Theory Multi_Interval_Overlapping
section ‹Overlapping Multi-Intervals (\thy)›
theory
Multi_Interval_Overlapping
imports
Multi_Interval_Preliminaries
begin
subsection ‹Type Definition›
typedef (overloaded) 'a minterval_ovl =
"{is::'a::{minus_mono} interval list. valid_mInterval_ovl is}"
morphisms bounds_of_minterval_ovl mInterval_ovl
unfolding valid_mInterval_ovl_def
apply(intro exI[where x="[Interval (l,l) ]" for l])
by(auto simp add: sorted_wrt_lower_def non_overlapping_sorted_def)
setup_lifting type_definition_minterval_ovl
lift_definition mlower_ovl::"('a::{minus_mono}) minterval_ovl ⇒ 'a" is ‹lower o hd› .
lift_definition mupper_ovl::"('a::{minus_mono}) minterval_ovl ⇒ 'a" is ‹upper o last› .
lift_definition mlist_ovl::"('a::{minus_mono}) minterval_ovl ⇒ 'a interval list" is ‹id› .
subsection‹Equality and Orderings›
lemma minterval_ovl_eq_iff: "a = b ⟷ mlist_ovl a = mlist_ovl b"
by transfer auto
lemma ainterval_eqI: "mlist_ovl a = mlist_ovl b ⟹ a = b"
by (auto simp: minterval_ovl_eq_iff)
lemma minterval_ovl_imp_upper_lower_eq :
"a = b ⟶ mlower_ovl a = mlower_ovl b ∧ mupper_ovl a = mupper_ovl b"
by transfer auto
lemma valid_mInterval_ovl_lower_le_upper:
"valid_mInterval_ovl i ⟹ (lower ∘ hd) i ≤ (upper ∘ last) i"
proof(induction i)
case Nil
then show ?case
unfolding valid_mInterval_ovl_def o_def sorted_wrt_lower_def cmp_lower_width_def
by simp
next
case (Cons a i)
then show ?case
unfolding valid_mInterval_ovl_def o_def sorted_wrt_lower_def cmp_lower_width_def
by (metis (no_types, lifting) Cons.IH Cons.prems comp_apply distinct.simps(2)
in_bounds last.simps list.sel(1) lower_in_interval order_less_imp_le order_less_le_trans
sorted_wrt_lower_unroll valid_mInterval_ovl_def)
qed
lemma mlower_non_ovl_le_mupper_non_ovl[simp]: "mlower_ovl i ≤ mupper_ovl i"
by(transfer, metis valid_mInterval_ovl_lower_le_upper)
lift_definition set_of_ovl :: "'a::{minus_mono} minterval_ovl ⇒ 'a set"
is "λ is. ⋃x∈set is. {lower x..upper x}" .
lemma not_in_ovl_eq:
‹(¬ e ∈ set_of_ovl xs) = (∀ x ∈ set (mlist_ovl xs). ¬ e ∈ set_of x)›
proof(induction "(mlist_ovl xs)")
case Nil
then show ?case
by (metis UN_iff empty_iff empty_set mlist_ovl.rep_eq set_of_ovl.rep_eq)
next
case (Cons a x)
then show ?case
by (simp add: mlist_ovl.rep_eq set_of_eq set_of_ovl.rep_eq)
qed
lemma in_ovl_eq:
‹(e ∈ set_of_ovl xs) = (∃ x ∈ set (mlist_ovl xs). e ∈ set_of x)›
proof(induction "(mlist_ovl xs)")
case Nil
then show ?case
by (metis UN_iff empty_iff empty_set mlist_ovl.rep_eq set_of_ovl.rep_eq)
next
case (Cons a x)
then show ?case
by (simp add: mlist_ovl.rep_eq set_of_eq set_of_ovl.rep_eq)
qed
context notes [[typedef_overloaded]] begin
lift_definition(code_dt) mInterval_ovl'::"'a::minus_mono interval list ⇒ 'a minterval_ovl option"
is "λ is. if valid_mInterval_ovl is then Some is else None"
by (auto simp add: valid_mInterval_ovl_def)
lemma mInterval_ovl'_split:
"P (mInterval_ovl' is) ⟷
(∀ivl. valid_mInterval_ovl is ⟶ mlist_ovl ivl = is ⟶ P (Some ivl)) ∧ (¬ valid_mInterval_ovl is ⟶ P None)"
by transfer auto
lemma mInterval_ovl'_split_asm:
"P (mInterval_ovl' is) ⟷
¬((∃ivl. valid_mInterval_ovl is ∧ mlist_ovl ivl = is ∧ ¬P (Some ivl)) ∨ (¬ valid_mInterval_ovl is ∧ ¬P None))"
unfolding mInterval_ovl'_split
by auto
lemmas mInterval_ovl'_splits = mInterval_ovl'_split mInterval_ovl'_split_asm
lemma mInterval'_eq_Some: "mInterval_ovl' is = Some i ⟹ mlist_ovl i = is"
by (simp split: mInterval_ovl'_splits)
end
lemma set_of_ovl_non_zero_list_all:
‹0 ∉ set_of_ovl xs ⟹ ∀ x ∈ set (mlist_ovl xs). ¬ 0 ∈⇩i x›
proof(induction "mlist_ovl xs")
case Nil
then show ?case
by simp
next
case (Cons a x)
then show ?case
using in_ovl_eq by blast
qed
instantiation "minterval_ovl" :: ("{minus_mono}") equal
begin
definition "equal_class.equal a b ≡ (mlist_ovl a = mlist_ovl b)"
instance proof qed (simp add: equal_minterval_ovl_def minterval_ovl_eq_iff)
end
instantiation minterval_ovl :: ("{minus_mono}") ord begin
definition less_eq_minterval_ovl :: "'a minterval_ovl ⇒ 'a minterval_ovl ⇒ bool"
where "less_eq_minterval_ovl a b ⟷ mlower_ovl b ≤ mlower_ovl a ∧ mupper_ovl a ≤ mupper_ovl b"
definition less_minterval_ovl :: "'a minterval_ovl ⇒ 'a minterval_ovl ⇒ bool"
where "less_minterval_ovl x y = (x ≤ y ∧ ¬ y ≤ x)"
instance proof qed
end
instantiation minterval_ovl :: ("{minus_mono,lattice}") sup
begin
lift_definition sup_minterval_non_ovl :: "'a minterval_ovl ⇒ 'a minterval_ovl ⇒ 'a minterval_ovl"
is "λ a b. [Interval (inf (lower (hd a)) (lower (hd b)), sup (upper (last a)) (upper (last b)))]"
by(auto simp: valid_mInterval_ovl_def sorted_wrt_lower_def non_adjacent_sorted_wrt_lower_def
non_overlapping_sorted_def le_infI1 le_supI1 valid_mInterval_non_ovl_def mupper_ovl_def
mlower_ovl_def)
instance
by(standard)
end
instantiation minterval_ovl :: ("{lattice,minus_mono}") preorder
begin
instance
apply(standard)
subgoal
using less_minterval_ovl_def by auto
subgoal
by (simp add: less_eq_minterval_ovl_def)
subgoal
by (meson less_eq_minterval_ovl_def order.trans)
done
end
lift_definition minterval_ovl_of :: "'a::{minus_mono} ⇒ 'a minterval_ovl" is "λx. [Interval(x, x)]"
unfolding valid_mInterval_ovl_def valid_mInterval_ovl_def non_adjacent_sorted_wrt_lower_def
cmp_non_adjacent_def sorted_wrt_lower_def
by simp
lemma mlower_ovl_minterval_ovl_of[simp]: "mlower_ovl (minterval_ovl_of a) = a"
by transfer auto
lemma mupper_ovl_minterval_ovl_of[simp]: "mupper_ovl (minterval_ovl_of a) = a"
by transfer auto
definition width_ovl :: "'a::{minus_mono} minterval_ovl ⇒ 'a"
where "width_ovl i = mupper_ovl i - mlower_ovl i"
subsection‹Zero and One›
instantiation "minterval_ovl" :: ("{minus_mono,zero}") zero
begin
lift_definition zero_minterval_ovl::"'a minterval_ovl" is "mk_mInterval_ovl [Interval (0, 0)]"
by (simp add: mk_mInterval_ovl_valid)
lemma mlower_ovl_zero[simp]: "mlower_ovl 0 = 0"
by(transfer, simp add: mk_mInterval_ovl_def interval_sort_lower_width_def)
lemma mupper_ovl_zero[simp]: "mupper_ovl 0 = 0"
by(transfer, simp add: mk_mInterval_ovl_def interval_sort_lower_width_def)
instance proof qed
end
instantiation "minterval_ovl" :: ("{minus_mono,one}") one
begin
lift_definition one_minterval_ovl::"'a minterval_ovl" is "mk_mInterval_ovl [Interval (1, 1)]"
by (simp add: mk_mInterval_ovl_valid)
lemma mlower_ovl_one[simp]: "mlower_ovl 1 = 1"
by(transfer, simp add: mk_mInterval_ovl_def interval_sort_lower_width_def)
lemma mupper_ovl_one[simp]: "mupper_ovl 1 = 1"
by(transfer, simp add: mk_mInterval_ovl_def interval_sort_lower_width_def)
instance proof qed
end
subsection‹Addition›
instantiation minterval_ovl :: ("{minus_mono,ordered_ab_semigroup_add,linordered_field}") plus
begin
lift_definition plus_minterval_ovl::"'a minterval_ovl ⇒ 'a minterval_ovl ⇒ 'a minterval_ovl"
is "λ a b . mk_mInterval_ovl (iList_plus a b)"
by (metis bin_op_interval_list_non_empty iList_plus_def mk_mInterval_ovl_valid valid_mInterval_ovl_def)
lemma valid_mk_interval_iList_plus:
assumes "valid_mInterval_ovl a" and "valid_mInterval_ovl b"
shows "valid_mInterval_ovl (mk_mInterval_ovl (iList_plus a b))"
by (metis (no_types, lifting) assms(1) assms(2) bin_op_interval_list_empty iList_plus_lower_upper_eq
mk_mInterval_ovl_id mk_mInterval_ovl_valid )
lift_definition plus_minterval_non_ovl::"'a minterval_ovl ⇒ 'a minterval_ovl ⇒ 'a minterval_ovl"
is "λ a b . mk_mInterval_ovl (iList_plus a b)"
by (simp add: valid_mk_interval_iList_plus)
lemma interval_plus_com:
‹a + b = b + a› for a::"'a::{minus_mono,ordered_ab_semigroup_add,linordered_field} minterval_ovl"
apply(transfer)
using plus_minterval_ovl_def
by (metis (no_types, opaque_lifting) foldr_isort_elements iList_plus_commute
interval_sort_lower_width_def mk_mInterval_ovl_def mk_mInterval_ovl_distinct
mk_mInterval_ovl_sorted o_def set_remdups sorted_wrt_lower_distinct_lists_eq)
instance proof qed
end
subsection ‹Unary Minus›
lemma a: "(x::'a::ordered_ab_group_add interval) ≠ y ⟹ -x ≠ -y"
apply(simp add:uminus_interval_def)
by (smt (z3) Pair_inject bounds_of_interval_inverse case_prod_Pair_iden case_prod_unfold neg_equal_iff_equal uminus_interval.rep_eq)
lemma b: "distinct (is::'a::ordered_ab_group_add interval list) ⟹ distinct (map (λ i. -i) is)"
proof(induction "is")
case Nil
then show ?case by simp
next
case (Cons a "is")
then show ?case using a by force
qed
instantiation "minterval_ovl" :: ("{minus_mono, ordered_ab_group_add}") uminus
begin
lift_definition uminus_minterval_ovl::"'a minterval_ovl ⇒ 'a minterval_ovl"
is "λ is . mk_mInterval_ovl (rev (map (λ i. -i) is))"
by (metis list.map_disc_iff mk_mInterval_ovl_valid rev_is_Nil_conv valid_mInterval_ovl_def)
instance ..
end
subsection ‹Subtraction›
instantiation "minterval_ovl" :: ("{minus_mono, linordered_field, ordered_ab_group_add}") minus
begin
definition minus_minterval_ovl::"'a minterval_ovl ⇒ 'a minterval_ovl ⇒ 'a minterval_ovl"
where "minus_minterval_ovl a b = a + - b"
instance ..
end
subsection ‹Multiplication›
instantiation "minterval_ovl" :: ("{minus_mono,linordered_semiring}") times
begin
lift_definition times_minterval_ovl :: "'a minterval_ovl ⇒ 'a minterval_ovl ⇒ 'a minterval_ovl"
is "λ a b . mk_mInterval_ovl (iList_times a b)"
by (metis bin_op_interval_list_non_empty iList_times_def mk_mInterval_ovl_empty
mk_mInterval_ovl_valid)
instance ..
end
subsection ‹Multiplicative Inverse and Division›
locale minterval_ovl_division = inverse +
constrains inverse :: ‹'a::{linordered_field, zero, minus, minus_mono, real_normed_algebra,linear_continuum_topology} minterval_ovl ⇒ 'a minterval_ovl›
and divide :: ‹'a::{linordered_field, zero, minus, minus_mono, real_normed_algebra,linear_continuum_topology} minterval_ovl ⇒ 'a minterval_ovl ⇒ 'a minterval_ovl›
assumes inverse_left: ‹¬ 0 ∈ set_of_ovl x ⟹ 1 ≤ (inverse x) * x›
and divide: ‹¬ 0 ∈ set_of_ovl y ⟹ x ≤ (divide x y) * y›
begin
end
locale minterval_ovl_division_inverse = inverse +
constrains inverse :: ‹'a::{linordered_field, zero, minus, minus_mono, real_normed_algebra,linear_continuum_topology} minterval_ovl ⇒ 'a minterval_ovl›
and divide :: ‹'a::{linordered_field, zero, minus, minus_mono, real_normed_algebra,linear_continuum_topology} minterval_ovl ⇒ 'a minterval_ovl ⇒ 'a minterval_ovl›
assumes inverse_non_zero_def: ‹¬ 0 ∈ set_of_ovl x ⟹ (inverse x)
= mInterval_ovl (mk_mInterval_ovl(un_op_interval_list (λ i. mk_interval (1 / (upper i), 1 / (lower i))) (mlist_ovl x)))›
and divide_non_zero_def: ‹¬ 0 ∈ set_of_ovl y ⟹ (divide x y) = inverse y * x›
begin
end
subsection ‹Membership›
abbreviation (in preorder) in_minterval_ovl (‹(_/ ∈⇩n⇩o _)› [51, 51] 50)
where "in_minterval_ovl x X ≡ x ∈ set_of_ovl X"
lemma in_minterval_ovl_to_minterval_ovl[intro!]: "a ∈⇩n⇩o minterval_ovl_of a"
by (metis (mono_tags, lifting) UN_iff list.set_intros(1) lower_in_interval lower_point_interval
minterval_ovl_of.rep_eq set_of_eq set_of_ovl.rep_eq)
instance minterval_ovl :: ("{one, preorder, minus_mono, linordered_semiring}") power
proof qed
lemma set_of_one_ovl[simp]: "set_of_ovl (1::'a::{one, order, minus_mono} minterval_ovl) = {1}"
apply (auto simp: set_of_ovl_def)[1]
subgoal
by (simp add: interval_sort_lower_width_set_eq mk_mInterval_ovl_def one_minterval_ovl.rep_eq)
subgoal
by (simp add: interval_sort_lower_width_set_eq mk_mInterval_ovl_def one_minterval_ovl.rep_eq)
done
lifting_update minterval_ovl.lifting
lifting_forget minterval_ovl.lifting
end