Theory Tarski_Euclidean_Model_Hilbert_Euclidean
theory Tarski_Euclidean_Model_Hilbert_Euclidean
imports
Hilbert_Euclidean
Tarski_Neutral_3D_Model_Hilbert_Neutral_3D
begin
section "Tarski Euclidean Model Hilbert Euclidean"
context Hilbert_Euclidean
begin
interpretation Heucl_to_Teucl : Tarski_Euclidean
where Bet = Bet and
Cong = Cong and
TPA = PP and
TPB = PQ and
TPC = PR
proof
show "∀a b. Cong a b b a"
using cong_permT by blast
show "∀a b p q r s. Cong a b p q ∧ Cong a b r s ⟶ Cong p q r s"
using cong_inner_transitivity by blast
show "∀a b c. Cong a b c c ⟶ a = b"
by (simp add: cong_identity)
show "∀a b c q. ∃x. Bet q a x ∧ Cong a x b c"
by (simp add: segment_construction)
show "∀a b c d a' b' c' d'. a ≠ b ∧ Bet a b c ∧ Bet a' b' c' ∧
Cong a b a' b' ∧ Cong b c b' c' ∧ Cong a d a' d' ∧ Cong b d b' d' ⟶
Cong c d c' d'"
using five_segment by blast
show "∀a b. Bet a b a ⟶ a = b"
using bet_identity by blast
show "∀a b c p q. Bet a p c ∧ Bet b q c ⟶ (∃x. Bet p x b ∧ Bet q x a)"
proof -
{
fix a b c p q
assume "Bet a p c" and "Bet b q c" and
"Bet a b c ∨ Bet b c a ∨ Bet c a b"
hence "∃x. Bet p x b ∧ Bet q x a"
using Bet_def bet_comm bet_trans by metis
}
moreover
{
fix a b c p q
assume "Bet a p c" and "Bet b q c" and
"¬ (Bet a b c ∨ Bet b c a ∨ Bet c a b)" and
"a = p ∨ p = c ∨ b = q ∨ q = c"
hence "∃x. Bet p x b ∧ Bet q x a"
by (metis Hilbert_neutral_dimensionless_pre.Bet_def bet_comm)
}
moreover
{
fix a b c p q
assume "Bet a p c" and "Bet b q c" and
"¬ (Bet a b c ∨ Bet b c a ∨ Bet c a b)" and
"a ≠ p" and "p ≠ c" and "b ≠ q" and "q ≠ c"
hence "∃x. Bet p x b ∧ Bet q x a"
using pasch_general_case by blast
}
ultimately show ?thesis
by blast
qed
show "¬ Bet PP PQ PR ∧ ¬ Bet PQ PR PP ∧ ¬ Bet PR PP PQ"
using lower_dim_l by blast
show "∀A B C D T. Bet A D T ∧ Bet B D C ∧ A ≠ D
⟶ (∃X Y. Bet A B X ∧ Bet A C Y ∧ Bet X T Y)"
using tarski_s_euclid euclid_uniqueness by blast
qed
end
end