Theory Multi_Interval_Adjacent
section ‹Adjacent Multi-Intervals (\thy)›
theory
Multi_Interval_Adjacent
imports
Multi_Interval_Preliminaries
begin
subsection ‹A Type For Non Overlapping Multi Intervals›
typedef (overloaded) 'a minterval_adj =
"{is::'a::{minus_mono,linorder} interval list. valid_mInterval_adj is}"
morphisms bounds_of_minterval_adj mInterval_adj
unfolding valid_mInterval_adj_def
apply(intro exI[where x="[Interval (l,l) ]" for l])
by(auto simp add: sorted_wrt_lower_def non_overlapping_sorted_def)
setup_lifting type_definition_minterval_adj
lift_definition mlower_adj::"('a::{minus_mono}) minterval_adj ⇒ 'a" is ‹lower o hd› .
lift_definition mupper_adj::"('a::{minus_mono}) minterval_adj ⇒ 'a" is ‹upper o last› .
lift_definition mlist_adj::"('a::{minus_mono}) minterval_adj ⇒ 'a interval list" is ‹id› .
subsection‹Equality and Orderings›
lemma minterval_adj_eq_iff: "a = b ⟷ mlist_adj a = mlist_adj b"
by transfer auto
lemma ainterval_eqI: "mlist_adj a = mlist_adj b ⟹ a = b"
by (auto simp: minterval_adj_eq_iff)
lemma minterval_adj_imp_upper_lower_eq :
"a = b ⟶ mlower_adj a = mlower_adj b ∧ mupper_adj a = mupper_adj b"
by transfer auto
lemma mlower_adj_le_mupper_adj[simp]: "mlower_adj i ≤ mupper_adj i"
by (transfer, metis comp_def lower_le_upper_aux valid_mInterval_adj_def)
lift_definition set_of_adj :: "'a::{minus_mono} minterval_adj ⇒ 'a set"
is "λ is. ⋃x∈set is. {lower x..upper x}" .
lemma set_adj_of_subset: "set_of_adj (x::'a::minus_mono minterval_adj) ⊆ {mlower_adj x .. mupper_adj x}"
apply(transfer, simp)
using set_of_subeq_aux
mInterval_ovl_lower_hd_min[symmetric, simplified o_def]
mInterval_adj_upper_last_max[symmetric, simplified o_def]
valid_adj_imp_ovl
list.set_map
by (smt (verit, best))
lemma not_in_adj_eq:
‹(¬ e ∈ set_of_adj xs) = (∀ x ∈ set (mlist_adj xs). ¬ e ∈ set_of x)›
proof(induction "(mlist_adj xs)")
case Nil
then show ?case
by (metis UN_iff empty_iff empty_set mlist_adj.rep_eq set_of_adj.rep_eq)
next
case (Cons a x)
then show ?case
by (simp add: mlist_adj.rep_eq set_of_eq set_of_adj.rep_eq)
qed
lemma in_adj_eq:
‹(e ∈ set_of_adj xs) = (∃ x ∈ set (mlist_adj xs). e ∈ set_of x)›
proof(induction "(mlist_adj xs)")
case Nil
then show ?case
by (metis UN_iff empty_iff empty_set mlist_adj.rep_eq set_of_adj.rep_eq)
next
case (Cons a x)
then show ?case
by (simp add: mlist_adj.rep_eq set_of_eq set_of_adj.rep_eq)
qed
lemma set_of_adj_non_zero_list_all:
‹0 ∉ set_of_adj xs ⟹ ∀ x ∈ set (mlist_adj xs). ¬ 0 ∈⇩i x›
proof(induction "mlist_adj xs")
case Nil
then show ?case
by simp
next
case (Cons a x)
then show ?case
using in_adj_eq by blast
qed
context notes [[typedef_overloaded]] begin
lift_definition(code_dt) mInterval_adj'::"'a::minus_mono interval list ⇒ 'a minterval_adj option"
is "λ is. if valid_mInterval_adj is then Some is else None"
by (auto simp add: valid_mInterval_adj_def)
lemma mInterval_adj'_split:
"P (mInterval_adj' is) ⟷
(∀ivl. valid_mInterval_adj is ⟶ mlist_adj ivl = is ⟶ P (Some ivl)) ∧ (¬ valid_mInterval_adj is ⟶ P None)"
by transfer auto
lemma mInterval_adj'_split_asm:
"P (mInterval_adj' is) ⟷
¬((∃ivl. valid_mInterval_adj is ∧ mlist_adj ivl = is ∧ ¬P (Some ivl)) ∨ (¬ valid_mInterval_adj is ∧ ¬P None))"
unfolding mInterval_adj'_split
by auto
lemmas mInterval_adj'_splits = mInterval_adj'_split mInterval_adj'_split_asm
lemma mInterval'_eq_Some: "mInterval_adj' is = Some i ⟹ mlist_adj i = is"
by (simp split: mInterval_adj'_splits)
end
instantiation "minterval_adj" :: ("{minus_mono}") equal
begin
definition "equal_class.equal a b ≡ (mlist_adj a = mlist_adj b)"
instance proof qed (simp add: equal_minterval_adj_def minterval_adj_eq_iff)
end
instantiation minterval_adj :: ("{minus_mono}") ord begin
definition less_eq_minterval_adj :: "'a minterval_adj ⇒ 'a minterval_adj ⇒ bool"
where "less_eq_minterval_adj a b ⟷ mlower_adj b ≤ mlower_adj a ∧ mupper_adj a ≤ mupper_adj b"
definition less_minterval_adj :: "'a minterval_adj ⇒ 'a minterval_adj ⇒ bool"
where "less_minterval_adj x y = (x ≤ y ∧ ¬ y ≤ x)"
instance proof qed
end
instantiation minterval_adj :: ("{minus_mono,lattice}") sup
begin
lift_definition sup_minterval_adj :: "'a minterval_adj ⇒ 'a minterval_adj ⇒ 'a minterval_adj"
is "λ a b. [Interval (inf (lower (hd a)) (lower (hd b)), sup (upper (last a)) (upper (last b)))]"
by(auto simp: valid_mInterval_ovl_def sorted_wrt_lower_def non_adjacent_sorted_wrt_lower_def
non_overlapping_sorted_def le_infI1 le_supI1 valid_mInterval_adj_def mupper_adj_def
mlower_adj_def )
lemma mlower_adj_sup[simp]: "mlower_adj (sup A B) = inf (mlower_adj A) (mlower_adj B)"
apply(transfer)
by (metis comp_apply le_supE le_supI1 list.sel(1) lower_bounds lower_le_upper_aux sup_inf_absorb
valid_mInterval_adj_def)
lemma mupper_adj_sup[simp]: "mupper_adj (sup A B) = sup (mupper_adj A) (mupper_adj B)"
apply(transfer)
by (metis (no_types, lifting) comp_def inf_sup_absorb last.simps le_infI1 le_inf_iff lower_le_upper_aux
upper_bounds valid_mInterval_adj_def)
instance
by(standard)
end
instantiation minterval_adj :: ("{lattice,minus_mono}") preorder
begin
instance
apply(standard)
subgoal
using less_minterval_adj_def by auto
subgoal
by (simp add: less_eq_minterval_adj_def)
subgoal
by (meson less_eq_minterval_adj_def order.trans)
done
end
lemma set_of_minterval_adj_union: "set_of_adj A ∪ set_of_adj B ⊆ set_of_adj (sup A B)"
for A::"'a::{lattice, minus_mono} minterval_adj"
apply(transfer, simp)
using set_of_subeq_aux
mInterval_ovl_lower_hd_min[symmetric, simplified o_def]
mInterval_adj_upper_last_max[symmetric, simplified o_def]
valid_adj_imp_ovl
list.set_map
by (smt (verit) le_sup_iff lower_bounds lower_le_upper_aux lower_sup set_of_eq set_of_subset_iff
sup.commute sup.commute sup.order_iff sup_ge1 sup_ge1 sup_inf_absorb upper_bounds
valid_mInterval_adj_def)
lemma minterval_adj_union_commute: "sup A B = sup B A" for A::"'a::{minus_mono,lattice} minterval_adj"
apply (auto simp add: minterval_adj_eq_iff inf.commute sup.commute)[1]
by (simp add: mlist_adj.rep_eq inf_commute sup_minterval_adj.rep_eq sup_commute)
lemma minterval_adj_union_mono1: "set_of_adj a ⊆ set_of_adj (sup a A)"
for A :: "'a::{minus_mono,lattice} minterval_adj"
apply(transfer, simp)
using set_of_subeq_aux
mInterval_ovl_lower_hd_min[symmetric, simplified o_def]
mInterval_adj_upper_last_max[symmetric, simplified o_def]
valid_adj_imp_ovl
list.set_map
by (smt (verit, del_insts) inf.absorb_iff2 inf_le1 le_infI1 lower_bounds lower_le_upper_aux
set_of_eq set_of_subset_iff sup_ge1 upper_bounds valid_mInterval_adj_def)
lemma minterval_adj_union_mono2: "set_of_adj A ⊆ set_of_adj (sup a A)" for A :: "'a::{lattice, minus_mono} minterval_adj"
apply(transfer, simp)
using set_of_subeq_aux
mInterval_ovl_lower_hd_min[symmetric, simplified o_def]
mInterval_adj_upper_last_max[symmetric, simplified o_def]
valid_adj_imp_ovl
list.set_map
by (smt (verit, del_insts) inf.absorb_iff2 le_sup_iff lower_bounds lower_le_upper_aux nle_le
set_of_eq set_of_subset_iff sup_inf_absorb upper_bounds valid_mInterval_adj_def)
lift_definition minterval_adj_of :: "'a::{minus_mono} ⇒ 'a minterval_adj" is "λx. [Interval(x, x)]"
unfolding valid_mInterval_adj_def valid_mInterval_ovl_def non_adjacent_sorted_wrt_lower_def
cmp_non_adjacent_def sorted_wrt_lower_def non_overlapping_sorted_def
by simp
lemma mlower_adj_minterval_adj_of[simp]: "mlower_adj (minterval_adj_of a) = a"
by transfer auto
lemma mupper_adj_minterval_adj_of[simp]: "mupper_adj (minterval_adj_of a) = a"
by transfer auto
definition width_adj :: "'a::{minus_mono} minterval_adj ⇒ 'a"
where "width_adj i = mupper_adj i - mlower_adj i"
subsection‹Zero and One›
instantiation "minterval_adj" :: ("{minus_mono,zero}") zero
begin
lift_definition zero_minterval_adj::"'a minterval_adj" is "mk_mInterval_adj [Interval (0, 0)]"
by (simp add: mk_mInterval_adj_valid)
lemma mlower_adj_zero[simp]: "mlower_adj 0 = 0"
by(transfer, simp add: mk_mInterval_adj_def mk_mInterval_ovl_def interval_sort_lower_width_def)
lemma mupper_adj_zero[simp]: "mupper_adj 0 = 0"
by(transfer, simp add: mk_mInterval_adj_def mk_mInterval_ovl_def interval_sort_lower_width_def)
instance proof qed
end
instantiation "minterval_adj" :: ("{minus_mono,one}") one
begin
lift_definition one_minterval_adj::"'a minterval_adj" is "mk_mInterval_adj [Interval (1, 1)]"
by (simp add: mk_mInterval_adj_valid)
lemma mlower_adj_one[simp]: "mlower_adj 1 = 1"
by(transfer, simp add: mk_mInterval_adj_def mk_mInterval_ovl_def interval_sort_lower_width_def)
lemma mupper_adj_one[simp]: "mupper_adj 1 = 1"
by(transfer, simp add: mk_mInterval_adj_def mk_mInterval_ovl_def interval_sort_lower_width_def)
instance proof qed
end
subsection‹Addition›
instantiation minterval_adj :: ("{minus_mono,ordered_ab_semigroup_add,linordered_field}") plus
begin
lift_definition plus_minterval_adj::"'a minterval_adj ⇒ 'a minterval_adj ⇒ 'a minterval_adj"
is "λ a b . mk_mInterval_adj (iList_plus a b)"
by (metis bin_op_interval_list_empty iList_plus_def mk_mInterval_adj_valid valid_mInterval_adj_def)
instance proof qed
lemma interval_plus_com:
‹a + b = b + a› for a::"'a minterval_adj"
apply(transfer)
using iList_plus_mInterval_adj_commute plus_minterval_adj_def
by(auto)
end
subsection ‹Unary Minus›
lemma a: "(x::'a::ordered_ab_group_add interval) ≠ y ⟹ -x ≠ -y"
apply(simp add:uminus_interval_def)
by (smt (z3) Pair_inject bounds_of_interval_inverse case_prod_Pair_iden case_prod_unfold neg_equal_iff_equal uminus_interval.rep_eq)
lemma b: "distinct (is::'a::ordered_ab_group_add interval list) ⟹ distinct (map (λ i. -i) is)"
proof(induction "is")
case Nil
then show ?case by simp
next
case (Cons a "is")
then show ?case using a by force
qed
instantiation "minterval_adj" :: ("{minus_mono, ordered_ab_group_add}") uminus
begin
lift_definition uminus_minterval_non_ovl::"'a minterval_adj ⇒ 'a minterval_adj"
is "λ is . mk_mInterval_non_ovl (rev (map (λ i. -i) is))"
by (metis (no_types, opaque_lifting) list.map_disc_iff mk_mInterval_non_ovl_id mk_mInterval_non_ovl_non_empty
mk_mInterval_non_ovl_valid rev_is_Nil_conv sorted_wrt_lower_mk_mInterval_non_ovl
valid_non_ovl_imp_adj)
instance ..
end
subsection ‹Subtraction›
instantiation "minterval_adj" :: ("{minus_mono, linordered_field, ordered_ab_group_add}") minus
begin
definition minus_minterval_non_ovl::"'a minterval_adj ⇒ 'a minterval_adj ⇒ 'a minterval_adj"
where "minus_minterval_non_ovl a b = a + - b"
instance ..
end
subsection ‹Multiplication›
instantiation "minterval_adj" :: ("{minus_mono, linordered_field}") times
begin
lift_definition times_minterval_non_ovl::"'a minterval_adj ⇒ 'a minterval_adj ⇒ 'a minterval_adj"
is "λ a b . mk_mInterval_non_ovl (iList_times a b)"
by (metis bin_op_interval_list_empty iList_times_def mk_mInterval_non_ovl_id
mk_mInterval_non_ovl_non_empty mk_mInterval_non_ovl_valid sorted_wrt_lower_mk_mInterval_non_ovl
valid_non_ovl_imp_adj)
instance ..
end
subsection ‹Multiplicative Inverse and Division›
locale minterval_adj_division = inverse +
constrains inverse :: ‹'a::{linordered_field, zero, minus, minus_mono, real_normed_algebra,linear_continuum_topology} minterval_adj ⇒ 'a minterval_adj›
and divide :: ‹'a::{linordered_field, zero, minus, minus_mono, real_normed_algebra,linear_continuum_topology} minterval_adj ⇒ 'a minterval_adj ⇒ 'a minterval_adj›
assumes inverse_left: ‹¬ 0 ∈ set_of_adj x ⟹ 1 ≤ (inverse x) * x›
and divide: ‹¬ 0 ∈ set_of_adj y ⟹ x ≤ (divide x y) * y›
begin
end
locale minterval_adj_division_inverse = inverse +
constrains inverse :: ‹'a::{linordered_field, zero, minus, minus_mono, real_normed_algebra,linear_continuum_topology} minterval_adj ⇒ 'a minterval_adj›
and divide :: ‹'a::{linordered_field, zero, minus, minus_mono, real_normed_algebra,linear_continuum_topology} minterval_adj ⇒ 'a minterval_adj ⇒ 'a minterval_adj›
assumes inverse_non_zero_def: ‹¬ 0 ∈ set_of_adj x ⟹ (inverse x)
= mInterval_adj (mk_mInterval_adj(un_op_interval_list (λ i. mk_interval (1 / (upper i), 1 / (lower i))) (mlist_adj x)))›
and divide_non_zero_def: ‹¬ 0 ∈ set_of_adj y ⟹ (divide x y) = inverse y * x›
begin
end
subsection ‹Membership›
abbreviation (in preorder) in_minterval_adj (‹(_/ ∈⇩a⇩d⇩j _)› [51, 51] 50)
where "in_minterval_adj x X ≡ x ∈ set_of_adj X"
lemma in_minterval_adj_to_minterval_adj[intro!]: "a ∈⇩a⇩d⇩j minterval_adj_of a"
by (metis (mono_tags, lifting) UN_iff list.set_intros(1) lower_in_interval lower_point_interval
minterval_adj_of.rep_eq set_of_eq set_of_adj.rep_eq)
instance minterval_adj :: ("{one, preorder, minus_mono, linordered_semiring}") power
proof qed
lemma set_of_one_adj[simp]: "set_of_adj (1::'a::{one, minus_mono, order} minterval_adj) = {1}"
apply(transfer)
by(auto simp: mk_mInterval_adj_def mk_mInterval_ovl_def interval_sort_lower_width_def set_of_adj_def)
lifting_update minterval_adj.lifting
lifting_forget minterval_adj.lifting
end