " E V = None; V  super; E this = Class C; P  C sees V:T (fm) in D; is_lub,P,E  e  e' 
    is_lub,P,E  V:=e  Var thisV{D} := e'"
| AnnoAAcc:
  " is_lub,P,E  a  a'; is_lub,P,E  i  i'   is_lub,P,E  ai  a'i'"
| AnnoAAss:
  " is_lub,P,E  a  a'; is_lub,P,E  i  i'; is_lub,P,E  e  e'   is_lub,P,E  ai := e  a'i' := e'"
| AnnoALength:
  "is_lub,P,E  a  a'  is_lub,P,E  a∙length  a'∙length"
| ― ‹All arrays implicitly declare a final field called @{term "array_length_field_name"} to
    store the array length, which hides a potential field of the same name in @{term "Object"} (cf. JLS 6.4.5).
    The last premise implements the hiding because field lookup does does not model the implicit declaration.›
  AnnoFAcc:
  " is_lub,P,E  e  e';  is_lub,P,E  e' :: U; class_type_of' U = C; P  C sees F:T (fm) in D; 
     is_Array U  F  array_length_field_name 
    is_lub,P,E  eF{STR ''''}  e'F{D}"
| AnnoFAccALength:
  " is_lub,P,E  e  e'; is_lub,P,E  e' :: T⌊⌉ 
   is_lub,P,E  earray_length_field_name{STR ''''}  e'∙length"
| AnnoFAccSuper:
  ― ‹In class C with super class D, "super" is syntactic sugar for "((D) this)" (cf. JLS, 15.11.2)›
  " E this = Class C; C  Object; class P C = (D, fs, ms); 
     P  D sees F:T (fm) in D' 
   is_lub,P,E  Var superF{STR ''''}  (Cast (Class D) (Var this))F{D'}"
|  AnnoFAss:
  " is_lub,P,E  e1  e1';  is_lub,P,E  e2  e2';
     is_lub,P,E  e1' :: U; class_type_of' U = C; P  C sees F:T (fm) in D;
     is_Array U  F  array_length_field_name 
   is_lub,P,E  e1F{STR ''''} := e2  e1'F{D} := e2'"
| AnnoFAssSuper:
  " E this = Class C; C  Object; class P C = (D, fs, ms);
     P  D sees F:T (fm) in D'; is_lub,P,E  e  e' 
   is_lub,P,E  Var superF{STR ''''} := e  (Cast (Class D) (Var this))F{D'} := e'"
| AnnoCAS:
  " is_lub,P,E  e1  e1'; is_lub,P,E  e2  e2'; is_lub,P,E  e3  e3' 
   is_lub,P,E  e1∙compareAndSwap(DF, e2, e3)  e1'∙compareAndSwap(DF, e2', e3')"
| AnnoCall:
  " is_lub,P,E  e  e';  is_lub,P,E  es [↝] es' 
    is_lub,P,E  Call e M es  Call e' M es'"
| AnnoBlock:
  "is_lub,P,E(V  T)  e  e'    is_lub,P,E  {V:T=vo; e}  {V:T=vo; e'}"
| AnnoSync:
  " is_lub,P,E  e1  e1'; is_lub,P,E  e2  e2' 
   is_lub,P,E  sync(e1) e2  sync(e1') e2'"
| AnnoComp:
  " is_lub,P,E  e1  e1';  is_lub,P,E  e2  e2' 
    is_lub,P,E  e1;;e2  e1';;e2'"
| AnnoCond:
  " is_lub,P,E  e  e'; is_lub,P,E  e1  e1';  is_lub,P,E  e2  e2' 
    is_lub,P,E  if (e) e1 else e2  if (e') e1' else e2'"
| AnnoLoop:
  " is_lub,P,E  e  e';  is_lub,P,E  c  c' 
   is_lub,P,E  while (e) c  while (e') c'"
| AnnoThrow:
  "is_lub,P,E  e  e'  is_lub,P,E  throw e  throw e'"
| AnnoTry:
  " is_lub,P,E  e1  e1';  is_lub,P,E(V  Class C)  e2  e2' 
    is_lub,P,E  try e1 catch(C V) e2  try e1' catch(C V) e2'"

| AnnoNil:
  "is_lub,P,E  [] [↝] []"
| AnnoCons:
  " is_lub,P,E  e  e';  is_lub,P,E  es [↝] es'    is_lub,P,E  e#es [↝] e'#es'"

inductive_cases Anno_cases [elim!]:
  "is_lub',P,E  new C  e"
  "is_lub',P,E  newA Te  e'"
  "is_lub',P,E  Cast T e  e'"
  "is_lub',P,E  e instanceof T  e'"
  "is_lub',P,E  Val v  e'"
  "is_lub',P,E  Var V  e'"
  "is_lub',P,E  e1 «bop» e2  e'"
  "is_lub',P,E  V := e  e'"
  "is_lub',P,E  e1e2  e'"
  "is_lub',P,E  e1e2 := e3  e'"
  "is_lub',P,E  e∙length  e'"
  "is_lub',P,E  eF{D}  e'"
  "is_lub',P,E  e1F{D} := e2  e'"
  "is_lub',P,E  e1∙compareAndSwap(DF, e2, e3)  e'"
  "is_lub',P,E  eM(es)  e'"
  "is_lub',P,E  {V:T=vo; e}  e'"
  "is_lub',P,E  sync(e1) e2  e'"
  "is_lub',P,E  insync(a) e2  e'"
  "is_lub',P,E  e1;; e2  e'"
  "is_lub',P,E  if (e) e1 else e2  e'"
  "is_lub',P,E  while(e1) e2  e'"
  "is_lub',P,E  throw e  e'"
  "is_lub',P,E  try e1 catch(C V) e2  e'"

inductive_cases Annos_cases [elim!]:
  "is_lub',P,E  [] [↝] es'"
  "is_lub',P,E  e # es [↝] es'"

abbreviation Anno' :: "'addr J_prog  env  'addr expr  'addr expr  bool"  (‹_,_  _  _›   [51,0,0,51]50)
where "Anno' P  Anno (TypeRel.is_lub P) P"

abbreviation Annos' :: "'addr J_prog  env  'addr expr list  'addr expr list  bool"  (‹_,_  _ [↝] _› [51,0,0,51]50)
where "Annos' P  Annos (TypeRel.is_lub P) P"

definition annotate :: "'addr J_prog  env  'addr expr  'addr expr"
where "annotate P E e = THE_default e (λe'. P,E  e  e')"

lemma fixes is_lub :: "ty  ty  ty  bool" ( lub'((_,/ _)') = _› [51,51,51] 50)
  assumes is_lub_unique: "T1 T2 T3 T4.   lub(T1, T2) = T3;  lub(T1, T2) = T4   T3 = T4"
  shows Anno_fun: " is_lub,P,E  e  e'; is_lub,P,E  e  e''   e' = e''"
  and Annos_fun: " is_lub,P,E  es [↝] es'; is_lub,P,E  es [↝] es''   es' = es''"
proof(induct arbitrary: e'' and es'' rule: Anno_Annos.inducts)
  case (AnnoFAcc E e e' U C F T fm D)
  from is_lub,P,E  eF{STR ''''}  e'' show ?case
  proof(rule Anno_cases)
    fix e''' U' C' T' fm' D'
    assume "is_lub,P,E  e  e'''" "is_lub,P,E  e''' :: U'"
      and "class_type_of' U' = C'"
      and "P  C' sees F:T' (fm') in D'" "e'' = e'''F{D'}"
    from is_lub,P,E  e  e''' have "e' = e'''" by(rule AnnoFAcc)
    with is_lub,P,E  e' :: U is_lub,P,E  e''' :: U'
    have "U = U'" by(auto intro: WT_unique is_lub_unique)
    with class_type_of' U = C class_type_of' U' = C'
    have "C = C'" by(auto)
    with P  C' sees F:T' (fm') in D' P  C sees F:T (fm) in D
    have "D' = D" by(auto dest: sees_field_fun)
    with e'' = e'''F{D'} e' = e''' show ?thesis by simp
  next
    fix e''' T
    assume "e'' = e'''∙length"
      and "is_lub,P,E  e''' :: T⌊⌉"
      and "is_lub,P,E  e  e'''"
      and "F = array_length_field_name"
    from is_lub,P,E  e  e''' have "e' = e'''" by(rule AnnoFAcc)
    with is_lub,P,E  e' :: U is_lub,P,E  e''' :: T⌊⌉ have "U = T⌊⌉" by(auto intro: WT_unique is_lub_unique)
    with class_type_of' U = C is_Array U  F  array_length_field_name
    show ?thesis using F = array_length_field_name by simp
  next
    fix C' D' fs ms T D''
    assume "E this = Class C'"
      and "class P C' = (D', fs, ms)"
      and "e = Var super"
      and "e'' = Cast (Class D') (Var this)F{D''}"
    with is_lub,P,E  e  e' have False by(auto)
    thus ?thesis ..
  qed
next
  case AnnoFAccALength thus ?case by(fastforce intro: WT_unique[OF is_lub_unique])
next
  case (AnnoFAss E e1 e1' e2 e2' U C F T fm D)
  from is_lub,P,E  e1F{STR ''''} := e2  e'' 
  show ?case
  proof(rule Anno_cases)
    fix e1'' e2'' U' C' T' fm' D'
    assume "is_lub,P,E  e1  e1''" "is_lub,P,E  e2  e2''"
      and "is_lub,P,E  e1'' :: U'" and "class_type_of' U' = C'"
      and "P  C' sees F:T' (fm') in D'"
      and "e'' = e1''F{D'} := e2''"
    from is_lub,P,E  e1  e1'' have "e1' = e1''" by(rule AnnoFAss)
    moreover with is_lub,P,E  e1' :: U is_lub,P,E  e1'' :: U'
    have "U = U'" by(auto intro: WT_unique is_lub_unique)
    with class_type_of' U = C class_type_of' U' = C'
    have "C = C'" by(auto)
    with P  C' sees F:T' (fm') in D' P  C sees F:T (fm) in D
    have "D' = D" by(auto dest: sees_field_fun)
    moreover from is_lub,P,E  e2  e2'' have "e2' = e2''" by(rule AnnoFAss)
    ultimately show ?thesis using e'' = e1''F{D'} := e2'' by simp
  next
    fix C' D' fs ms T' fm' D'' e'''
    assume "e'' = Cast (Class D') (Var this)F{D''} := e'''"
      and "E this = Class C'"
      and "class P C' = (D', fs, ms)"
      and "P  D' sees F:T' (fm') in D''"
      and "is_lub,P,E  e2  e'''"
      and "e1 = Var super"
    with is_lub,P,E  e1  e1' have False by(auto elim: Anno_cases)
    thus ?thesis ..
  qed
qed(fastforce dest: sees_field_fun)+

subsection ‹Code generation›

definition Anno_code :: "'addr J_prog  env  'addr expr  'addr expr  bool" (‹_,_  _ ↝'' _›   [51,0,0,51]50)
where "Anno_code P = Anno (is_lub_sup P) P"

definition Annos_code :: "'addr J_prog  env  'addr expr list  'addr expr list  bool" (‹_,_  _ [↝''] _› [51,0,0,51]50)
where "Annos_code P = Annos (is_lub_sup P) P"

primrec block_types :: "('a, 'b, 'addr) exp  ty list" 
  and blocks_types :: "('a, 'b, 'addr) exp list  ty list"
where 
  "block_types (new C) = []"
| "block_types (newA Te) = block_types e"
| "block_types (Cast U e) = block_types e"
| "block_types (e instanceof U) = block_types e"
| "block_types (e1«bop»e2) = block_types e1 @ block_types e2"
| "block_types (Val v) = []"
| "block_types (Var V) = []"
| "block_types (V := e) = block_types e"
| "block_types (ai) = block_types a @ block_types i"
| "block_types (ai := e) = block_types a @ block_types i @ block_types e"
| "block_types (a∙length) = block_types a"
| "block_types (eF{D}) = block_types e"
| "block_types (eF{D} := e') = block_types e @ block_types e'"
| "block_types (e∙compareAndSwap(DF, e', e'')) = block_types e @ block_types e' @ block_types e''"
| "block_types (eM(es)) = block_types e @ blocks_types es"
| "block_types {V:T=vo; e} = T # block_types e"
| "block_types (sync⇘V(e) e') = block_types e @ block_types e'"
| "block_types (insync⇘V(a) e) = block_types e"
| "block_types (e;;e') = block_types e @ block_types e'"
| "block_types (if (e) e1 else e2) = block_types e @ block_types e1 @ block_types e2"
| "block_types (while (b) c) = block_types b @ block_types c"
| "block_types (throw e) = block_types e"
| "block_types (try e catch(C V) e') = block_types e @ Class C # block_types e'"

| "blocks_types [] = []"
| "blocks_types (e#es) = block_types e @ blocks_types es"

lemma fixes is_lub1 :: "ty  ty  ty  bool" (⊢1 lub'((_,/ _)') = _› [51,51,51] 50)
  and is_lub2 :: "ty  ty  ty  bool" (⊢2 lub'((_,/ _)') = _› [51,51,51] 50)
  assumes wf: "wf_prog wf_md P"
  and is_lub1_into_is_lub2: "T1 T2 T3.  ⊢1 lub(T1, T2) = T3; is_type P T1; is_type P T2   ⊢2 lub(T1, T2) = T3"
  and is_lub2_is_type: "T1 T2 T3.  ⊢2 lub(T1, T2) = T3; is_type P T1; is_type P T2   is_type P T3"
  shows Anno_change_is_lub:
  " is_lub1,P,E  e  e'; ran E  set (block_types e)  types P   is_lub2,P,E  e  e'"
  and Annos_change_is_lub:
  " is_lub1,P,E  es [↝] es'; ran E  set (blocks_types es)  types P   is_lub2,P,E  es [↝] es'"
proof(induct rule: Anno_Annos.inducts)
  case (AnnoBlock E V T e e' vo)
  from ran E  set (block_types {V:T=vo; e})  types P
  have "ran (E(V  T))  set (block_types e)  types P"
    by(auto simp add: ran_def)
  thus ?case using AnnoBlock by(blast intro: Anno_Annos.intros)
next
  case (AnnoTry E e1 e1' V C e2 e2')
  from ran E  set (block_types (try e1 catch(C V) e2))  types P
  have "ran (E(V  Class C))  set (block_types e2)  types P"
    by(auto simp add: ran_def)
  thus ?case using AnnoTry by(simp del: fun_upd_apply)(blast intro: Anno_Annos.intros)
qed(simp_all del: is_Array.simps is_Array_conv, (blast intro: Anno_Annos.intros WT_change_is_lub[OF wf, where ?is_lub1.0=is_lub1 and ?is_lub2.0=is_lub2] is_lub1_into_is_lub2 is_lub2_is_type)+)

lemma assumes wf: "wf_prog wf_md P"
  shows Anno_into_Anno_code: " P,E  e  e'; ran E  set (block_types e)  types P   P,E  e ↝' e'"
  and Annos_into_Annos_code: " P,E  es [↝] es'; ran E  set (blocks_types es)  types P   P,E  es [↝'] es'"
proof -
  assume anno: "P,E  e  e'" 
    and ran: "ran E  set (block_types e)  types P"
  show "P,E  e ↝' e'" unfolding Anno_code_def
    by(rule Anno_change_is_lub[OF wf _ _ anno ran])(blast intro!: is_lub_sup.intros intro: is_lub_subD[OF wf] sup_is_type[OF wf] elim!: is_lub_sup.cases)+ 
next
  assume annos: "P,E  es [↝] es'"
    and ran: "ran E  set (blocks_types es)  types P"
  show "P,E  es [↝'] es'" unfolding Annos_code_def
    by(rule Annos_change_is_lub[OF wf _ _ annos ran])(blast intro!: is_lub_sup.intros intro: is_lub_subD[OF wf] sup_is_type[OF wf] elim!: is_lub_sup.cases)+
qed 

lemma assumes wf: "wf_prog wf_md P"
  shows Anno_code_into_Anno: " P,E  e ↝' e'; ran E  set (block_types e)  types P   P,E  e  e'"
  and Annos_code_into_Annos: " P,E  es [↝'] es'; ran E  set (blocks_types es)  types P   P,E  es [↝] es'"
proof -
  assume anno: "P,E  e ↝' e'" 
    and ran: "ran E  set (block_types e)  types P"
  show "P,E  e  e'"
    by(rule Anno_change_is_lub[OF wf _ _ anno[unfolded Anno_code_def] ran])(blast elim!: is_lub_sup.cases intro: sup_is_lubI[OF wf] is_lub_is_type[OF wf])+
next
  assume annos: "P,E  es [↝'] es'"
    and ran: "ran E  set (blocks_types es)  types P"
  show "P,E  es [↝] es'"
    by(rule Annos_change_is_lub[OF wf _ _ annos[unfolded Annos_code_def] ran])(blast elim!: is_lub_sup.cases intro: sup_is_lubI[OF wf] is_lub_is_type[OF wf])+
qed

lemma fixes is_lub
  assumes wf: "wf_prog wf_md P"
  shows WT_block_types_is_type: "is_lub,P,E  e :: T  set (block_types e)  types P"
  and WTs_blocks_types_is_type: "is_lub,P,E  es [::] Ts  set (blocks_types es)  types P"
apply(induct rule: WT_WTs.inducts)
apply(auto intro: is_class_sub_Throwable[OF wf])
done

lemma fixes is_lub
  shows Anno_block_types: "is_lub,P,E  e  e'  block_types e = block_types e'"
  and Annos_blocks_types: "is_lub,P,E  es [↝] es'  blocks_types es = blocks_types es'"
by(induct rule: Anno_Annos.inducts) auto

code_pred 
  (modes: (i ⇒ i ⇒ o ⇒ bool) ⇒ i ⇒ i ⇒ i ⇒ o ⇒ bool)
  [detect_switches, skip_proof]
  Anno
.

definition annotate_code :: "'addr J_prog  env  'addr expr  'addr expr"
where "annotate_code P E e = THE_default e (λe'. P,E  e ↝' e')"

code_pred
  (modes: i ⇒ i ⇒ i ⇒ o ⇒ bool)
  [inductify]
  Anno_code 
.

lemma eval_Anno_i_i_i_o_conv:
  "Predicate.eval (Anno_code_i_i_i_o P E e) = (λe'. P,E  e ↝' e')"
by(auto intro!: ext intro: Anno_code_i_i_i_oI elim: Anno_code_i_i_i_oE)
 
lemma annotate_code [code]:
  "annotate_code P E e = Predicate.singleton (λ_. Code.abort (STR ''annotate'') (λ_. e)) (Anno_code_i_i_i_o P E e)"
by(simp add: THE_default_def Predicate.singleton_def annotate_code_def eval_Anno_i_i_i_o_conv)

end