Theory Tarski_Non_Euclidean_Aristotle
theory Tarski_Non_Euclidean_Aristotle
imports
Tarski_Non_Euclidean
begin
section "Tarski Non Euclidean Aristotle"
subsection "Definitions"
locale Tarski_Non_Euclidean_Aristotle = Tarski_Non_Euclidean +
assumes aristotle: "aristotle_s_axiom"
context Tarski_Non_Euclidean_Aristotle
begin
subsection "Propositions"
lemma NPost03:
shows "¬ Postulate03"
using NPost02 Postulate02_def Postulate03_def aristotle aristotle__greenberg
playfair_bis__playfair triangle__playfair_bis by blast
lemma NPost21:
shows "¬ Postulate21"
using Cycle_3 NPost03 by blast
lemma NPost22:
shows "¬ Postulate22"
using Cycle_3 NPost21 by blast
lemma NPost23:
shows "¬ Postulate23"
using Cycle_3 NPost22 by blast
lemma NPost24:
shows "¬ Postulate24"
using Cycle_3 NPost23 by blast
lemma NPost25:
shows "¬ Postulate25"
using Cycle_3 NPost24 by blast
lemma NPost26:
shows "¬ Postulate26"
using Cycle_3 NPost25 by blast
lemma NPost27:
shows "¬ Postulate27"
using Cycle_3 NPost26 by blast
lemma NPost28:
shows "¬ Postulate28"
using Cycle_3 NPost27 by blast
lemma NPost29:
shows "¬ Postulate29"
using Cycle_3 NPost28 by blast
lemma NPost30:
shows "¬ Postulate30"
using Cycle_3 NPost29 by blast
theorem not_triangle_postulate_thm:
shows "∃ A B C D E F. A B C TriSumA D E F ∧ ¬ Bet D E F"
using NPost03 Postulate03_def triangle_postulate_def by blast
theorem not_postulate_of_existence_of_a_triangle_whose_angles_sum_to_two_rights_thm:
shows "∀ A B C D E F. A B C TriSumA D E F ∧ Bet D E F ⟶ Col A B C"
using NPost21 Postulate21_def
postulate_of_existence_of_a_triangle_whose_angles_sum_to_two_rights_def by blast
theorem not_posidonius_postulate_thm:
shows "∀ A1 A2 B1 B2. Col A1 A2 B1 ∨ B1 = B2 ∨ ¬ Coplanar A1 A2 B1 B2 ∨
(∃ A3 A4 B3 B4. Col A1 A2 A3 ∧ Col B1 B2 B3 ∧ A1 A2 Perp A3 B3 ∧
Col A1 A2 A4 ∧ Col B1 B2 B4 ∧ A1 A2 Perp A4 B4 ∧
¬ Cong A3 B3 A4 B4) "
using NPost22 Postulate22_def posidonius_postulate_def by blast
theorem not_posidonius_postulate_thm_1:
shows "∀ A1 A2 B. Col A1 A2 B ∨ (∃ A3 A4 B3 B4. Col A1 A2 A3 ∧ Col B B B3 ∧ A1 A2 Perp A3 B3 ∧
Col A1 A2 A4 ∧ Col B B B4 ∧ A1 A2 Perp A4 B4 ∧
¬ Cong A3 B3 A4 B4)"
proof -
{
fix A1 A2 B
have "Coplanar A1 A2 B B"
using ncop_distincts by blast
assume "¬ Col A1 A2 B"
hence "(∃ A3 A4 B3 B4. Col A1 A2 A3 ∧ Col B B B3 ∧ A1 A2 Perp A3 B3 ∧
Col A1 A2 A4 ∧ Col B B B4 ∧ A1 A2 Perp A4 B4 ∧
¬ Cong A3 B3 A4 B4)"
by (metis(full_types) col_trivial_1 ncop_distincts not_posidonius_postulate_thm)
}
thus ?thesis
by blast
qed
theorem not_postulate_of_existence_of_similar_triangles_thm:
shows "∀ A B C D E F. (Col A B C ∨ Cong A B D E ∨ ¬ A B C CongA D E F ∨
¬ B C A CongA E F D ∨ ¬ C A B CongA F D E)"
using NPost23 Postulate23_def postulate_of_existence_of_similar_triangles_def by blast
theorem not_thales_postulate_thm:
shows "∃ A B C M. M Midpoint A B ∧ Cong M A M C ∧ ¬ Per A C B"
using NPost24 Postulate24_def thales_postulate_def by blast
theorem not_thales_converse_postulate_thm:
shows "∃ A B C M. M Midpoint A B ∧ Per A C B ∧ ¬ Cong M A M C"
using NPost25 Postulate25_def thales_converse_postulate_def by blast
theorem not_existential_thales_postulate_thm:
shows "∀ A B C M. (M Midpoint A B ∧ Cong M A M C ∧ Per A C B) ⟶ Col A B C"
using NPost26 Postulate26_def existential_thales_postulate_def by blast
theorem not_postulate_of_right_saccheri_quadrilaterals_thm:
shows "∃ A B C D. Saccheri A B C D ∧ ¬ Per A B C"
using Cycle_3 NPost03 Postulate28_def ex_saccheri
postulate_of_existence_of_a_right_saccheri_quadrilateral_def by blast
theorem not_postulate_of_existence_of_a_right_saccheri_quadrilateral_thm:
shows "∀ A B C D. ¬ (Saccheri A B C D ∧ Per A B C)"
using Cycle_3 NPost26 Postulate28_def
postulate_of_existence_of_a_right_saccheri_quadrilateral_def by blast
theorem not_postulate_of_right_lambert_quadrilaterals_thm:
shows "∃ A B C D. Lambert A B C D ∧ ¬ Per B C D"
using Cycle_3 NPost26 Postulate30_def postulate_of_right_lambert_quadrilaterals_def
rectangle_principle__rectangle_existence by blast
theorem not_postulate_of_existence_of_a_right_lambert_quadrilateral_thm:
shows "∀ A B C D. ¬ (Lambert A B C D ∧ Per B C D)"
using Cycle_3 NPost29 Postulate30_def
postulate_of_existence_of_a_right_lambert_quadrilateral_def by blast
end
end