Theory Tarski_Neutral_3D_Model_Hilbert_Neutral_3D
theory Tarski_Neutral_3D_Model_Hilbert_Neutral_3D
imports
Tarski_Neutral_3D
Hilbert_Neutral_3D
Tarski_Neutral_Model_Hilbert_Neutral
begin
section "Tarski Neutral 3D - Hilbert Neutral 3D Model"
context Hilbert_neutral_3D
begin
interpretation H3D_to_T3D : Tarski_neutral_3D
where Bet = Bet and
Cong = Cong and
TPA = PP and
TPB = PQ and
TPC = PR and
TS1 = HS1 and TS2 = HS2 and TS3 = HS3 and TS4 = HS4
proof
show "∀a b. Cong a b b a"
using cong_permT by blast
show "∀a b p q r s. Cong a b p q ∧ Cong a b r s ⟶ Cong p q r s"
using cong_inner_transitivity by blast
show "∀a b c. Cong a b c c ⟶ a = b"
by (simp add: cong_identity)
show "∀a b c q. ∃x. Bet q a x ∧ Cong a x b c"
by (simp add: segment_construction)
show "∀a b c d a' b' c' d'. a ≠ b ∧ Bet a b c ∧ Bet a' b' c' ∧
Cong a b a' b' ∧ Cong b c b' c' ∧ Cong a d a' d' ∧ Cong b d b' d' ⟶
Cong c d c' d'"
using five_segment by blast
show "∀a b. Bet a b a ⟶ a = b"
using bet_identity by blast
show "∀a b c p q. Bet a p c ∧ Bet b q c ⟶ (∃x. Bet p x b ∧ Bet q x a)"
proof -
{
fix a b c p q
assume "Bet a p c" and "Bet b q c" and
"Bet a b c ∨ Bet b c a ∨ Bet c a b"
hence "∃x. Bet p x b ∧ Bet q x a"
using Bet_def bet_comm bet_trans by metis
}
moreover
{
fix a b c p q
assume "Bet a p c" and "Bet b q c" and
"¬ (Bet a b c ∨ Bet b c a ∨ Bet c a b)" and
"a = p ∨ p = c ∨ b = q ∨ q = c"
hence "∃x. Bet p x b ∧ Bet q x a"
by (metis Hilbert_neutral_dimensionless_pre.Bet_def bet_comm)
}
moreover
{
fix a b c p q
assume "Bet a p c" and "Bet b q c" and
"¬ (Bet a b c ∨ Bet b c a ∨ Bet c a b)" and
"a ≠ p" and "p ≠ c" and "b ≠ q" and "q ≠ c"
hence "∃x. Bet p x b ∧ Bet q x a"
using pasch_general_case by blast
}
ultimately show ?thesis
by blast
qed
show "¬ Bet PP PQ PR ∧ ¬ Bet PQ PR PP ∧ ¬ Bet PR PP PQ"
using lower_dim_l by blast
show "∄X. (Bet HS1 HS2 X ∨ Bet HS2 X HS1 ∨ Bet X HS1 HS2) ∧
(Bet HS3 HS4 X ∨ Bet HS4 X HS3 ∨ Bet X HS3 HS4) ∨
(Bet HS1 HS3 X ∨ Bet HS3 X HS1 ∨ Bet X HS1 HS3) ∧
(Bet HS2 HS4 X ∨ Bet HS4 X HS2 ∨ Bet X HS2 HS4) ∨
(Bet HS1 HS4 X ∨ Bet HS4 X HS1 ∨ Bet X HS1 HS4) ∧
(Bet HS2 HS3 X ∨ Bet HS3 X HS2 ∨ Bet X HS2 HS3)"
using coplanar_plane1 lower_dim_3 by blast
show "∀A B C P Q R. P ≠ Q ∧ Q ≠ R ∧ P ≠ R ∧ Cong A P A Q ∧
Cong B P B Q ∧ Cong C P C Q ∧ Cong A P A R ∧ Cong B P B R ∧ Cong C P C R ⟶
Bet A B C ∨ Bet B C A ∨ Bet C A B"
using tarski_upper_dim plane_intersection lower_dim_3 by blast
qed
end
end