Theory Interval_Utilities
chapter‹Interval Utilities›
theory
Interval_Utilities
imports
"HOL-Library.Interval"
"HOL-Analysis.Analysis"
"HOL-Library.Interval_Float"
begin
section‹Preliminaries›
lemma compact_set_of:
fixes X::‹'a::{preorder,topological_space, ordered_euclidean_space} interval›
shows ‹compact (set_of X)›
by(simp add:set_of_eq compact_interval[of "lower X" "upper X"])
lemma bounded_set_of:
fixes X::‹'a::{preorder,topological_space, ordered_euclidean_space} interval›
shows ‹bounded (set_of X)›
by(simp add:set_of_eq compact_interval[of "lower X" "upper X"])
lemma compact_img_set_of:
fixes X :: ‹real interval› and f::‹real ⇒ real›
assumes ‹continuous_on (set_of X) f›
shows ‹compact (f ` set_of X)›
using compact_continuous_image[of "set_of X" f, simplified assms] compact_interval
unfolding set_of_eq
by simp
lemma sup_inf_dist_bounded:
fixes X::‹real set›
shows ‹bdd_below X ⟹ bdd_above X ==> ∀ x ∈ X. ∀ x' ∈ X. dist x x' ≤ Sup X - Inf X›
using cInf_lower[of _ X] cSup_upper[of _ X]
apply(auto simp add:dist_real_def)[1]
by (smt (z3))
lemma set_of_nonempty[simp]: ‹set_of X ≠ {}›
by(simp add:set_of_eq)
lemma lower_in_interval[simp]:‹lower X ∈⇩i X›
by(simp add: in_intervalI)
lemma upper_in_interval[simp]:‹upper X ∈⇩i X›
by(simp add: in_intervalI)
lemma bdd_below_set_of: ‹bdd_below (set_of X)›
by (metis atLeastAtMost_iff bdd_below.unfold set_of_eq)
lemma bdd_above_set_of: ‹bdd_above (set_of X)›
by (metis atLeastAtMost_iff bdd_above.unfold set_of_eq)
lemma closed_set_of: ‹closed (set_of (X::real interval))›
by (metis closed_real_atLeastAtMost set_of_eq)
lemma set_f_nonempty: ‹f ` set_of X ≠ {}›
apply(simp add:image_def set_of_eq)
by fastforce
lemma interval_linorder_case_split[case_names LeftOf Including RightOf]:
assumes ‹(upper x < c ⟹ P (x::('a::linorder interval)))›
‹( c ∈⇩i x ⟹ P x)›
‹( c < lower x ⟹ P x)›
shows‹ P x›
proof(insert assms, cases " upper x < c")
case True
then show ?thesis
using assms(1) by blast
next
case False
then show ?thesis
proof(cases "c ∈⇩i x")
case True
then show ?thesis
using assms(2) by blast
next
case False
then show ?thesis
by (meson assms(1) assms(3) in_intervalI not_le_imp_less)
qed
qed
lemma foldl_conj_True:
‹foldl (∧) x xs = list_all (λ e. e = True) (x#xs)›
by(induction xs rule:rev_induct, auto)
lemma foldl_conj_set_True:
‹foldl (∧) x xs = (∀ e ∈ set (x#xs) . e = True)›
by(induction xs rule:rev_induct, auto)
section "Interval Bounds and Set Conversion "
lemma sup_set_of:
fixes X :: "'a::{conditionally_complete_lattice} interval"
shows "Sup (set_of X) = upper X"
unfolding set_of_def upper_def
using cSup_atLeastAtMost lower_le_upper[of X]
by (simp add: upper_def lower_def)
lemma inf_set_of:
fixes X :: "'a::{conditionally_complete_lattice} interval"
shows "Inf (set_of X) = lower X"
unfolding set_of_def lower_def
using cInf_atLeastAtMost lower_le_upper[of X]
by (simp add: upper_def lower_def)
lemma inf_le_sup_set_of:
fixes X :: "'a::{conditionally_complete_lattice} interval"
shows"Inf (set_of X) ≤ Sup (set_of X)"
using sup_set_of inf_set_of lower_le_upper
by metis
lemma in_bounds: ‹x ∈⇩i X ⟹ lower X ≤ x ∧ x ≤ upper X›
by (simp add: set_of_eq)
lemma lower_bounds[simp]:
assumes ‹L ≤ U›
shows ‹lower (Interval(L,U)) = L ›
using assms
apply (simp add: lower.rep_eq)
by (simp add: bounds_of_interval_eq_lower_upper lower_Interval upper_Interval)
lemma upper_bounds [simp]:
assumes ‹L ≤ U›
shows ‹upper (Interval(L,U)) = U›
using assms
apply (simp add: upper.rep_eq)
by (simp add: bounds_of_interval_eq_lower_upper lower_Interval upper_Interval)
lemma lower_point_interval[simp]: ‹lower (Interval (x,x)) = x›
by (simp)
lemma upper_point_interval[simp]: ‹upper (Interval (x,x)) = x›
by (simp)
lemma map2_nth:
assumes ‹length xs = length ys›
and ‹n < length xs›
shows ‹(map2 f xs ys)!n = f (xs!n) (ys!n)›
using assms by simp
lemma map_set: ‹a ∈ set (map f X) ⟹ (∃ x ∈ set X . f x = a)›
by auto
lemma map_pair_set_left: ‹(a,b) ∈ set (zip (map f X) (map f Y)) ⟹ (∃ x ∈ set X . f x = a)›
by (meson map_set set_zip_leftD)
lemma map_pair_set_right: ‹(a,b) ∈ set (zip (map f X) (map f Y)) ⟹ (∃ y ∈ set Y . f y = b)›
by (meson map_set set_zip_rightD)
lemma map_pair_set: ‹(a,b) ∈ set (zip (map f X) (map f Y)) ⟹ (∃ x ∈ set X . f x = a) ∧ (∃ y ∈ set Y . f y = b)›
by (meson map_pair_set_left set_zip_rightD zip_same)
lemma map_pair_f_all:
assumes ‹length X = length Y›
shows ‹(∀(x, y)∈set (zip (map f X) (map f Y)). x ≤ y) = (∀(x, y)∈set (zip X Y ). f x ≤ f y)›
by(insert assms(1), induction X Y rule:list_induct2, auto)
definition map_interval_swap :: ‹('a::linorder × 'a) list ⇒ 'a interval list› where
‹map_interval_swap = map (λ (x,y). Interval (if x ≤ y then (x,y) else (y,x)))›
definition mk_interval :: ‹('a::linorder × 'a) ⇒ 'a interval › where
‹mk_interval = (λ (x,y). Interval (if x ≤ y then (x,y) else (y,x)))›
definition mk_interval' :: ‹('a::linorder × 'a) ⇒ 'a interval › where
‹mk_interval' = (λ (x,y). (if x ≤ y then Interval(x,y) else Interval(y,x)))›
lemma map_interval_swap_code[code]:
‹ map_interval_swap = map (λ (x,y). the (if x ≤ y then Interval' x y else Interval' y x))›
unfolding map_interval_swap_def by(rule ext, rule arg_cong, auto simp add: Interval'.abs_eq)
lemma mk_interval_code[code]:
‹mk_interval = (λ (x,y). the (if x ≤ y then Interval' x y else Interval' y x))›
unfolding mk_interval_def by(rule ext, rule arg_cong, auto simp add: Interval'.abs_eq)
lemma mk_interval':
‹mk_interval = (λ (x,y). (if x ≤ y then Interval(x, y) else Interval(y, x)))›
unfolding mk_interval_def by(rule ext, rule arg_cong, auto)
lemma mk_interval_lower[simp]: ‹ lower (mk_interval (x,y)) = (if x ≤ y then x else y)›
by(simp add: lower_def Interval_inverse mk_interval_def)
lemma mk_interval_upper[simp]: ‹ upper (mk_interval (x,y)) = (if x ≤ y then y else x)›
by(simp add: upper_def Interval_inverse mk_interval_def)
section‹Linear Order on List of Intervals›
definition
le_interval_list :: ‹('a::linorder) interval list ⇒ 'a interval list ⇒ bool› (‹(_/ ≤⇩I _)› [51, 51] 50)
where
‹le_interval_list Xs Ys ≡ (length Xs = length Ys) ∧ (foldl (∧) True (map2 (≤) Xs Ys))›
lemma le_interval_single: ‹(x ≤ y) = ([x] ≤⇩I [y])›
unfolding le_interval_list_def by simp
lemma le_intervall_empty[simp]: ‹[] ≤⇩I []›
unfolding le_interval_list_def by simp
lemma le_interval_list_rev: ‹(is ≤⇩I js) = (rev is ≤⇩I rev js)›
unfolding le_interval_list_def
by(safe, simp_all add: foldl_conj_set_True zip_rev)
lemma le_interval_list_imp_length:
assumes ‹Xs ≤⇩I Ys› shows ‹length Xs = length Ys›
using assms unfolding le_interval_list_def
by simp
lemma lsplit_left: assumes ‹length (xs) = length (ys)›
and ‹(∀n<length (x # xs). (x # xs) ! n ≤ (y # ys) ! n)› shows ‹
((∀ n < length xs. xs!n ≤ ys!n) ∧ x ≤ y)›
using assms by auto
lemma lsplit_right: assumes ‹length (xs) = length (ys)›
and ‹((∀ n < length xs. xs!n ≤ ys!n) ∧ x ≤ y)›
shows ‹(n<length (x # xs) ⟶ (x # xs) ! n ≤ (y # ys) ! n)›
proof(cases "n=0")
case True
then show ?thesis using assms by(simp)
next
case False
then show ?thesis using assms by simp
qed
lemma lsplit: assumes ‹length (xs) = length (ys)›
shows ‹(∀n<length (x # xs). (x # xs) ! n ≤ (y # ys) ! n) =
((∀ n < length xs. xs!n ≤ ys!n) ∧ x ≤ y)›
using assms lsplit_left lsplit_right by metis
lemma le_interval_list_all':
assumes ‹length Xs = length Ys› and ‹Xs ≤⇩I Ys› shows ‹∀ n < length Xs. Xs!n ≤ Ys!n›
proof(insert assms, induction rule:list_induct2)
case Nil
then show ?case by simp
next
case (Cons x xs y ys)
then show ?case
using lsplit[of xs ys x y] le_interval_list_def
unfolding le_interval_list_def
by(auto simp add: foldl_conj_True)
qed
lemma le_interval_list_all2:
assumes ‹length Xs = length Ys›
and ‹∀ n<length Xs . (Xs!n ≤ Ys!n)›
shows ‹Xs ≤⇩I Ys›
proof(insert assms, induction rule:list_induct2)
case Nil
then show ?case by simp
next
case (Cons x xs y ys)
then show ?case
using lsplit[of xs ys x y] le_interval_list_def
unfolding le_interval_list_def
by(auto simp add: foldl_conj_True)
qed
lemma le_interval_list_all:
assumes ‹Xs ≤⇩I Ys› shows ‹∀ n < length Xs. Xs!n ≤ Ys!n›
using assms le_interval_list_all' le_interval_list_imp_length
by auto
lemma le_interval_list_imp:
assumes ‹Xs ≤⇩I Ys› shows ‹n < length Xs ⟶ Xs!n ≤ Ys!n›
using assms le_interval_list_all' le_interval_list_imp_length
by auto
lemma interval_set_leq_eq: ‹(X ≤ Y) = (set_of X ⊆ set_of Y)›
for X :: ‹'a::linordered_ring interval›
by (simp add: less_eq_interval_def set_of_eq)
lemma times_interval_right:
fixes X Y C ::‹'a::linordered_ring interval›
assumes ‹X ≤ Y›
shows ‹C * X ≤ C * Y›
using assms[simplified interval_set_leq_eq]
apply(subst interval_set_leq_eq)
by (simp add: set_of_mul_inc_right)
lemma times_interval_left:
fixes X Y C ::‹'a::{real_normed_algebra,linordered_ring,linear_continuum_topology} interval›
assumes ‹X ≤ Y›
shows ‹X * C ≤ Y * C›
using assms[simplified interval_set_leq_eq]
apply(subst interval_set_leq_eq)
by (simp add: set_of_mul_inc_left)
section‹Support for Lists of Intervals ›
abbreviation in_interval_list::‹('a::preorder) list ⇒ 'a interval list ⇒ bool› (‹(_/ ∈⇩I _)› [51, 51] 50)
where ‹in_interval_list xs Xs ≡ foldl (∧) True (map2 (in_interval) xs Xs)›
lemma interval_of_in_interval_list[simp]: ‹xs ∈⇩I map interval_of xs›
proof(induction xs)
case Nil
then show ?case by simp
next
case (Cons a xs)
then show ?case
by (simp add: in_interval_to_interval)
qed
lemma interval_of_in_eq: ‹interval_of x ≤ X = (x ∈⇩i X)›
by (simp add: less_eq_interval_def set_of_eq)
lemma interval_of_list_in:
assumes ‹length inputs = length Inputs›
shows ‹(map interval_of inputs ≤⇩I Inputs) = (inputs ∈⇩I Inputs)›
unfolding le_interval_list_def
proof(insert assms, induction inputs Inputs rule:list_induct2)
case Nil
then show ?case by simp
next
case (Cons x xs y ys)
then show ?case
proof(cases "interval_of x ≤ y")
case True
then show ?thesis
using Cons by(simp add: interval_of_in_eq)
next
case False
then show ?thesis using foldl_conj_True interval_of_in_eq by auto
qed
qed
section ‹Interval Width and Arithmetic Operations›
lemma interval_width_addition:
fixes A:: "'a::{linordered_ring} interval"
shows ‹width (A + B) = width A + width B›
by (simp add: width_def)
lemma interval_width_times:
fixes a :: "'a::{linordered_ring}" and A :: "'a interval"
shows "width (interval_of a * A) = ¦a¦ * width A"
proof -
have "width (interval_of a * A) = upper (interval_of a * A) - lower (interval_of a * A)"
by (simp add: width_def)
also have "... = (if a > 0 then a * upper A - a * lower A else a * lower A - a * upper A)"
proof -
have "upper (interval_of a * A) = max (a * lower A) (a * upper A)"
by (simp add: upper_times)
moreover have "lower (interval_of a * A) = min (a * lower A) (a * upper A)"
by (simp add: lower_times)
ultimately show ?thesis
by (simp add: mult_left_mono mult_left_mono_neg)
qed
also have "... = ¦a¦ * (upper A - lower A)"
by (simp add: right_diff_distrib)
finally show ?thesis
by (simp add: width_def)
qed
lemma interval_sup_width:
fixes X Y :: "'a::{linordered_ring, lattice} interval"
shows "width (sup X Y) = max (upper X) (upper Y) - min (lower X) (lower Y)"
proof -
have a0: "∀i ia. lower (sup i ia) = min (lower i::real) (lower ia)"
by (simp add: inf_min)
have a1: "∀i ia. upper (sup i ia) = max (upper i::real) (upper ia)"
by (simp add: sup_max)
show ?thesis
using a0 a1 by (simp add: inf_min sup_max width_def)
qed
lemma width_expanded: ‹interval_of (width Y) = Interval(upper Y - lower Y, upper Y - lower Y)›
unfolding width_def interval_of_def by simp
lemma interval_width_positive:
fixes X :: ‹'a::{linordered_ring} interval›
shows ‹0 ≤ width X›
using lower_le_upper
by (simp add: width_def)
section ‹Interval Multiplication›
lemma interval_interval_times:
‹X * Y = Interval(Min {(lower X * lower Y), (lower X * upper Y), (upper X * lower Y), (upper X * upper Y)},
Max {(lower X * lower Y), (lower X * upper Y), (upper X * lower Y), (upper X * upper Y)})›
by (simp add: times_interval_def bounds_of_interval_eq_lower_upper Let_def min_def)
lemma interval_times_scalar: ‹interval_of a * A = mk_interval(a * lower A, a * upper A)›
proof -
have "upper (interval_of a * A) = max (a * lower A) (a * upper A)"
by (simp add: upper_times )
moreover have "lower (interval_of a * A) = min (a * lower A) (a * upper A)"
by (simp add: lower_times)
ultimately show ?thesis
by (simp add: interval_eq_iff)
qed
lemma interval_times_scalar_pos_l:
fixes a :: "'a::{ordered_semiring,times,linorder}"
assumes ‹0 ≤ a›
shows ‹interval_of a * A = Interval(a * lower A, a * upper A)›
proof -
have "upper (interval_of a * A) = a * upper A"
using assms
by (simp add: upper_times mult_left_mono)
moreover have "lower (interval_of a * A) = a * lower A"
using assms
by (simp add: lower_times mult_left_mono)
ultimately show ?thesis
using assms
by (metis bounds_of_interval_eq_lower_upper bounds_of_interval_inverse lower_le_upper)
qed
lemma interval_times_scalar_pos_r:
fixes a :: "'a::{linordered_idom}"
assumes ‹0 ≤ a›
shows ‹A * interval_of a = Interval(a * lower A, a * upper A)›
proof -
have "upper (A * interval_of a) = a * upper A"
using assms
by (simp add: mult.commute mult_left_mono upper_times)
moreover have "lower (A * interval_of a ) = a * lower A"
using assms
by (simp add: lower_times mult_right_mono)
ultimately show ?thesis
using assms
by (metis bounds_of_interval_eq_lower_upper bounds_of_interval_inverse lower_le_upper)
qed
section ‹Distance-based Properties of Intervals›
text ‹Given two real intervals @{term ‹X›} and @{term ‹Y›}, and two real numbers @{term ‹a›}
and @{term ‹b›}, the width of the sum of the scaled intervals is equivalent to the width of the
two individual intervals.›
lemma width_of_scaled_interval_sum:
fixes X :: "'a::{linordered_ring} interval"
shows ‹width (interval_of a * X + interval_of b * Y) = ¦a¦ * width X + ¦b¦ * width Y›
using interval_width_addition interval_width_times by metis
lemma width_of_product_interval_bound_real:
fixes X :: "real interval"
shows ‹interval_of (width (X * Y)) ≤ abs_interval(X) * interval_of (width Y) + abs_interval(Y) * interval_of (width X)›
proof -
have a0: "lower X ≤ upper X" ‹lower Y ≤ upper Y›
using lower_le_upper by simp_all
have a1: ‹width Y ≥ 0› and a1': ‹width X ≥ 0›
using a0 interval_width_positive by simp_all
have a2: ‹abs_interval(X) * interval_of (width Y) = Interval (width Y * lower (abs_interval X), width Y * upper (abs_interval X))›
using interval_times_scalar_pos_r a0 a1 by blast
have a3: ‹abs_interval(Y) * interval_of (width X) = Interval (width X * lower (abs_interval Y), width X * upper (abs_interval Y))›
using interval_times_scalar_pos_r a0 interval_width_positive by blast
have a4: ‹abs_interval(X) * interval_of (width Y) + abs_interval(Y) * interval_of (width X) = Interval (width Y * lower (abs_interval X) + width X * lower (abs_interval Y), width Y * upper (abs_interval X) + width X * upper (abs_interval Y))›
using a0 a2 a3 unfolding plus_interval_def
apply (simp add:bounds_of_interval_eq_lower_upper mult_left_mono interval_width_positive)
by (auto simp add:bounds_of_interval_eq_lower_upper mult_left_mono interval_width_positive)
have a5: ‹width(X * Y) = Max {(lower X * lower Y), (lower X * upper Y), (upper X * lower Y), (upper X * upper Y)} - Min {(lower X * lower Y), (lower X * upper Y), (upper X * lower Y), (upper X * upper Y)}›
using lower_times upper_times unfolding width_def by metis
have a6: ‹Max {(lower X * lower Y), (lower X * upper Y), (upper X * lower Y), (upper X * upper Y)} - Min {(lower X * lower Y), (lower X * upper Y), (upper X * lower Y), (upper X * upper Y)} ≤ width Y * upper (abs_interval X) + width X * upper (abs_interval Y)›
using a0 a1 a1' unfolding width_def
by (simp, smt (verit) a0 mult.commute mult_less_cancel_left_pos mult_minus_left right_diff_distrib)
have a7: ‹width Y * lower (abs_interval X) + width X * lower (abs_interval Y) ≤ Max {(lower X * lower Y), (lower X * upper Y), (upper X * lower Y), (upper X * upper Y)} - Min {(lower X * lower Y), (lower X * upper Y), (upper X * lower Y), (upper X * upper Y)}›
using a0 a1 a1' unfolding width_def
by (simp, smt (verit) a0 mult.commute mult_less_cancel_left_pos mult_minus_left right_diff_distrib)
have ‹interval_of (Max {(lower X * lower Y), (lower X * upper Y), (upper X * lower Y), (upper X * upper Y)} -
Min {(lower X * lower Y), (lower X * upper Y), (upper X * lower Y), (upper X * upper Y)}) ≤
Interval (width Y * lower (abs_interval X) + width X * lower (abs_interval Y),
width Y * upper (abs_interval X) + width X * upper (abs_interval Y))›
using a6 a7 unfolding less_eq_interval_def
by (smt (verit, ccfv_threshold) lower_bounds lower_interval_of upper_bounds upper_interval_of)
then show ?thesis using a4 a5 a6 by presburger
qed
lemma width_of_product_interval_bound_int:
fixes X :: "int interval"
shows ‹interval_of (width (X * Y)) ≤ abs_interval(X) * interval_of (width Y) + abs_interval(Y) * interval_of (width X)›
proof -
have a0: "lower X ≤ upper X" ‹lower Y ≤ upper Y›
using lower_le_upper by simp_all
have a1: ‹width Y ≥ 0› and ‹width X ≥ 0›
using a0 interval_width_positive by simp_all
have a2: ‹abs_interval(X) * interval_of (width Y) = Interval (width Y * lower (abs_interval X), width Y * upper (abs_interval X))›
using interval_times_scalar_pos_r a0 a1 by blast
have a3: ‹abs_interval(Y) * interval_of (width X) = Interval (width X * lower (abs_interval Y), width X * upper (abs_interval Y))›
using interval_times_scalar_pos_r a0 interval_width_positive by blast
have a4: ‹abs_interval(X) * interval_of (width Y) + abs_interval(Y) * interval_of (width X) = Interval (width Y * lower (abs_interval X) + width X * lower (abs_interval Y), width Y * upper (abs_interval X) + width X * upper (abs_interval Y))›
using a0 a2 a3 unfolding plus_interval_def
by (auto simp add:bounds_of_interval_eq_lower_upper mult_left_mono interval_width_positive)
have a5: ‹width(X * Y) = Max {(lower X * lower Y), (lower X * upper Y), (upper X * lower Y), (upper X * upper Y)} - Min {(lower X * lower Y), (lower X * upper Y), (upper X * lower Y), (upper X * upper Y)}›
using lower_times upper_times unfolding width_def by metis
have a6: ‹Max {(lower X * lower Y), (lower X * upper Y), (upper X * lower Y), (upper X * upper Y)} - Min {(lower X * lower Y), (lower X * upper Y), (upper X * lower Y), (upper X * upper Y)} ≤ width Y * upper (abs_interval X) + width X * upper (abs_interval Y)›
using a0 unfolding width_def
by (simp, smt (verit) a0 mult.commute mult_less_cancel_left_pos mult_minus_left right_diff_distrib)
have a7: ‹width Y * lower (abs_interval X) + width X * lower (abs_interval Y) ≤ Max {(lower X * lower Y), (lower X * upper Y), (upper X * lower Y), (upper X * upper Y)} - Min {(lower X * lower Y), (lower X * upper Y), (upper X * lower Y), (upper X * upper Y)}›
using a0 unfolding width_def
apply(auto)[1]
by (smt (verit) a0(1) a0(2) left_diff_distrib mult_less_cancel_left_pos int_distrib(3)
mult_less_cancel_left mult_minus_right mult.commute mult_le_0_iff right_diff_distrib'
mult_left_mono mult_le_cancel_right right_diff_distrib zero_less_mult_iff )+
have ‹interval_of (Max {(lower X * lower Y), (lower X * upper Y), (upper X * lower Y), (upper X * upper Y)} -
Min {(lower X * lower Y), (lower X * upper Y), (upper X * lower Y), (upper X * upper Y)}) ≤
Interval (width Y * lower (abs_interval X) + width X * lower (abs_interval Y),
width Y * upper (abs_interval X) + width X * upper (abs_interval Y))›
using a6 a7 unfolding less_eq_interval_def
by (smt (verit, ccfv_threshold) lower_bounds lower_interval_of upper_bounds upper_interval_of)
then show ?thesis using a4 a5 a6 by presburger
qed
end