Theory Tarski_Non_Euclidean
theory Tarski_Non_Euclidean
imports
Tarski_Postulate_Parallels
begin
section "Tarski Non Euclidean"
subsection "Definitions"
locale Tarski_Non_Euclidean = Tarski_neutral_dimensionless +
fixes A0 B0 C0 D0 T0
assumes NERule1: "Bet A0 D0 T0"
and NERule2: "Bet B0 D0 C0"
and NERule3: "A0 ≠ D0"
and not_tarski_s_parallel_postulate_aux:
"∀ X Y. ((Bet A0 B0 X ∧ Bet A0 C0 Y) ⟶ ¬ Bet X T0 Y)"
context Tarski_Non_Euclidean
begin
subsection "Propositions"
lemma Tarski_Pre_Non_Euclidean_aux:
shows "∃ A B C D T. ¬ ((Bet A D T ∧ Bet B D C ∧ A ≠ D)
⟶
(∃ X Y. Bet A B X ∧ Bet A C Y ∧ Bet X T Y))"
using NERule1 NERule2 NERule3 not_tarski_s_parallel_postulate_aux by blast
lemma NPost01:
shows "¬ Postulate01"
using Postulate01_def Tarski_Pre_Non_Euclidean_aux tarski_s_parallel_postulate_def by blast
lemma NPost02:
shows "¬ Postulate02"
using InterAx5 NPost01 by blast
lemma NPost05:
shows "¬ Postulate05"
using NPost02 Postulate02_def Postulate05_def par_trans_implies_playfair by blast
lemma NPost06:
shows "¬ Postulate06"
by (simp add: NPost02 equivalent_postulates_without_decidability_of_intersection_of_lines)
lemma NPost07:
shows "¬ Postulate07"
using NPost02 equivalent_postulates_without_decidability_of_intersection_of_lines by blast
lemma NPost08:
shows "¬ Postulate08"
using NPost06 equivalent_postulates_without_decidability_of_intersection_of_lines by blast
lemma NPost09:
shows "¬ Postulate09"
by (simp add: NPost02 equivalent_postulates_without_decidability_of_intersection_of_lines)
lemma NPost10:
shows "¬ Postulate10"
using NPost05 equivalent_postulates_without_decidability_of_intersection_of_lines by blast
lemma NPost11:
shows "¬ Postulate11"
using NPost02 equivalent_postulates_without_decidability_of_intersection_of_lines by fastforce
lemma NPost12:
shows "¬ Postulate12"
using NPost02 Postulate02_def Postulate12_def playfair_bis__playfair by blast
lemma NPost13:
shows "¬ Postulate13"
using Cycle_2 NPost01 by blast
lemma NPost14:
shows "¬ Postulate14"
using Cycle_2 NPost13 by blast
lemma NPost15:
shows "¬ Postulate15"
using Cycle_1 NPost02 by blast
lemma NPost16:
shows "¬ Postulate16"
using Cycle_2 NPost01 by blast
lemma NPost17:
shows "¬ Postulate17"
using Cycle_2 NPost01 by blast
lemma NPost18:
shows "¬ Postulate18"
using Cycle_2 NPost01 by blast
lemma NPost19:
shows "¬ Postulate19"
using Cycle_2 NPost01 by blast
lemma NPost20:
shows "¬ Postulate20"
using Cycle_2 NPost01 by blast
theorem not_tarski_s_parallel_postulate_thm:
shows "∃ A B C D T. (Bet A D T ∧ Bet B D C ∧ A ≠ D ∧
(∀ X Y. (Bet A B X ∧ Bet A C Y) ⟶ ¬ Bet X T Y))"
using Tarski_Pre_Non_Euclidean_aux by blast
theorem not_playfair_s_postulate_thm:
shows "∃ A1 A2 B1 B2 C1 C2 P. A1 A2 Par B1 B2 ∧
Col P B1 B2 ∧ A1 A2 Par C1 C2 ∧ Col P C1 C2 ∧
(¬ Col C1 B1 B2 ∨ ¬ Col C2 B1 B2)"
using NPost02 Postulate02_def playfair_s_postulate_def by blast
theorem not_postulate_of_transitivity_of_parallelism_thm:
shows "∃ A1 A2 B1 B2 C1 C2. A1 A2 Par B1 B2 ∧ B1 B2 Par C1 C2 ∧ ¬ (A1 A2 Par C1 C2)"
using NPost05 Postulate05_def
postulate_of_transitivity_of_parallelism_def by blast
theorem not_midpoint_converse_postulate_thm:
shows "∃ A B C P Q. ¬ Col A B C ∧ P Midpoint B C ∧ A B Par Q P ∧ Col A C Q ∧ ¬ Q Midpoint A C"
using NPost06 midpoint_converse_postulate_def
Postulate06_def by blast
theorem not_alternate_interior_angles_postulate_thm:
shows "∃ A B C D. A C TS B D ∧ A B Par C D ∧ ¬ B A C CongA D C A"
using NPost07 Postulate07_def alternate_interior_angles_postulate_def by blast
theorem not_consecutive_interior_angles_postulate_thm:
shows "∃ A B C D. B C OS A D ∧ A B Par C D ∧ ¬ A B C SuppA B C D"
using NPost08 Postulate08_def consecutive_interior_angles_postulate_def by blast
theorem not_perpendicular_transversal_postulate_thm:
shows "∃ A B C D P Q. A B Par C D ∧ A B Perp P Q ∧ Coplanar C D P Q ∧ ¬ C D Perp P Q"
using NPost09 Postulate09_def perpendicular_transversal_postulate_def by blast
theorem not_postulate_of_parallelism_of_perpendicular_transversals_thm:
shows "∃ A1 A2 B1 B2 C1 C2 D1 D2.
A1 A2 Par B1 B2 ∧ A1 A2 Perp C1 C2 ∧ B1 B2 Perp D1 D2 ∧
Coplanar A1 A2 C1 D1 ∧ Coplanar A1 A2 C1 D2 ∧
Coplanar A1 A2 C2 D1 ∧ Coplanar A1 A2 C2 D2 ∧ ¬ C1 C2 Par D1 D2"
using NPost10 Postulate10_def
postulate_of_parallelism_of_perpendicular_transversals_def by blast
theorem not_universal_posidonius_postulate:
shows "∃ A1 A2 A3 A4 B1 B2 B3 B4.
A1 A2 Par B1 B2 ∧ Col A1 A2 A3 ∧ Col B1 B2 B3 ∧ A1 A2 Perp A3 B3 ∧
Col A1 A2 A4 ∧ Col B1 B2 B4 ∧ A1 A2 Perp A4 B4 ∧ ¬ Cong A3 B3 A4 B4"
using NPost11 Postulate11_def universal_posidonius_postulate_def by blast
theorem not_alternative_playfair_s_postulate_thm:
shows "∃ A1 A2 B1 B2 C1 C2 P.
P Perp2 A1 A2 B1 B2 ∧ ¬ Col A1 A2 P ∧ Col P B1 B2 ∧
Coplanar A1 A2 B1 B2 ∧ A1 A2 Par C1 C2 ∧ Col P C1 C2 ∧
(¬ Col C1 B1 B2 ∨ ¬ Col C2 B1 B2)"
using NPost02 Postulate02_def alternative_playfair_s_postulate_def
playfair_bis__playfair by blast
theorem not_proclus_postulate_thm:
shows "∃ A B C D P Q. (∀ Y. A B Par C D ∧ Col A B P ∧
¬ Col A B Q ∧ Coplanar C D P Q ∧ (¬ Col P Q Y ∨ ¬ Col C D Y))"
using NPost13 proclus_postulate_def Postulate13_def by blast
theorem not_alternative_proclus_postulate_thm:
shows "∃ A B C D P Q. (∀ Y. P Perp2 A B C D ∧ ¬ Col C D P ∧ Coplanar A B C D ∧ Col A B P ∧
¬ Col A B Q ∧ Coplanar C D P Q ∧ (¬ Col P Q Y ∨ ¬ Col C D Y))"
using NPost14 alternative_proclus_postulate_def Postulate14_def by blast
theorem not_triangle_circumscription_principle_thm:
shows "∃ A B C. ∀ D. (¬ Col A B C ∧ (¬ Cong A D B D ∨ ¬ Cong A D C D ∨ ¬ Coplanar A B C D))"
using NPost15 Postulate15_def
triangle_circumscription_principle_def by blast
theorem not_inverse_projection_postulate_thm:
shows "∃ A B C P Q. ∀ Y.
Acute A B C ∧ B Out A P ∧ P ≠ Q ∧ Per B P Q ∧ Coplanar A B C Q ∧
(¬ B Out C Y ∨ ¬ Col P Q Y)"
using NPost16 Postulate16_def inverse_projection_postulate_def by blast
theorem not_euclid_5_thm:
shows "∃ P Q R S T U. ∀ I.
BetS P T Q ∧ BetS R T S ∧ BetS Q U R ∧ ¬ Col P Q S ∧
Cong P T Q T ∧ Cong R T S T ∧ (¬ BetS S Q I ∨ ¬ BetS P U I)"
using NPost17 Postulate17_def euclid_5_def by blast
theorem not_strong_parallel_postulate_thm:
shows "∃ P Q R S T U. ∀ I.
BetS P T Q ∧ BetS R T S ∧ ¬ Col P R U ∧ Coplanar P Q R U ∧
Cong P T Q T ∧ Cong R T S T ∧ (¬ Col S Q I ∨ ¬ Col P U I)"
using NPost18 Postulate18_def strong_parallel_postulate_def by blast
theorem not_alternative_strong_parallel_postulate_thm:
shows "∃ A B C D P Q R. ∀ Y.
B C OS A D ∧ A B C B C D SumA P Q R ∧ ¬ Bet P Q R ∧ (¬ Col B A Y ∨ ¬ Col C D Y)"
using NPost19 Postulate19_def alternative_strong_parallel_postulate_def by blast
theorem not_euclid_s_parallel_postulate_thm:
shows "∃ A B C D P Q R. ∀ Y.
B C OS A D ∧ SAMS A B C B C D ∧ A B C B C D SumA P Q R ∧
¬ Bet P Q R ∧ (¬ B Out A Y ∨ ¬ C Out D Y)"
using NPost20 Postulate20_def euclid_s_parallel_postulate_def by blast
end
end