Theory Tarski_Neutral_3D
theory Tarski_Neutral_3D
imports
Tarski_Neutral
begin
section "Tarski's axiom system for neutral geometry: 3D"
subsection "Definitions"
locale Tarski_neutral_3D = Tarski_neutral_dimensionless +
fixes TS1 and TS2 and TS3 and TS4
assumes lower_dim_3: "¬ (∃ X.
((Bet TS1 TS2 X ∨ Bet TS2 X TS1 ∨ Bet X TS1 TS2) ∧
(Bet TS3 TS4 X ∨ Bet TS4 X TS3 ∨ Bet X TS3 TS4) ∨
(Bet TS1 TS3 X ∨ Bet TS3 X TS1 ∨ Bet X TS1 TS3) ∧
(Bet TS2 TS4 X ∨ Bet TS4 X TS2 ∨ Bet X TS2 TS4) ∨
(Bet TS1 TS4 X ∨ Bet TS4 X TS1 ∨ Bet X TS1 TS4) ∧
(Bet TS2 TS3 X ∨ Bet TS3 X TS2 ∨ Bet X TS2 TS3)))"
assumes upper_dim_3: "∀ A B C P Q R.
P ≠ Q ∧ Q ≠ R ∧ P ≠ R ∧
Cong A P A Q ∧ Cong B P B Q ∧ Cong C P C Q ∧
Cong A P A R ∧ Cong B P B R ∧ Cong C P C R ⟶
(Bet A B C ∨ Bet B C A ∨ Bet C A B)"
context Tarski_neutral_3D
begin
subsection "Propositions"
lemma not_coplanar_S1_S2_S3_S4:
shows "¬ Coplanar TS1 TS2 TS3 TS4"
proof -
{
assume "Coplanar TS1 TS2 TS3 TS4"
then obtain X where "(Col TS1 TS2 X ∧ Col TS3 TS4 X) ∨
(Col TS1 TS3 X ∧ Col TS2 TS4 X) ∨
(Col TS1 TS4 X ∧ Col TS2 TS3 X)"
using Coplanar_def by auto
hence False using lower_dim_3 Col_def by blast
}
thus ?thesis
by blast
qed
end
end