Theory Tarski_Non_Euclidean_Archimedean
theory Tarski_Non_Euclidean_Archimedean
imports
Tarski_Non_Euclidean_Aristotle
begin
section "Tarski Non Euclidean"
subsection "Definitions"
locale Tarski_Non_Euclidean_Archimedean = Tarski_Non_Euclidean_Aristotle +
assumes archimedes: "archimedes_axiom"
context Tarski_Non_Euclidean_Archimedean
begin
subsection "Propositions"
lemma NPost04:
shows "¬ Postulate04"
using NPost03 Thm10 archimedes by blast
lemma NPost31:
shows "¬ Postulate31"
by (simp add: NPost04 P31_P04)
lemma NPost32:
shows "¬ Postulate32"
using NPost31 P31_P32 by blast
lemma NPost33:
shows "¬ Postulate33"
using NPost04 P04_P33 by auto
lemma NPost34:
shows "¬ Postulate34"
using NPost01 Thm10 archimedes by blast
lemma NPost35:
shows "¬ Postulate35"
using NPost01 Thm10_4 archimedes by blast
theorem not_bachmann_s_lotschnittaxiom:
shows "∃ P Q R P1 R1. P ≠ Q ∧ Q ≠ R ∧ Per P Q R ∧ Per Q P P1 ∧ Per Q R R1 ∧
Coplanar P Q R P1 ∧ Coplanar P Q R R1 ∧
(∀ S. ¬ Col P P1 S ∨ ¬ Col R R1 S)"
using NPost04 Postulate04_def bachmann_s_lotschnittaxiom_def by blast
theorem not_weak_inverse_projection_postulate:
shows "∃ A B C D E F P Q Y. Acute A B C ∧ Per D E F ∧ A B C A B C SumA D E F ∧
B Out A P ∧ P ≠ Q ∧ Per B P Q ∧ Coplanar A B C Q ∧
(¬ B Out C Y ∨ ¬ Col P Q Y)"
using NPost31 Postulate31_def weak_inverse_projection_postulate_def by blast
theorem not_weak_tarski_s_parallel_postulate:
shows "∃ A B C T. Per A B C ∧ T InAngle A B C ∧
(∀ X Y. ¬ B Out A X ∨ ¬ B Out C Y ∨ ¬ Bet X T Y)"
using NPost32 Postulate32_def weak_tarski_s_parallel_postulate_def by blast
theorem not_weak_triangle_circumscription_principle:
shows "∃ A B C A1 A2 B1 B2. ¬ Col A B C ∧ Per A C B ∧ A1 A2 PerpBisect B C ∧
B1 B2 PerpBisect A C ∧ Coplanar A B C A1 ∧ Coplanar A B C A2 ∧
Coplanar A B C B1 ∧ Coplanar A B C B2 ∧
(∀ I. ¬ Col A1 A2 I ∨ ¬ Col B1 B2 I)"
using NPost33 Postulate33_def weak_triangle_circumscription_principle_def by blast
theorem not_legendre_s_parallel_postulate:
fixes A B C
assumes "¬ Col A B C"
and "Acute A B C"
shows "∃ T. T InAngle A B C ∧ (∀ X Y. ¬ B Out A X ∨ ¬ B Out C Y ∨ ¬ Bet X T Y)"
using assms(1,2) NPost34 Postulate34_def legendre_s_parallel_postulate_def by blast
theorem not_existential_playfair_s_postulate:
assumes "¬ Col A1 A2 P"
shows "∃ B1 B2 C1 C2. A1 A2 Par B1 B2 ∧ Col P B1 B2 ∧ A1 A2 Par C1 C2 ∧ Col P C1 C2 ∧
(¬ Col C1 B1 B2 ∨ ¬ Col C2 B1 B2)"
using assms NPost35 Postulate35_def existential_playfair_s_postulate_def by blast
end
end