Theory Progress

(*  Title:      JinjaDCI/J/Progress.thy

    Author:     Tobias Nipkow, Susannah Mansky
    Copyright   2003 Technische Universitaet Muenchen, 2019-20 UIUC

    Based on the Jinja theory J/Progress.thy by Tobias Nipkow
*)

section ‹ Progress of Small Step Semantics ›

theory Progress
imports WellTypeRT DefAss "../Common/Conform" EConform
begin

lemma final_addrE:
  " P,E,h,sh  e : Class C; final e;
    a. e = addr a  R;
    a. e = Throw a  R   R"
(*<*)by(auto simp:final_def)(*>*)


lemma finalRefE:
 " P,E,h,sh  e : T; is_refT T; final e;
   e = null  R;
   a C.  e = addr a; T = Class C   R;
   a. e = Throw a  R   R"
(*<*)by(auto simp:final_def is_refT_def)(*>*)


text‹ Derivation of new induction scheme for well typing: ›

inductive
  WTrt' :: "[J_prog,heap,sheap,env,expr,ty]  bool"
  and WTrts' :: "[J_prog,heap,sheap,env,expr list, ty list]  bool"
  and WTrt2' :: "[J_prog,env,heap,sheap,expr,ty]  bool"
        (‹_,_,_,_  _ :'' _›   [51,51,51,51]50)
  and WTrts2' :: "[J_prog,env,heap,sheap,expr list, ty list]  bool"
        (‹_,_,_,_  _ [:''] _› [51,51,51,51]50)
  for P :: J_prog and h :: heap and sh :: sheap
where
  "P,E,h,sh  e :' T  WTrt' P h sh E e T"
| "P,E,h,sh  es [:'] Ts  WTrts' P h sh E es Ts"

| "is_class P C    P,E,h,sh  new C :' Class C"
| " P,E,h,sh  e :' T; is_refT T; is_class P C 
   P,E,h,sh  Cast C e :' Class C"
| "typeof⇘hv = Some T  P,E,h,sh  Val v :' T"
| "E v = Some T    P,E,h,sh  Var v :' T"
| " P,E,h,sh  e1 :' T1;  P,E,h,sh  e2 :' T2 
   P,E,h,sh  e1 «Eq» e2 :' Boolean"
| " P,E,h,sh  e1 :' Integer;  P,E,h,sh  e2 :' Integer 
   P,E,h,sh  e1 «Add» e2 :' Integer"
| " P,E,h,sh  Var V :' T;  P,E,h,sh  e :' T';  P  T'  T 
   P,E,h,sh  V:=e :' Void"
| " P,E,h,sh  e :' Class C; P  C has F,NonStatic:T in D   P,E,h,sh  eF{D} :' T"
| "P,E,h,sh  e :' NT  P,E,h,sh  eF{D} :' T"
| " P  C has F,Static:T in D   P,E,h,sh  CsF{D} :' T"
| " P,E,h,sh  e1 :' Class C;  P  C has F,NonStatic:T in D;
    P,E,h,sh  e2 :' T2;  P  T2  T 
   P,E,h,sh  e1F{D}:=e2 :' Void"
| " P,E,h,sh  e1:'NT; P,E,h,sh  e2 :' T2   P,E,h,sh  e1F{D}:=e2 :' Void"
| " P  C has F,Static:T in D;
    P,E,h,sh  e2 :' T2;  P  T2  T 
   P,E,h,sh  CsF{D}:=e2 :' Void"
| " P,E,h,sh  e :' Class C; P  C sees M,NonStatic:Ts  T = (pns,body) in D;
    P,E,h,sh  es [:'] Ts'; P  Ts' [≤] Ts 
   P,E,h,sh  eM(es) :' T"
| " P,E,h,sh  e :' NT; P,E,h,sh  es [:'] Ts   P,E,h,sh  eM(es) :' T"
| " P  C sees M,Static:Ts  T = (pns,body) in D;
    P,E,h,sh  es [:'] Ts'; P  Ts' [≤] Ts;
    M = clinit  sh D = (sfs,Processing)  es = map Val vs 
   P,E,h,sh  CsM(es) :' T"
| "P,E,h,sh  [] [:'] []"
| " P,E,h,sh  e :' T;  P,E,h,sh  es [:'] Ts    P,E,h,sh  e#es [:'] T#Ts"
| " typeof⇘hv = Some T1; P  T1  T; P,E(VT),h,sh  e2 :' T2 
    P,E,h,sh  {V:T := Val v; e2} :' T2"
| " P,E(VT),h,sh  e :' T'; ¬ assigned V e    P,E,h,sh  {V:T; e} :' T'"
| " P,E,h,sh  e1:' T1;  P,E,h,sh  e2:'T2     P,E,h,sh  e1;;e2 :' T2"
| " P,E,h,sh  e :' Boolean;  P,E,h,sh  e1:' T1;  P,E,h,sh  e2:' T2;
    P  T1  T2  P  T2  T1;
    P  T1  T2  T = T2; P  T2  T1  T = T1 
   P,E,h,sh  if (e) e1 else e2 :' T"
| " P,E,h,sh  e :' Boolean;  P,E,h,sh  c:' T 
    P,E,h,sh  while(e) c :' Void"
| " P,E,h,sh  e :' Tr; is_refT Tr     P,E,h,sh  throw e :' T"
| " P,E,h,sh  e1 :' T1;  P,E(V  Class C),h,sh  e2 :' T2; P  T1  T2 
   P,E,h,sh  try e1 catch(C V) e2 :' T2"
| " P,E,h,sh  e :' T; C'  set (C#Cs). is_class P C'; ¬sub_RI e;
     C'  set (tl Cs). sfs. sh C' = (sfs,Processing);
     b  (C'  set Cs. sfs. sh C' = (sfs,Processing));
     distinct Cs; supercls_lst P Cs   P,E,h,sh  INIT C (Cs, b)  e :' T"
| " P,E,h,sh  e :' T; P,E,h,sh  e' :' T'; C'  set (C#Cs). is_class P C'; ¬sub_RI e';
     C'  set (C#Cs). not_init C' e;
     C'  set Cs. sfs. sh C' = (sfs,Processing);
     sfs. sh C = (sfs, Processing)  (sh C = (sfs, Error)  e = THROW NoClassDefFoundError);
     distinct (C#Cs); supercls_lst P (C#Cs) 
   P,E,h,sh  RI(C, e);Cs  e' :' T'"

(*<*)
lemmas WTrt'_induct = WTrt'_WTrts'.induct [split_format (complete)]
  and WTrt'_inducts = WTrt'_WTrts'.inducts [split_format (complete)]

inductive_cases WTrt'_elim_cases[elim!]:
  "P,E,h,sh  V :=e :' T"
(*>*)

lemma [iff]: "P,E,h,sh  e1;;e2 :' T2 = (T1. P,E,h,sh  e1:' T1  P,E,h,sh  e2:' T2)"
(*<*)by(rule iffI) (auto elim: WTrt'.cases intro!:WTrt'_WTrts'.intros)(*>*)

lemma [iff]: "P,E,h,sh  Val v :' T = (typeof⇘hv = Some T)"
(*<*)by(rule iffI) (auto elim: WTrt'.cases intro!:WTrt'_WTrts'.intros)(*>*)

lemma [iff]: "P,E,h,sh  Var v :' T = (E v = Some T)"
(*<*)by(rule iffI) (auto elim: WTrt'.cases intro!:WTrt'_WTrts'.intros)(*>*)


lemma wt_wt': "P,E,h,sh  e : T  P,E,h,sh  e :' T"
and wts_wts': "P,E,h,sh  es [:] Ts  P,E,h,sh  es [:'] Ts"
(*<*)
proof(induct rule:WTrt_inducts)
  case (WTrtBlock E V T e T')
  then show ?case
  proof(cases "assigned V e")
    case True then show ?thesis using WTrtBlock.hyps(2)
      by(clarsimp simp add:fun_upd_same assigned_def WTrt'_WTrts'.intros
                  simp del:fun_upd_apply)
  next
    case False then show ?thesis
      by (simp add: WTrtBlock.hyps(2) WTrt'_WTrts'.intros)
  qed
qed (blast intro:WTrt'_WTrts'.intros)+
(*>*)


lemma wt'_wt: "P,E,h,sh  e :' T  P,E,h,sh  e : T"
and wts'_wts: "P,E,h,sh  es [:'] Ts  P,E,h,sh  es [:] Ts"
(*<*)
proof(induct rule:WTrt'_inducts)
  case Block: (19 v T1 T E V e2 T2)
  let ?E = "E(V  T)"
  have "P,?E,h,sh  Val v : T1" using Block.hyps(1) by simp
  moreover have "P  T1  T" by(rule Block.hyps(2))
  ultimately have "P,?E,h,sh  V:=Val v : Void" using WTrtLAss by simp
  moreover have "P,?E,h,sh  e2 : T2" by(rule Block.hyps(4))
  ultimately have "P,?E,h,sh  V:=Val v;; e2 : T2" by blast
  then show ?case by simp
qed (blast intro:WTrt_WTrts.intros)+
(*>*)


corollary wt'_iff_wt: "(P,E,h,sh  e :' T) = (P,E,h,sh  e : T)"
(*<*)by(blast intro:wt_wt' wt'_wt)(*>*)


corollary wts'_iff_wts: "(P,E,h,sh  es [:'] Ts) = (P,E,h,sh  es [:] Ts)"
(*<*)by(blast intro:wts_wts' wts'_wts)(*>*)

(*<*)
lemmas WTrt_inducts2 = WTrt'_inducts [unfolded wt'_iff_wt wts'_iff_wts,
 case_names WTrtNew WTrtCast WTrtVal WTrtVar WTrtBinOpEq WTrtBinOpAdd WTrtLAss
 WTrtFAcc WTrtFAccNT WTrtSFAcc WTrtFAss WTrtFAssNT WTrtSFAss WTrtCall WTrtCallNT WTrtSCall
 WTrtNil WTrtCons WTrtInitBlock WTrtBlock WTrtSeq WTrtCond WTrtWhile WTrtThrow WTrtTry
 WTrtInit WTrtRI, consumes 1]
(*>*)

theorem assumes wf: "wwf_J_prog P" and hconf: "P  h " and shconf: "P,h s sh "
shows progress: "P,E,h,sh  e : T 
 (l.  𝒟 e dom l; P,sh b (e,b) ; ¬ final e   e' s' b'. P  e,(h,l,sh),b  e',s',b')"
and "P,E,h,sh  es [:] Ts 
 (l.  𝒟s es dom l; P,sh b (es,b) ; ¬ finals es   es' s' b'. P  es,(h,l,sh),b [→] es',s',b')"
(*<*)
proof (induct rule:WTrt_inducts2)
  case (WTrtNew C) show ?case
  proof (cases b)
    case True then show ?thesis
    proof cases
      assume "a. h a = None"
      with assms WTrtNew True show ?thesis
        by (fastforce del:exE intro!:RedNew simp add:new_Addr_def
                     elim!:wf_Fields_Ex[THEN exE])
    next
      assume "¬(a. h a = None)"
      with assms WTrtNew True show ?thesis
        by(fastforce intro:RedNewFail simp:new_Addr_def)
    qed
  next
    case False then show ?thesis
    proof cases
      assume "sfs. sh C = Some (sfs, Done)"
      with assms WTrtNew False show ?thesis
        by(fastforce intro:NewInitDoneRed simp:new_Addr_def)
    next
      assume "sfs. sh C = Some (sfs, Done)"
      with assms WTrtNew False show ?thesis
        by(fastforce intro:NewInitRed simp:new_Addr_def)
    qed
  qed
next
  case (WTrtCast E e T C)
  have wte: "P,E,h,sh  e : T" and ref: "is_refT T"
   and IH: "l. 𝒟 e dom l; P,sh b (e,b) ; ¬ final e
                 e' s' b'. P  e,(h,l,sh),b  e',s',b'"
   and D: "𝒟 (Cast C e) dom l"
   and castconf: "P,sh b (Cast C e,b) " by fact+
  from D have De: "𝒟 e dom l" by auto
  have bconf: "P,sh b (e,b) " using castconf bconf_Cast by fast
  show ?case
  proof cases
    assume "final e"
    with wte ref show ?thesis
    proof (rule finalRefE)
      assume "e = null" thus ?case by(fastforce intro:RedCastNull)
    next
      fix D a assume A: "T = Class D" "e = addr a"
      show ?thesis
      proof cases
        assume "P  D * C"
        thus ?thesis using A wte by(fastforce intro:RedCast)
      next
        assume "¬ P  D * C"
        thus ?thesis using A wte by(fastforce elim!:RedCastFail)
      qed
    next
      fix a assume "e = Throw a"
      thus ?thesis by(blast intro!:red_reds.CastThrow)
    qed
  next
    assume nf: "¬ final e"
    from IH[OF De bconf nf] show ?thesis by (blast intro:CastRed)
  qed
next
  case WTrtVal thus ?case by(simp add:final_def)
next
  case WTrtVar thus ?case by(fastforce intro:RedVar simp:hyper_isin_def)
next
  case (WTrtBinOpEq E e1 T1 e2 T2) show ?case
  proof cases
    assume "final e1"
    thus ?thesis
    proof (rule finalE)
      fix v1 assume eV[simp]: "e1 = Val v1"
      show ?thesis
      proof cases
        assume "final e2"
        thus ?thesis
        proof (rule finalE)
          fix v2 assume "e2 = Val v2"
          thus ?thesis using WTrtBinOpEq by(fastforce intro:RedBinOp)
        next
          fix a assume "e2 = Throw a"
          thus ?thesis using eV by(blast intro:red_reds.BinOpThrow2)
        qed
      next
        assume nf: "¬ final e2"
        then have "P,sh b (e2,b) " using WTrtBinOpEq.prems(2) by(simp add:bconf_BinOp)
        with WTrtBinOpEq nf show ?thesis
          by simp (fast intro!:BinOpRed2)
      qed
    next
      fix a assume "e1 = Throw a"
      thus ?thesis by (fast intro:red_reds.BinOpThrow1)
    qed
  next
    assume nf: "¬ final e1"
    then have e1: "val_of e1 = None" proof(cases e1)qed(auto)
    then have "P,sh b (e1,b) " using WTrtBinOpEq.prems(2) by(simp add:bconf_BinOp)
    with WTrtBinOpEq nf e1 show ?thesis
      by simp (fast intro:BinOpRed1)
  qed
next
  case (WTrtBinOpAdd E e1 e2) show ?case
  proof cases
    assume "final e1"
    thus ?thesis
    proof (rule finalE)
      fix v1 assume eV[simp]: "e1 = Val v1"
      show ?thesis
      proof cases
        assume "final e2"
        thus ?thesis
        proof (rule finalE)
          fix v2 assume eV2:"e2 = Val v2"
          then obtain i1 i2 where "v1 = Intg i1  v2 = Intg i2" using WTrtBinOpAdd by clarsimp
          thus ?thesis using WTrtBinOpAdd eV eV2 by(fastforce intro:RedBinOp)
        next
          fix a assume "e2 = Throw a"
          thus ?thesis using eV by(blast intro:red_reds.BinOpThrow2)
        qed
      next
        assume nf:"¬ final e2"
        then have "P,sh b (e2,b) " using WTrtBinOpAdd.prems(2) by(simp add:bconf_BinOp)
        with WTrtBinOpAdd nf show ?thesis
          by simp (fast intro!:BinOpRed2)
      qed
    next
      fix a assume "e1 = Throw a"
      thus ?thesis by(fast intro:red_reds.BinOpThrow1)
    qed
  next
    assume nf: "¬ final e1"
    then have e1: "val_of e1 = None" proof(cases e1)qed(auto)
    then have "P,sh b (e1,b) " using WTrtBinOpAdd.prems(2) by(simp add:bconf_BinOp)
    with WTrtBinOpAdd nf e1 show ?thesis
      by simp (fast intro:BinOpRed1)
  qed
next
  case (WTrtLAss E V T e T')
  then have bconf: "P,sh b (e,b) " using bconf_LAss by fast
  show ?case
  proof cases
    assume "final e" with WTrtLAss show ?thesis
      by(fastforce simp:final_def intro: red_reds.RedLAss red_reds.LAssThrow)
  next
    assume "¬ final e" with WTrtLAss bconf show ?thesis
      by simp (fast intro:LAssRed)
  qed
next
  case (WTrtFAcc E e C F T D)
  then have bconf: "P,sh b (e,b) " using bconf_FAcc by fast
  have wte: "P,E,h,sh  e : Class C"
   and field: "P  C has F,NonStatic:T in D" by fact+
  show ?case
  proof cases
    assume "final e"
    with wte show ?thesis
    proof (rule final_addrE)
      fix a assume e: "e = addr a"
      with wte obtain fs where hp: "h a = Some(C,fs)" by auto
      with hconf have "P,h  (C,fs) " using hconf_def by fastforce
      then obtain v where "fs(F,D) = Some v" using field
        by(fastforce dest:has_fields_fun simp:oconf_def has_field_def)
      with hp e show ?thesis by (meson field red_reds.RedFAcc)
    next
      fix a assume "e = Throw a"
      thus ?thesis by(fastforce intro:red_reds.FAccThrow)
    qed
  next
    assume "¬ final e" with WTrtFAcc bconf show ?thesis
      by(fastforce intro!:FAccRed)
  qed
next
  case (WTrtFAccNT E e F D T)
  then have bconf: "P,sh b (e,b) " using bconf_FAcc by fast
  show ?case
  proof cases
    assume "final e"  ― ‹@{term e} is @{term null} or @{term throw}›
    with WTrtFAccNT show ?thesis
      by(fastforce simp:final_def intro: red_reds.RedFAccNull red_reds.FAccThrow)
  next
    assume "¬ final e" ― ‹@{term e} reduces by IH›
    with WTrtFAccNT bconf show ?thesis by simp (fast intro:FAccRed)
  qed
next
case (WTrtSFAcc C F T D E) then show ?case
  proof (cases b)
    case True
    then obtain sfs i where shD: "sh D = (sfs,i)"
      using bconf_def[of P sh "CsF{D}" b] WTrtSFAcc.prems(2) initPD_def by auto
    with shconf have "P,h,D s sfs " using shconf_def[of P h sh] by auto
    then obtain v where sfsF: "sfs F = Some v" using WTrtSFAcc.hyps
      by(unfold soconf_def) (auto dest:has_field_idemp)
    then show ?thesis using WTrtSFAcc.hyps shD sfsF True
      by(fastforce elim:RedSFAcc)
  next
    case False
    with assms WTrtSFAcc show ?thesis
      by(metis (full_types) SFAccInitDoneRed SFAccInitRed)
  qed
next
  case (WTrtFAss E e1 C F T D e2 T2)
  have wte1: "P,E,h,sh  e1 : Class C" and field: "P  C has F,NonStatic:T in D" by fact+
  show ?case
  proof cases
    assume "final e1"
    with wte1 show ?thesis
    proof (rule final_addrE)
      fix a assume e1: "e1 = addr a"
      show ?thesis
      proof cases
        assume "final e2"
        thus ?thesis
        proof (rule finalE)
          fix v assume "e2 = Val v"
          thus ?thesis using e1 wte1 by(fastforce intro: RedFAss[OF field])
        next
          fix a assume "e2 = Throw a"
          thus ?thesis using e1 by(fastforce intro:red_reds.FAssThrow2)
        qed
      next
        assume nf: "¬ final e2"
        then have "P,sh b (e2,b) " using WTrtFAss.prems(2) e1 by(simp add:bconf_FAss)
        with WTrtFAss e1 nf show ?thesis
          by simp (fast intro!:FAssRed2)
      qed
    next
      fix a assume "e1 = Throw a"
      thus ?thesis by(fastforce intro:red_reds.FAssThrow1)
    qed
  next
    assume nf: "¬ final e1"
    then have e1: "val_of e1 = None" proof(cases e1)qed(auto)
    then have "P,sh b (e1,b) " using WTrtFAss.prems(2) by(simp add:bconf_FAss)
    with WTrtFAss nf e1 show ?thesis
      by simp (blast intro!:FAssRed1)
  qed
next
  case (WTrtFAssNT E e1 e2 T2 F D)
  show ?case
  proof cases
    assume e1: "final e1"  ― ‹@{term e1} is @{term null} or @{term throw}›
    show ?thesis
    proof cases
      assume "final e2"  ― ‹@{term e2} is @{term Val} or @{term throw}›
      with WTrtFAssNT e1 show ?thesis
        by(fastforce simp:final_def
                    intro: red_reds.RedFAssNull red_reds.FAssThrow1 red_reds.FAssThrow2)
    next
      assume nf: "¬ final e2" ― ‹@{term e2} reduces by IH›
      show ?thesis
      proof (rule finalE[OF e1])
        fix v assume ev: "e1 = Val v"
        then have "P,sh b (e2,b) " using WTrtFAssNT.prems(2) nf by(simp add:bconf_FAss)
        with WTrtFAssNT ev nf show ?thesis by auto (meson red_reds.FAssRed2)
      next
        fix a assume et: "e1 = Throw a"
        then have "P,sh b (e1,b) " using WTrtFAssNT.prems(2) nf by(simp add:bconf_FAss)
        with WTrtFAssNT et nf show ?thesis by(fastforce intro: red_reds.FAssThrow1)
      qed
    qed
  next
    assume nf: "¬ final e1" ― ‹@{term e1} reduces by IH›
    then have e1: "val_of e1 = None" proof(cases e1)qed(auto)
    then have "P,sh b (e1,b) " using WTrtFAssNT.prems(2) by(simp add:bconf_FAss)
    with WTrtFAssNT nf e1 show ?thesis
      by simp (blast intro!:FAssRed1)
  qed
next
  case (WTrtSFAss C F T D E e2 T2)
  have field: "P  C has F,Static:T in D" by fact+
  show ?case
  proof cases
    assume "final e2"
    thus ?thesis
    proof (rule finalE)
      fix v assume ev: "e2 = Val v"
      then show ?case
      proof (cases b)
        case True
        then obtain sfs i where shD: "sh D = (sfs,i)"
          using bconf_def[of P _ "CsF{D} := e2"] WTrtSFAss.prems(2) initPD_def ev by auto
        with shconf have "P,h,D s sfs " using shconf_def[of P] by auto
        then obtain v where sfsF: "sfs F = Some v" using field
          by(unfold soconf_def) (auto dest:has_field_idemp)
        then show ?thesis using WTrtSFAss.hyps shD sfsF True ev
          by(fastforce elim:RedSFAss)
      next
        case False
        with assms WTrtSFAss ev show ?thesis
          by(metis (full_types) SFAssInitDoneRed SFAssInitRed)
      qed
    next
      fix a assume "e2 = Throw a"
      thus ?thesis by(fastforce intro:red_reds.SFAssThrow)
    qed
  next
    assume nf: "¬ final e2"
    then have "val_of e2 = None" using final_def val_of_spec by fastforce
    then have "P,sh b (e2,b) " using WTrtSFAss.prems(2) by(simp add:bconf_SFAss)
    with WTrtSFAss nf show ?thesis
      by simp (fast intro!:SFAssRed)
  qed
next
  case (WTrtCall E e C M Ts T pns body D es Ts')
  have wte: "P,E,h,sh  e : Class C"
   and "method": "P  C sees M,NonStatic:TsT = (pns,body) in D"
   and wtes: "P,E,h,sh  es [:] Ts'"and sub: "P  Ts' [≤] Ts"
   and IHes: "l.
             𝒟s es dom l; P,sh b (es,b) ; ¬ finals es
              es' s' b'. P  es,(h,l,sh),b [→] es',s',b'"
   and D: "𝒟 (eM(es)) dom l" by fact+
  show ?case
  proof cases
    assume "final e"
    with wte show ?thesis
    proof (rule final_addrE)
      fix a assume e_addr: "e = addr a"
      show ?thesis
      proof cases
        assume es: "vs. es = map Val vs"
        from wte e_addr obtain fs where ha: "h a = Some(C,fs)" by auto
        show ?thesis
          using e_addr ha "method" WTrts_same_length[OF wtes] sub es sees_wf_mdecl[OF wf "method"]
          by(fastforce intro!: RedCall simp:list_all2_iff wf_mdecl_def)
      next
        assume "¬(vs. es = map Val vs)"
        hence not_all_Val: "¬(e  set es. v. e = Val v)"
          by(simp add:ex_map_conv)
        let ?ves = "takeWhile (λe. v. e = Val v) es"
        let ?rest = "dropWhile (λe. v. e = Val v) es"
        let ?ex = "hd ?rest" let ?rst = "tl ?rest"
        from not_all_Val have nonempty: "?rest  []" by auto
        hence es: "es = ?ves @ ?ex # ?rst" by simp
        have "e  set ?ves. v. e = Val v" by(fastforce dest:set_takeWhileD)
        then obtain vs where ves: "?ves = map Val vs"
          using ex_map_conv by blast
        show ?thesis
        proof cases
          assume "final ?ex"
          moreover from nonempty have "¬(v. ?ex = Val v)"
            by(auto simp:neq_Nil_conv simp del:dropWhile_eq_Nil_conv)
              (simp add:dropWhile_eq_Cons_conv)
          ultimately obtain b where ex_Throw: "?ex = Throw b"
            by(fast elim!:finalE)
          show ?thesis using e_addr es ex_Throw ves
            by(fastforce intro:CallThrowParams)
        next
          assume not_fin: "¬ final ?ex"
          have "finals es = finals(?ves @ ?ex # ?rst)" using es
            by(rule arg_cong)
          also have " = finals(?ex # ?rst)" using ves by simp
          finally have "finals es = finals(?ex # ?rst)" .
          hence fes: "¬ finals es" using not_finals_ConsI[OF not_fin] by blast
          have "P,sh b (es,b) " using bconf_Call WTrtCall.prems(2)
            by (metis e_addr option.simps(5) val_of.simps(1))
          thus ?thesis using fes e_addr D IHes by(fastforce intro!:CallParams)
        qed
      qed
    next
      fix a assume "e = Throw a"
      with WTrtCall.prems show ?thesis by(fast intro!:CallThrowObj)
    qed
  next
    assume nf: "¬ final e"
    then have e1: "val_of e = None" proof(cases e)qed(auto)
    then have "P,sh b (e,b) " using WTrtCall.prems(2) by(simp add:bconf_Call)
    with WTrtCall nf e1 show ?thesis by simp (blast intro!:CallObj)
  qed
next
  case (WTrtCallNT E e es Ts M T) show ?case
  proof cases
    assume "final e"
    moreover
    { fix v assume e: "e = Val v"
      hence "e = null" using WTrtCallNT by simp
      have ?case
      proof cases
        assume "finals es"
        moreover
        { fix vs assume "es = map Val vs"
          with WTrtCallNT e have ?thesis by(fastforce intro: RedCallNull) }
        moreover
        { fix vs a es' assume "es = map Val vs @ Throw a # es'"
          with WTrtCallNT e have ?thesis by(fastforce intro: CallThrowParams) }
        ultimately show ?thesis by(fastforce simp:finals_def)
      next
        assume nf: "¬ finals es" ― ‹@{term es} reduces by IH›
        have "P,sh b (es,b) " using WTrtCallNT.prems(2) e by (simp add: bconf_Call)
        with WTrtCallNT e nf show ?thesis by(fastforce intro: CallParams)
      qed
    }
    moreover
    { fix a assume "e = Throw a"
      with WTrtCallNT have ?case by(fastforce intro: CallThrowObj) }
    ultimately show ?thesis by(fastforce simp:final_def)
  next
    assume nf: "¬ final e" ― ‹@{term e} reduces by IH›
    then have "val_of e = None" proof(cases e)qed(auto)
    then have "P,sh b (e,b) " using WTrtCallNT.prems(2) by(simp add:bconf_Call)
    with WTrtCallNT nf show ?thesis by (fastforce intro:CallObj)
  qed
next
  case (WTrtSCall C M Ts T pns body D E es Ts' sfs vs)
  have "method": "P  C sees M,Static:TsT = (pns,body) in D"
   and wtes: "P,E,h,sh  es [:] Ts'"and sub: "P  Ts' [≤] Ts"
   and IHes: "l.
             𝒟s es dom l; P,sh b (es,b) ; ¬ finals es
              es' s' b'. P  es,(h,l,sh),b [→] es',s',b'"
   and clinit: "M = clinit  sh D = (sfs, Processing)  es = map Val vs"
   and D: "𝒟 (CsM(es)) dom l" by fact+
  show ?case
  proof cases
    assume es: "vs. es = map Val vs"
    show ?thesis
    proof (cases b)
      case True
      then show ?thesis
      using "method" WTrts_same_length[OF wtes] sub es sees_wf_mdecl[OF wf "method"] True
      by(fastforce intro!: RedSCall simp:list_all2_iff wf_mdecl_def)
    next
      case False
      show ?thesis
      using "method" clinit WTrts_same_length[OF wtes] sub es False
        by (metis (full_types) red_reds.SCallInitDoneRed red_reds.SCallInitRed)
    qed
  next
    assume nmap: "¬(vs. es = map Val vs)"
    hence not_all_Val: "¬(e  set es. v. e = Val v)"
      by(simp add:ex_map_conv)
    let ?ves = "takeWhile (λe. v. e = Val v) es"
    let ?rest = "dropWhile (λe. v. e = Val v) es"
    let ?ex = "hd ?rest" let ?rst = "tl ?rest"
    from not_all_Val have nonempty: "?rest  []" by auto
    hence es: "es = ?ves @ ?ex # ?rst" by simp
    have "e  set ?ves. v. e = Val v" by(fastforce dest:set_takeWhileD)
    then obtain vs where ves: "?ves = map Val vs"
      using ex_map_conv by blast
    show ?thesis
    proof cases
      assume "final ?ex"
      moreover from nonempty have "¬(v. ?ex = Val v)"
        by(auto simp:neq_Nil_conv simp del:dropWhile_eq_Nil_conv)
          (simp add:dropWhile_eq_Cons_conv)
      ultimately obtain b where ex_Throw: "?ex = Throw b"
        by(fast elim!:finalE)
      show ?thesis using es ex_Throw ves
        by(fastforce intro:SCallThrowParams)
    next
      assume not_fin: "¬ final ?ex"
      have "finals es = finals(?ves @ ?ex # ?rst)" using es
        by(rule arg_cong)
      also have " = finals(?ex # ?rst)" using ves by simp
      finally have "finals es = finals(?ex # ?rst)" .
      hence fes: "¬ finals es" using not_finals_ConsI[OF not_fin] by blast
      have "P,sh b (es,b) "
        by (meson WTrtSCall.prems(2) nmap bconf_SCall map_vals_of_spec not_None_eq)
      thus ?thesis using fes D IHes by(fastforce intro!:SCallParams)
    qed
  qed
next
  case WTrtNil thus ?case by simp
next
  case (WTrtCons E e T es Ts)
  have IHe: "l. 𝒟 e dom l; P,sh b (e,b) ; ¬ final e
                 e' s' b'. P  e,(h,l,sh),b  e',s',b'"
   and IHes: "l. 𝒟s es dom l; P,sh b (es,b) ; ¬ finals es
              es' s' b'. P  es,(h,l,sh),b [→] es',s',b'"
   and D: "𝒟s (e#es) dom l" and not_fins: "¬ finals(e # es)" by fact+
  have De: "𝒟 e dom l" and Des: "𝒟s es (dom l  𝒜 e)"
    using D by auto
  show ?case
  proof cases
    assume "final e"
    thus ?thesis
    proof (rule finalE)
      fix v assume e: "e = Val v"
      hence Des': "𝒟s es dom l" using De Des by auto
      have bconfs: "P,sh b (es,b) " using WTrtCons.prems(2) e by(simp add: bconf_Cons)
      have not_fins_tl: "¬ finals es" using not_fins e by simp
      show ?thesis using e IHes[OF Des' bconfs not_fins_tl]
        by (blast intro!:ListRed2)
    next
      fix a assume "e = Throw a"
      hence False using not_fins by simp
      thus ?thesis ..
    qed
  next
    assume nf:"¬ final e"
    then have "val_of e = None" proof(cases e)qed(auto)
    then have bconf: "P,sh b (e,b) " using WTrtCons.prems(2) by(simp add: bconf_Cons)
    with IHe[OF De bconf nf] show ?thesis by(fast intro!:ListRed1)
  qed
next
  case (WTrtInitBlock v T1 T E V e2 T2)
  have IH2: "l. 𝒟 e2 dom l; P,sh b (e2,b) ; ¬ final e2
                   e' s' b'. P  e2,(h,l,sh),b  e',s',b'"
   and D: "𝒟 {V:T := Val v; e2} dom l" by fact+
  show ?case
  proof cases
    assume "final e2"
    then show ?thesis
    proof (rule finalE)
      fix v2 assume "e2 = Val v2"
      thus ?thesis by(fast intro:RedInitBlock)
    next
      fix a assume "e2 = Throw a"
      thus ?thesis by(fast intro:red_reds.InitBlockThrow)
    qed
  next
    assume not_fin2: "¬ final e2"
    then have "val_of e2 = None" proof(cases e2)qed(auto)
    from D have D2: "𝒟 e2 dom(l(Vv))" by (auto simp:hyperset_defs)
    have e2conf: "P,sh b (e2,b) " using WTrtInitBlock.prems(2) by(simp add: bconf_InitBlock)
    from IH2[OF D2 e2conf not_fin2]
    obtain h' l' sh' e' b' where red2: "P  e2,(h, l(Vv),sh),b  e',(h', l',sh'),b'"
      by auto
    from red_lcl_incr[OF red2] have "V  dom l'" by auto
    with red2 show ?thesis by(fastforce intro:InitBlockRed)
  qed
next
  case (WTrtBlock E V T e T')
  have IH: "l. 𝒟 e dom l; P,sh b (e,b) ; ¬ final e
                  e' s' b'. P  e,(h,l,sh),b  e',s',b'"
   and unass: "¬ assigned V e" and D: "𝒟 {V:T; e} dom l" by fact+
  show ?case
  proof cases
    assume "final e"
    thus ?thesis
    proof (rule finalE)
      fix v assume "e = Val v" thus ?thesis by(fast intro:RedBlock)
    next
      fix a assume "e = Throw a"
      thus ?thesis by(fast intro:red_reds.BlockThrow)
    qed
  next
    assume not_fin: "¬ final e"
    then have "val_of e = None" proof(cases e)qed(auto)
    from D have De: "𝒟 e dom(l(V:=None))" by(simp add:hyperset_defs)
    have bconf: "P,sh b (e,b) " using WTrtBlock by(simp add: bconf_Block)
    from IH[OF De bconf not_fin]
    obtain h' l' sh' e' b' where red: "P  e,(h,l(V:=None),sh),b  e',(h',l',sh'),b'"
      by auto
    show ?thesis
    proof (cases "l' V")
      assume "l' V = None"
      with red unass show ?thesis by(blast intro: BlockRedNone)
    next
      fix v assume "l' V = Some v"
      with red unass show ?thesis by(blast intro: BlockRedSome)
    qed
  qed
next
  case (WTrtSeq E e1 T1 e2 T2) show ?case
  proof cases
    assume "final e1"
    thus ?thesis
      by(fast elim:finalE intro:RedSeq red_reds.SeqThrow)
  next
    assume nf: "¬ final e1"
    then have e1: "val_of e1 = None" proof(cases e1)qed(auto)
    then show ?thesis
    proof(cases "lass_val_of e1")
      case None
      then have "P,sh b (e1,b) " using WTrtSeq.prems(2) e1 by(simp add: bconf_Seq)
      with WTrtSeq nf e1 None show ?thesis by simp (blast intro:SeqRed)
    next
      case (Some p)
      obtain V v where "e1 = V:=Val v" using lass_val_of_spec[OF Some] by simp
      then show ?thesis using SeqRed[OF RedLAss] by blast
    qed
  qed
next
  case (WTrtCond E e e1 T1 e2 T2 T)
  have wt: "P,E,h,sh  e : Boolean" by fact
  show ?case
  proof cases
    assume "final e"
    thus ?thesis
    proof (rule finalE)
      fix v assume val: "e = Val v"
      then obtain b where v: "v = Bool b" using wt by auto
      show ?thesis
      proof (cases b)
        case True with val v show ?thesis by(fastforce intro:RedCondT simp: prod_cases3)
      next
        case False with val v show ?thesis by(fastforce intro:RedCondF simp: prod_cases3)
      qed
    next
      fix a assume "e = Throw a"
      thus ?thesis by(fast intro:red_reds.CondThrow)
    qed
  next
    assume nf: "¬ final e"
    then have "bool_of e = None" proof(cases e)qed(auto)
    then have "P,sh b (e,b) " using WTrtCond.prems(2) by(simp add: bconf_Cond)
    with WTrtCond nf show ?thesis by simp (blast intro:CondRed)
  qed
next
  case WTrtWhile show ?case by(fast intro:RedWhile)
next
  case (WTrtThrow E e Tr T) show ?case
  proof cases
    assume "final e" ― ‹Then @{term e} must be @{term throw} or @{term null}›
    with WTrtThrow show ?thesis
      by(fastforce simp:final_def is_refT_def
                  intro:red_reds.ThrowThrow red_reds.RedThrowNull)
  next
    assume nf: "¬ final e" ― ‹Then @{term e} must reduce›
    then have "val_of e = None" proof(cases e)qed(auto)
    then have "P,sh b (e,b) " using WTrtThrow.prems(2) by(simp add: bconf_Throw)
    with WTrtThrow nf show ?thesis by simp (blast intro:ThrowRed)
  qed
next
  case (WTrtTry E e1 T1 V C e2 T2)
  have wt1: "P,E,h,sh  e1 : T1" by fact
  show ?case
  proof cases
    assume "final e1"
    thus ?thesis
    proof (rule finalE)
      fix v assume "e1 = Val v"
      thus ?thesis by(fast intro:RedTry)
    next
      fix a assume e1_Throw: "e1 = Throw a"
      with wt1 obtain D fs where ha: "h a = Some(D,fs)" by fastforce
      show ?thesis
      proof cases
        assume "P  D * C"
        with e1_Throw ha show ?thesis by(fastforce intro!:RedTryCatch)
      next
        assume "¬ P  D * C"
        with e1_Throw ha show ?thesis by(fastforce intro!:RedTryFail)
      qed
    qed
  next
    assume nf: "¬ final e1"
    then have "val_of e1 = None" proof(cases e1)qed(auto)
    then have "P,sh b (e1,b) " using WTrtTry.prems(2) by(simp add: bconf_Try)
    with WTrtTry nf show ?thesis by simp (fast intro:TryRed)
  qed
next
  case (WTrtInit E e Tr C Cs b) show ?case
  proof(cases Cs)
    case Nil then show ?thesis using WTrtInit by(fastforce intro!: RedInit)
  next
    case (Cons C' Cs')
    show ?thesis
    proof(cases b)
      case True then show ?thesis using Cons by(fastforce intro!: RedInitRInit)
    next
      case False
      show ?thesis
      proof(cases "sh C'")
        case None
        then show ?thesis using False Cons by(fastforce intro!: InitNoneRed)
      next
        case (Some sfsi)
        then obtain sfs i where sfsi:"sfsi = (sfs,i)" by(cases sfsi)
        show ?thesis
        proof(cases i)
          case Done
          then show ?thesis using False Some sfsi Cons by(fastforce intro!: RedInitDone)
        next
          case Processing
          then show ?thesis using False Some sfsi Cons by(fastforce intro!: RedInitProcessing)
        next
          case Error
          then show ?thesis using False Some sfsi Cons by(fastforce intro!: RedInitError)
        next
          case Prepared
          show ?thesis
          proof cases
            assume "C' = Object"
            then show ?thesis using False Some sfsi Prepared Cons by(fastforce intro: InitObjectRed)
          next
            assume "C'  Object"
            then show ?thesis using False Some sfsi Prepared WTrtInit.hyps(3) Cons
              by(simp only: is_class_def)(fastforce intro!: InitNonObjectSuperRed)
          qed
        qed
      qed
    qed
  qed
next
  case (WTrtRI E e Tr e' Tr' C Cs)
  obtain sfs i where shC: "sh C = (sfs, i)" using WTrtRI.hyps(9) by blast
  show ?case
  proof cases
    assume fin: "final e" then show ?thesis
    proof (rule finalE)
      fix v assume e: "e = Val v"
      then show ?thesis using shC e by(fast intro:RedRInit)
    next
      fix a assume eThrow: "e = Throw a"
      show ?thesis
      proof(cases Cs)
        case Nil then show ?thesis using eThrow shC by(fastforce intro!: RInitThrow)
      next
        case Cons then show ?thesis using eThrow shC by(fastforce intro!: RInitInitThrow)
      qed
    qed
  next
    assume nf: "¬ final e"
    then have "val_of e = None" proof(cases e)qed(auto)
    then have "P,sh b (e,b) " using WTrtRI.prems(2) by(simp add: bconf_RI)
    with WTrtRI nf show ?thesis by simp (meson red_reds.RInitRed)
  qed
qed
(*>*)

end