Theory SmallStep

(*  Title:      JinjaDCI/J/SmallStep.thy
    Author:     Tobias Nipkow, Susannah Mansky
    Copyright   2003 Technische Universitaet Muenchen, 2019-20 UIUC

    Based on the Jinja theory J/SmallStep.thy by Tobias Nipkow
*)

section ‹ Small Step Semantics ›

theory SmallStep
imports Expr State WWellForm
begin

fun blocks :: "vname list * ty list * val list * expr  expr"
where
 "blocks(V#Vs, T#Ts, v#vs, e) = {V:T := Val v; blocks(Vs,Ts,vs,e)}"
|"blocks([],[],[],e) = e"

lemmas blocks_induct = blocks.induct[split_format (complete)]

lemma [simp]:
  " size vs = size Vs; size Ts = size Vs   fv(blocks(Vs,Ts,vs,e)) = fv e - set Vs"
(*<*)
by (induct rule:blocks_induct) auto
(*>*)


lemma sub_RI_blocks_body[iff]: "length vs = length pns  length Ts = length pns
  sub_RI (blocks (pns, Ts, vs, body))  sub_RI body"
proof(induct pns arbitrary: Ts vs)
  case Nil then show ?case by simp
next
  case Cons then show ?case by(cases vs; cases Ts) auto
qed


definition assigned :: "'a  'a exp  bool"
where
  "assigned V e    v e'. e = (V := Val v;; e')"

― ‹ expression is okay to go the right side of @{text INIT} or @{text "RI ←"}
 or to have indicator Boolean be True (in latter case, given that class is
 also verified initialized) ›
fun icheck :: "'m prog  cname  'a exp  bool" where
"icheck P C' (new C) = (C' = C)" |
"icheck P D' (CsF{D}) = ((D' = D)  (T. P  C has F,Static:T in D))" |
"icheck P D' (CsF{D}:=(Val v)) = ((D' = D)  (T. P  C has F,Static:T in D))" |
"icheck P D (CsM(es)) = ((vs. es = map Val vs)  (Ts T m. P  C sees M,Static:TsT = m in D))" |
"icheck P _ _ = False"

lemma nicheck_SFAss_nonVal: "val_of e2 = None  ¬icheck P C' (CsF{D} := (e2::'a exp))"
 by(rule notI, cases e2, auto)

inductive_set
  red  :: "J_prog  ((expr × state × bool) × (expr × state × bool)) set"
  and reds  :: "J_prog  ((expr list × state × bool) × (expr list × state × bool)) set"
  and red' :: "J_prog  expr  state  bool  expr  state  bool  bool"
          (‹_  ((1_,/_,/_) / (1_,/_,/_)) [51,0,0,0,0,0,0] 81)
  and reds' :: "J_prog  expr list  state  bool  expr list  state  bool  bool"
          (‹_  ((1_,/_,/_) [→]/ (1_,/_,/_)) [51,0,0,0,0,0,0] 81)
  for P :: J_prog
where

  "P  e,s,b  e',s',b'  ((e,s,b), e',s',b')  red P"
| "P  es,s,b [→] es',s',b'  ((es,s,b), es',s',b')  reds P"

| RedNew:
  " new_Addr h = Some a; P  C has_fields FDTs; h' = h(ablank P C) 
   P  new C, (h,l,sh), True  addr a, (h',l,sh), False"

| RedNewFail:
  " new_Addr h = None; is_class P C  
  P  new C, (h,l,sh), True  THROW OutOfMemory, (h,l,sh), False"

| NewInitDoneRed:
  "sh C = Some (sfs, Done) 
  P  new C, (h,l,sh), False  new C, (h,l,sh), True"

| NewInitRed:
  " sfs. sh C = Some (sfs, Done); is_class P C 
   P  new C,(h,l,sh),False  INIT C ([C],False)  new C,(h,l,sh),False"

| CastRed:
  "P  e,s,b  e',s',b' 
  P  Cast C e, s, b  Cast C e', s', b'"

| RedCastNull:
  "P  Cast C null, s, b  null,s,b"

| RedCast:
 " h a = Some(D,fs); P  D * C 
   P  Cast C (addr a), (h,l,sh), b  addr a, (h,l,sh), b"

| RedCastFail:
  " h a = Some(D,fs); ¬ P  D * C 
   P  Cast C (addr a), (h,l,sh), b  THROW ClassCast, (h,l,sh), b"

| BinOpRed1:
  "P  e,s,b  e',s',b' 
  P  e «bop» e2, s, b  e' «bop» e2, s', b'"

| BinOpRed2:
  "P  e,s,b  e',s',b' 
  P  (Val v1) «bop» e, s, b  (Val v1) «bop» e', s', b'"

| RedBinOp:
  "binop(bop,v1,v2) = Some v 
  P  (Val v1) «bop» (Val v2), s, b  Val v,s,b"

| RedVar:
  "l V = Some v 
  P  Var V,(h,l,sh),b  Val v,(h,l,sh),b"

| LAssRed:
  "P  e,s,b  e',s',b' 
  P  V:=e,s,b  V:=e',s',b'"

| RedLAss:
  "P  V:=(Val v), (h,l,sh), b  unit, (h,l(Vv),sh), b"

| FAccRed:
  "P  e,s,b  e',s',b' 
  P  eF{D}, s, b  e'F{D}, s', b'"

| RedFAcc:
  " h a = Some(C,fs); fs(F,D) = Some v;
     P  C has F,NonStatic:t in D 
   P  (addr a)F{D}, (h,l,sh), b  Val v,(h,l,sh),b"

| RedFAccNull:
  "P  nullF{D}, s, b  THROW NullPointer, s, b"

| RedFAccNone:
  " h a = Some(C,fs); ¬(b t. P  C has F,b:t in D) 
   P  (addr a)F{D},(h,l,sh),b  THROW NoSuchFieldError,(h,l,sh),b"

| RedFAccStatic:
  " h a = Some(C,fs); P  C has F,Static:t in D 
   P  (addr a)F{D},(h,l,sh),b  THROW IncompatibleClassChangeError,(h,l,sh),b"

| RedSFAcc:
  " P  C has F,Static:t in D;
     sh D = Some (sfs,i);
     sfs F = Some v 
   P  CsF{D},(h,l,sh),True  Val v,(h,l,sh),False"

| SFAccInitDoneRed:
  " P  C has F,Static:t in D;
     sh D = Some (sfs,Done) 
   P  CsF{D},(h,l,sh),False  CsF{D},(h,l,sh),True"

| SFAccInitRed:
  " P  C has F,Static:t in D;
     sfs. sh D = Some (sfs,Done) 
   P  CsF{D},(h,l,sh),False  INIT D ([D],False)  CsF{D},(h,l,sh),False"

| RedSFAccNone:
  "¬(b t. P  C has F,b:t in D)
   P  CsF{D},(h,l,sh),b  THROW NoSuchFieldError,(h,l,sh),False"

| RedSFAccNonStatic:
  "P  C has F,NonStatic:t in D
   P  CsF{D},(h,l,sh),b  THROW IncompatibleClassChangeError,(h,l,sh),False"

| FAssRed1:
  "P  e,s,b  e',s',b' 
  P  eF{D}:=e2, s, b  e'F{D}:=e2, s', b'"

| FAssRed2:
  "P  e,s,b  e',s',b' 
  P  Val vF{D}:=e, s, b  Val vF{D}:=e', s', b'"

| RedFAss:
  " P  C has F,NonStatic:t in D; h a = Some(C,fs)  
  P  (addr a)F{D}:=(Val v), (h,l,sh), b  unit, (h(a  (C,fs((F,D)  v))),l,sh), b"

| RedFAssNull:
  "P  nullF{D}:=Val v, s, b  THROW NullPointer, s, b"

| RedFAssNone:
  " h a = Some(C,fs); ¬(b t. P  C has F,b:t in D) 
   P  (addr a)F{D}:=(Val v),(h,l,sh),b  THROW NoSuchFieldError,(h,l,sh),b"

| RedFAssStatic:
  " h a = Some(C,fs); P  C has F,Static:t in D 
   P  (addr a)F{D}:=(Val v),(h,l,sh),b  THROW IncompatibleClassChangeError,(h,l,sh),b"

| SFAssRed:
  "P  e,s,b  e',s',b' 
  P  CsF{D}:=e, s, b  CsF{D}:=e', s', b'"

| RedSFAss:
  " P  C has F,Static:t in D;
     sh D = Some(sfs,i);
     sfs' = sfs(Fv); sh' = sh(D(sfs',i)) 
   P  CsF{D}:=(Val v),(h,l,sh),True  unit,(h,l,sh'),False"

| SFAssInitDoneRed:
  " P  C has F,Static:t in D;
     sh D = Some(sfs,Done) 
   P  CsF{D}:=(Val v),(h,l,sh),False  CsF{D}:=(Val v),(h,l,sh),True"

| SFAssInitRed:
  " P  C has F,Static:t in D;
     sfs. sh D = Some(sfs,Done) 
   P  CsF{D}:=(Val v),(h,l,sh),False  INIT D ([D],False) CsF{D}:=(Val v),(h,l,sh),False"

| RedSFAssNone:
  "¬(b t. P  C has F,b:t in D)
   P  CsF{D}:=(Val v),s,b  THROW NoSuchFieldError,s,False"

| RedSFAssNonStatic:
  "P  C has F,NonStatic:t in D
   P  CsF{D}:=(Val v),s,b  THROW IncompatibleClassChangeError,s,False"

| CallObj:
  "P  e,s,b  e',s',b' 
  P  eM(es),s,b  e'M(es),s',b'"

| CallParams:
  "P  es,s,b [→] es',s',b' 
  P  (Val v)M(es),s,b  (Val v)M(es'),s',b'"

| RedCall:
  " h a = Some(C,fs); P  C sees M,NonStatic:TsT = (pns,body) in D; size vs = size pns; size Ts = size pns 
   P  (addr a)M(map Val vs), (h,l,sh), b  blocks(this#pns, Class D#Ts, Addr a#vs, body), (h,l,sh), b"

| RedCallNull:
  "P  nullM(map Val vs),s,b  THROW NullPointer,s,b"

| RedCallNone:
  " h a = Some(C,fs); ¬(b Ts T m D. P  C sees M,b:TsT = m in D) 
   P  (addr a)M(map Val vs),(h,l,sh),b  THROW NoSuchMethodError,(h,l,sh),b"

| RedCallStatic:
  " h a = Some(C,fs); P  C sees M,Static:TsT = m in D 
   P  (addr a)M(map Val vs),(h,l,sh),b  THROW IncompatibleClassChangeError,(h,l,sh),b"

| SCallParams:
  "P  es,s,b [→] es',s',b' 
  P  CsM(es),s,b  CsM(es'),s',b'"

| RedSCall:
  " P  C sees M,Static:TsT = (pns,body) in D;
     length vs = length pns; size Ts = size pns 
   P  CsM(map Val vs),s,True  blocks(pns, Ts, vs, body), s, False"

| SCallInitDoneRed:
  " P  C sees M,Static:TsT = (pns,body) in D;
     sh D = Some(sfs,Done)  (M = clinit  sh D = Some(sfs,Processing)) 
   P  CsM(map Val vs),(h,l,sh), False  CsM(map Val vs),(h,l,sh), True"

| SCallInitRed:
  " P  C sees M,Static:TsT = (pns,body) in D;
     sfs. sh D = Some(sfs,Done); M  clinit 
   P  CsM(map Val vs),(h,l,sh), False  INIT D ([D],False)  CsM(map Val vs),(h,l,sh),False"

| RedSCallNone:
  " ¬(b Ts T m D. P  C sees M,b:TsT = m in D) 
   P  CsM(map Val vs),s,b  THROW NoSuchMethodError,s,False"

| RedSCallNonStatic:
  " P  C sees M,NonStatic:TsT = m in D 
   P  CsM(map Val vs),s,b  THROW IncompatibleClassChangeError,s,False"

| BlockRedNone:
  " P  e, (h,l(V:=None),sh), b  e', (h',l',sh'), b'; l' V = None; ¬ assigned V e 
   P  {V:T; e}, (h,l,sh), b  {V:T; e'}, (h',l'(V := l V),sh'), b'"

| BlockRedSome:
  " P  e, (h,l(V:=None),sh), b  e', (h',l',sh'), b'; l' V = Some v;¬ assigned V e 
   P  {V:T; e}, (h,l,sh), b  {V:T := Val v; e'}, (h',l'(V := l V),sh'), b'"

| InitBlockRed:
  " P  e, (h,l(Vv),sh), b  e', (h',l',sh'), b'; l' V = Some v' 
   P  {V:T := Val v; e}, (h,l,sh), b  {V:T := Val v'; e'}, (h',l'(V := l V),sh'), b'"

| RedBlock:
  "P  {V:T; Val u}, s, b  Val u, s, b"

| RedInitBlock:
  "P  {V:T := Val v; Val u}, s, b  Val u, s, b"

| SeqRed:
  "P  e,s,b  e',s',b' 
  P  e;;e2, s, b  e';;e2, s', b'"

| RedSeq:
  "P  (Val v);;e2, s, b  e2, s, b"

| CondRed:
  "P  e,s,b  e',s',b' 
  P  if (e) e1 else e2, s, b  if (e') e1 else e2, s', b'"

| RedCondT:
  "P  if (true) e1 else e2, s, b  e1, s, b"

| RedCondF:
  "P  if (false) e1 else e2, s, b  e2, s, b"

| RedWhile:
  "P  while(b) c, s, b'  if(b) (c;;while(b) c) else unit, s, b'"

| ThrowRed:
  "P  e,s,b  e',s',b' 
  P  throw e, s, b  throw e', s', b'"

| RedThrowNull:
  "P  throw null, s, b  THROW NullPointer, s, b"

| TryRed:
  "P  e,s,b  e',s',b' 
  P  try e catch(C V) e2, s, b  try e' catch(C V) e2, s', b'"

| RedTry:
  "P  try (Val v) catch(C V) e2, s, b  Val v, s, b"

| RedTryCatch:
  " hp s a = Some(D,fs); P  D * C 
   P  try (Throw a) catch(C V) e2, s, b  {V:Class C := addr a; e2}, s, b"

| RedTryFail:
  " hp s a = Some(D,fs); ¬ P  D * C 
   P  try (Throw a) catch(C V) e2, s, b  Throw a, s, b"

| ListRed1:
  "P  e,s,b  e',s',b' 
  P  e#es,s,b [→] e'#es,s',b'"

| ListRed2:
  "P  es,s,b [→] es',s',b' 
  P  Val v # es,s,b [→] Val v # es',s',b'"

― ‹Initialization procedure›

| RedInit:
  "¬sub_RI e  P  INIT C (Nil,b)  e,s,b'  e,s,icheck P C e"

| InitNoneRed:
  "sh C = None
   P  INIT C' (C#Cs,False)  e,(h,l,sh),b  INIT C' (C#Cs,False)  e,(h,l,sh(C  (sblank P C, Prepared))),b"

| RedInitDone:
  "sh C = Some(sfs,Done)
   P  INIT C' (C#Cs,False)  e,(h,l,sh),b  INIT C' (Cs,True)  e,(h,l,sh),b"

| RedInitProcessing:
  "sh C = Some(sfs,Processing)
   P  INIT C' (C#Cs,False)  e,(h,l,sh),b  INIT C' (Cs,True)  e,(h,l,sh),b"

| RedInitError:
  "sh C = Some(sfs,Error)
   P  INIT C' (C#Cs,False)  e,(h,l,sh),b  RI (C,THROW NoClassDefFoundError);Cs  e,(h,l,sh),b"

| InitObjectRed:
  " sh C = Some(sfs,Prepared);
     C = Object;
     sh' = sh(C  (sfs,Processing)) 
   P  INIT C' (C#Cs,False)  e,(h,l,sh),b  INIT C' (C#Cs,True)  e,(h,l,sh'),b"

| InitNonObjectSuperRed:
  " sh C = Some(sfs,Prepared);
     C  Object;
     class P C = Some (D,r);
     sh' = sh(C  (sfs,Processing)) 
   P  INIT C' (C#Cs,False)  e,(h,l,sh),b  INIT C' (D#C#Cs,False)  e,(h,l,sh'),b"

| RedInitRInit:
  "P  INIT C' (C#Cs,True)  e,(h,l,sh),b  RI (C,Csclinit([]));Cs  e,(h,l,sh),b"

| RInitRed:
  "P  e,s,b  e',s',b' 
  P  RI (C,e);Cs  e0, s, b  RI (C,e');Cs  e0, s', b'"

| RedRInit:
  " sh C = Some (sfs, i);
     sh' = sh(C  (sfs,Done));
     C' = last(C#Cs)  
  P  RI (C, Val v);Cs  e, (h,l,sh), b  INIT C' (Cs,True)  e, (h,l,sh'), b"

― ‹Exception propagation›

| CastThrow: "P  Cast C (throw e), s, b  throw e, s, b"
| BinOpThrow1: "P  (throw e) «bop» e2, s, b  throw e, s, b"
| BinOpThrow2: "P  (Val v1) «bop» (throw e), s, b  throw e, s, b"
| LAssThrow: "P  V:=(throw e), s, b  throw e, s, b"
| FAccThrow: "P  (throw e)F{D}, s, b  throw e, s, b"
| FAssThrow1: "P  (throw e)F{D}:=e2, s, b  throw e, s, b"
| FAssThrow2: "P  Val vF{D}:=(throw e), s, b  throw e, s, b"
| SFAssThrow: "P  CsF{D}:=(throw e), s, b  throw e, s, b"
| CallThrowObj: "P  (throw e)M(es), s, b  throw e, s, b"
| CallThrowParams: " es = map Val vs @ throw e # es'   P  (Val v)M(es), s, b  throw e, s, b"
| SCallThrowParams: " es = map Val vs @ throw e # es'   P  CsM(es), s, b  throw e, s, b"
| BlockThrow: "P  {V:T; Throw a}, s, b  Throw a, s, b"
| InitBlockThrow: "P  {V:T := Val v; Throw a}, s, b  Throw a, s, b"
| SeqThrow: "P  (throw e);;e2, s, b  throw e, s, b"
| CondThrow: "P  if (throw e) e1 else e2, s, b  throw e, s, b"
| ThrowThrow: "P  throw(throw e), s, b  throw e, s, b"
| RInitInitThrow: " sh C = Some(sfs,i); sh' = sh(C  (sfs,Error))  
  P  RI (C,Throw a);D#Cs  e,(h,l,sh),b  RI (D,Throw a);Cs  e,(h,l,sh'),b"
| RInitThrow: " sh C = Some(sfs, i); sh' = sh(C  (sfs,Error))  
  P  RI (C,Throw a);Nil  e,(h,l,sh),b  Throw a,(h,l,sh'),b"
(*<*)
lemmas red_reds_induct = red_reds.induct [split_format (complete)]
  and red_reds_inducts = red_reds.inducts [split_format (complete)]

inductive_cases [elim!]:
 "P  V:=e,s,b  e',s',b'"
 "P  e1;;e2,s,b  e',s',b'"
(*>*)

subsection‹ The reflexive transitive closure ›

abbreviation
  Step :: "J_prog  expr  state  bool  expr  state  bool  bool"
          (‹_  ((1_,/_,/_) →*/ (1_,/_,/_)) [51,0,0,0,0,0,0] 81)
  where "P  e,s,b →* e',s',b'  ((e,s,b), e',s',b')  (red P)*"

abbreviation
  Steps :: "J_prog  expr list  state  bool  expr list  state  bool  bool"
          (‹_  ((1_,/_,/_) [→]*/ (1_,/_,/_)) [51,0,0,0,0,0,0] 81)
  where "P  es,s,b [→]* es',s',b'  ((es,s,b), es',s',b')  (reds P)*"


lemmas converse_rtrancl_induct3 =
  converse_rtrancl_induct [of "(ax, ay, az)" "(bx, by, bz)", split_format (complete),
    consumes 1, case_names refl step]

lemma converse_rtrancl_induct_red[consumes 1]:
assumes "P  e,(h,l,sh),b →* e',(h',l',sh'),b'"
and "e h l sh b. R e h l sh b e h l sh b"
and "e0 h0 l0 sh0 b0 e1 h1 l1 sh1 b1 e' h' l' sh' b'.
        P  e0,(h0,l0,sh0),b0  e1,(h1,l1,sh1),b1; R e1 h1 l1 sh1 b1 e' h' l' sh' b' 
    R e0 h0 l0 sh0 b0 e' h' l' sh' b'"
shows "R e h l sh b e' h' l' sh' b'"
(*<*)
proof -
  { fix s s'
    assume reds: "P  e,s,b →* e',s',b'"
       and base: "e s b. R e (hp s) (lcl s) (shp s) b e (hp s) (lcl s) (shp s) b"
       and red1: "e0 s0 b0 e1 s1 b1 e' s' b'.
            P  e0,s0,b0  e1,s1,b1; R e1 (hp s1) (lcl s1) (shp s1) b1 e' (hp s') (lcl s') (shp s') b' 
            R e0 (hp s0) (lcl s0) (shp s0) b0 e' (hp s') (lcl s') (shp s') b'"
    from reds have "R e (hp s) (lcl s) (shp s) b e' (hp s') (lcl s') (shp s') b'"
    proof (induct rule:converse_rtrancl_induct3)
      case refl show ?case by(rule base)
    next
      case step
      thus ?case by(blast intro:red1)
    qed
    }
  with assms show ?thesis by fastforce
qed
(*>*)


subsection‹Some easy lemmas›

lemma [iff]: "¬ P  [],s,b [→] es',s',b'"
(*<*)by(blast elim: reds.cases)(*>*)

lemma [iff]: "¬ P  Val v,s,b  e',s',b'"
(*<*)by(fastforce elim: red.cases)(*>*)

lemma val_no_step: "val_of e = v  ¬ P  e,s,b  e',s',b'"
(*<*)by(drule val_of_spec, simp)(*>*)

lemma [iff]: "¬ P  Throw a,s,b  e',s',b'"
(*<*)by(fastforce elim: red.cases)(*>*)


lemma map_Vals_no_step [iff]: "¬ P  map Val vs,s,b [→] es',s',b'"
(*<*)
proof(induct vs arbitrary: es')
  case (Cons a vs)
  { assume "P  map Val (a # vs),s,b [→] es',s',b'"
    then have False by(rule reds.cases) (insert Cons, auto)
  }
  then show ?case by clarsimp
qed simp
(*>*)

lemma vals_no_step: "map_vals_of es = vs  ¬ P  es,s,b [→] es',s',b'"
(*<*)by(drule map_vals_of_spec, simp)(*>*)

lemma vals_throw_no_step [iff]: "¬ P  map Val vs @ Throw a # es,s,b [→] es',s',b'"
(*<*)
proof(induct vs arbitrary: es')
  case Nil
  { assume "P  Throw a # es,s,b [→] es',s',b'"
    then have False by(rule reds.cases) (insert Cons, auto)
  }
  then show ?case by clarsimp
next
  case (Cons a' vs')
  { assume "P  map Val (a'#vs') @ Throw a # es,s,b [→] es',s',b'"
    then have False by(rule reds.cases) (insert Cons, auto)
  }
  then show ?case by clarsimp
qed
(*>*)

lemma lass_val_of_red:
 " lass_val_of e = a; P  e,(h, l, sh),b  e',(h', l', sh'),b' 
   e' = unit  h' = h  l' = l(fst asnd a)  sh' = sh  b = b'"
(*<*)by(drule lass_val_of_spec, auto)(*>*)


lemma final_no_step [iff]: "final e  ¬ P  e,s,b  e',s',b'"
(*<*)by(erule finalE, simp+)(*>*)

lemma finals_no_step [iff]: "finals es  ¬ P  es,s,b [→] es',s',b'"
(*<*)by(erule finalsE, simp+)(*>*)

lemma reds_final_same:
"P  e,s,b →* e',s',b'  final e  e = e'  s = s'  b = b'"
proof(induct rule:converse_rtrancl_induct3)
  case refl show ?case by simp
next
  case (step e0 s0 b0 e1 s1 b1) show ?case
  proof(rule finalE[OF step.prems(1)])
    fix v assume "e0 = Val v" then show ?thesis using step by simp
  next
    fix a assume "e0 = Throw a" then show ?thesis using step by simp
  qed
qed

lemma reds_throw:
"P  e,s,b →* e',s',b'  (et. throw_of e = et  et'. throw_of e' = et')"
proof(induct rule:converse_rtrancl_induct3)
  case refl then show ?case by simp
next
  case (step e0 s0 b0 e1 s1 b1)
  then show ?case by(auto elim: red.cases)
qed

lemma red_hext_incr: "P  e,(h,l,sh),b  e',(h',l',sh'),b'   h  h'"
  and reds_hext_incr: "P  es,(h,l,sh),b [→] es',(h',l',sh'),b'   h  h'"
(*<*)
proof(induct rule:red_reds_inducts)
  case RedNew thus ?case
    by(fastforce dest:new_Addr_SomeD simp:hext_def split:if_splits)
next
  case RedFAss thus ?case by(simp add:hext_def split:if_splits)
qed simp_all
(*>*)


lemma red_lcl_incr: "P  e,(h0,l0,sh0),b  e',(h1,l1,sh1),b'  dom l0  dom l1"
and reds_lcl_incr: "P  es,(h0,l0,sh0),b [→] es',(h1,l1,sh1),b'  dom l0  dom l1"
(*<*)by(induct rule: red_reds_inducts)(auto simp del:fun_upd_apply)(*>*)

lemma red_lcl_add: "P  e,(h,l,sh),b  e',(h',l',sh'),b'  (l0. P  e,(h,l0++l,sh),b  e',(h',l0++l',sh'),b')"
and reds_lcl_add: "P  es,(h,l,sh),b [→] es',(h',l',sh'),b'  (l0. P  es,(h,l0++l,sh),b [→] es',(h',l0++l',sh'),b')"
(*<*)
proof (induct rule:red_reds_inducts)
  case RedCast thus ?case by(fastforce intro:red_reds.intros)
next
  case RedCastFail thus ?case by(force intro:red_reds.intros)
next
  case RedFAcc thus ?case by(fastforce intro:red_reds.intros)
next
  case RedCall thus ?case by(fastforce intro:red_reds.intros)
next
  case (InitBlockRed e h l V v sh b e' h' l' sh' b' v' T l0)
  have IH: "l0. P  e,(h, l0 ++ l(V  v), sh),b  e',(h', l0 ++ l', sh'),b'"
    and l'V: "l' V = Some v'" by fact+
  from IH have IH': "P  e,(h, (l0 ++ l)(V  v), sh),b  e',(h', l0 ++ l', sh'),b'"
    by simp
  have "(l0 ++ l')(V := (l0 ++ l) V) = l0 ++ l'(V := l V)"
    by(rule ext)(simp add:map_add_def)
  with red_reds.InitBlockRed[OF IH'] l'V show ?case by(simp del:fun_upd_apply)
next
  case (BlockRedNone e h l V sh b e' h' l' sh' b' T l0)
  have IH: "l0. P  e,(h, l0 ++ l(V := None), sh),b  e',(h', l0 ++ l', sh'),b'"
    and l'V: "l' V = None" and unass: "¬ assigned V e" by fact+
  have "l0(V := None) ++ l(V := None) = (l0 ++ l)(V := None)"
    by(simp add:fun_eq_iff map_add_def)
  hence IH': "P  e,(h, (l0++l)(V := None), sh),b  e',(h', l0(V := None) ++ l', sh'),b'"
    using IH[of "l0(V := None)"] by simp
  have "(l0(V := None) ++ l')(V := (l0 ++ l) V) = l0 ++ l'(V := l V)"
    by(simp add:fun_eq_iff map_add_def)
  with red_reds.BlockRedNone[OF IH' _ unass] l'V show ?case
    by(simp add: map_add_def)
next
  case (BlockRedSome e h l V sh b e' h' l' sh' b' v T l0)
  have IH: "l0. P  e,(h, l0 ++ l(V := None), sh),b  e',(h', l0 ++ l', sh'),b'"
    and l'V: "l' V = Some v" and unass: "¬ assigned V e" by fact+
  have "l0(V := None) ++ l(V := None) = (l0 ++ l)(V := None)"
    by(simp add:fun_eq_iff map_add_def)
  hence IH': "P  e,(h, (l0++l)(V := None), sh),b  e',(h', l0(V := None) ++ l', sh'),b'"
    using IH[of "l0(V := None)"] by simp
  have "(l0(V := None) ++ l')(V := (l0 ++ l) V) = l0 ++ l'(V := l V)"
    by(simp add:fun_eq_iff map_add_def)
  with red_reds.BlockRedSome[OF IH' _ unass] l'V show ?case
    by(simp add:map_add_def)
next
  case RedTryCatch thus ?case by(fastforce intro:red_reds.intros)
next
  case RedTryFail thus ?case by(force intro!:red_reds.intros)
qed (simp_all add:red_reds.intros)
(*>*)


lemma Red_lcl_add:
assumes "P  e,(h,l,sh), b →* e',(h',l',sh'), b'" shows "P  e,(h,l0++l,sh),b →* e',(h',l0++l',sh'),b'"
(*<*)
using assms
proof(induct rule:converse_rtrancl_induct_red)
  case 1 thus ?case by simp
next
  case 2 thus ?case
    by (blast dest: red_lcl_add intro: converse_rtrancl_into_rtrancl)
qed
(*>*)

lemma assumes wf: "wwf_J_prog P"
shows red_proc_pres: "P  e,(h,l,sh),b  e',(h',l',sh'),b'
   not_init C e  sh C = (sfs, Processing)  not_init C e'  (sfs'. sh' C = (sfs', Processing))"
  and reds_proc_pres: "P  es,(h,l,sh),b [→] es',(h',l',sh'),b'
   not_inits C es  sh C = (sfs, Processing)  not_inits C es'  (sfs'. sh' C = (sfs', Processing))"
(*<*)
proof(induct rule:red_reds_inducts)
  case RedCall then show ?case
  using sees_wwf_nsub_RI[OF wf RedCall.hyps(2)] sub_RI_blocks_body nsub_RI_not_init by auto
next
  case RedSCall then show ?case
  using sees_wwf_nsub_RI[OF wf RedSCall.hyps(1)] sub_RI_blocks_body nsub_RI_not_init by auto
next
  case (RedInitDone sh C sfs C' Cs e h l b)
  then show ?case by(cases Cs, auto)
next
  case (RedInitProcessing sh C sfs C' Cs e h l b)
  then show ?case by(cases Cs, auto)
next
  case (RedRInit sh C sfs i sh' C' Cs v e h l b)
  then show ?case by(cases Cs, auto)
next
  case (CallThrowParams es vs e es' v M h l sh b)
  then show ?case by(auto dest: not_inits_def')
next
  case (SCallThrowParams es vs e es' C M h l sh b)
  then show ?case by(auto dest: not_inits_def')
qed(auto)

end